Harapriya Rath | Chemistry | Best Researcher Award

Prof. Harapriya Rath | Chemistry | Best Researcher Award

Professor from Indian Association for the Cultivation of Science | India

Prof. Harapriya Rath is a renowned chemist and academic leader with a specialized focus on macrocyclic and supramolecular chemistry, particularly porphyrinoid systems. Currently serving as a Professor at the School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata, India, she has made significant contributions to organic, inorganic, and physical chemistry. Her research highlights include aromaticity switching, nonlinear optics, photophysical studies, and anion sensing using expanded porphyrins. Prof. Rath is widely recognized for her pioneering work on core-modified expanded porphyrins, which has opened up new possibilities in the field of functional molecular materials. With over 70 peer-reviewed publications in high-impact journals such as Nature Chemistry, JACS, Angewandte Chemie, and ChemComm, she has established herself as a global authority in the field. In addition to her prolific publication record, she has successfully guided numerous Ph.D. students and collaborated with leading international institutions across Japan, the UK, and Europe. Prof. Rath combines outstanding research, teaching excellence, and international networking, making her an influential figure in modern chemical sciences. Her work has not only contributed to the advancement of fundamental chemical knowledge but also found relevance in practical applications like sensors and molecular devices.

Professional Profile

Scopus Profile

Education

Prof. Harapriya Rath holds a Ph.D. in Chemistry from the Indian Institute of Technology (IIT) Kanpur, India. Her doctoral research under the supervision of Prof. T. K. Chandrashekar focused on “Core Modified Expanded Porphyrins with Six meso-links: New Organic Materials for Nonlinear Optical Applications,” a study that laid the groundwork for her lifelong interest in macrocyclic and porphyrinoid chemistry. Prior to her Ph.D., she completed her M.Sc. in Chemistry, with a solid foundation in synthetic organic and inorganic chemistry. Following her doctoral studies, she pursued advanced postdoctoral research as a JSPS Fellow at Kyoto University and NAIST in Japan. Her international academic journey continued as a Royal Society Newton International Fellow at the University of Manchester, UK, where she expanded her work into molecular electronics and conformational rigidity. Her educational path has not only been rooted in academic excellence but also shaped by exposure to leading global research environments. Through her academic training in India and abroad, Prof. Rath acquired a comprehensive perspective on structural design, synthesis, and characterization of advanced molecular materials, enabling her to become a thought leader in macrocyclic chemistry.

Experience

Prof. Rath began her professional academic career at the Indian Association for the Cultivation of Science (IACS), Kolkata, where she currently serves as a Professor in the School of Chemical Sciences. Her professional journey also includes prestigious international postdoctoral appointments in Japan and the United Kingdom. she was a Japan Society for the Promotion of Science (JSPS) Postdoctoral Fellow, where she worked at Kyoto University and NAIST on synthetic pathways for macrocyclic compounds with potential nonlinear optical properties. Later, she served as a Royal Society Newton International Fellow at the University of Manchester, where she collaborated with Prof. Martin Smith on molecular materials and π-conjugated systems. Over the years, Prof. Rath has led a productive and innovative research group at IACS, supervising Ph.D. students, initiating interdisciplinary collaborations, and securing funding from national and international science agencies such as SERB, DST, and JSPS. In addition to research, she is actively engaged in curriculum development, faculty recruitment, and organizing international conferences. Her extensive experience across different academic cultures has given her a unique ability to merge fundamental science with emerging technological applications, making her a sought-after academician and mentor.

Research Interests

Prof. Rath’s research interests lie at the interface of organic, inorganic, and physical chemistry, with a strong emphasis on macrocyclic chemistry, especially porphyrinoids and their derivatives. She is particularly known for her exploration of aromaticity and antiaromaticity in expanded porphyrins, where she has demonstrated how subtle structural modifications can lead to drastic changes in electronic properties. Her team has developed novel core-modified porphyrinoids that exhibit tunable aromaticity and have potential applications in nonlinear optics and molecular electronics. She is also deeply involved in investigating σ- and π-aromaticity switching, twisted Möbius topologies, and their implications in anion sensing and molecular recognition. Additionally, she explores supramolecular assemblies, photophysical properties of macrocycles, and their use in host–guest chemistry. Another frontier in her research includes studying NIR-absorbing chromophores and nonlinear optical materials, which are of immense interest for optoelectronic applications. Prof. Rath’s research is known for its novelty, interdisciplinary impact, and high relevance in material design, anion sensing, and energy transfer systems. Her work offers insights into not just structural chemistry but also electronic behaviors, bridging the gap between molecular design and functional application in sensors, devices, and smart materials.

Research Skills

Prof. Harapriya Rath brings an impressive array of research skills that blend chemical synthesis, spectroscopic characterization, and theoretical insight. She is highly skilled in designing and synthesizing large π-conjugated macrocyclic systems, particularly porphyrinoid-based frameworks. Her expertise lies in multi-step organic synthesis, functionalization of macrocycles, and manipulation of aromaticity through conformational control and core modifications. She is proficient in using advanced spectroscopic tools such as UV-Vis, fluorescence, NMR (1D and 2D), mass spectrometry, and single-crystal X-ray diffraction for structural analysis. Additionally, she integrates computational chemistry methods to understand electronic distribution, aromaticity indexes, and molecular orbitals using DFT and other quantum chemical techniques. Her skills also extend to studying photophysical behaviors such as emission lifetimes and quantum yields, which are crucial for designing optical sensors and photonic materials. With a background in physical-organic chemistry, she also explores nonlinear optical (NLO) properties using spectroscopic and theoretical methods. Prof. Rath’s lab operates at the confluence of synthetic chemistry and molecular materials science, where she trains young researchers in both experimental and analytical techniques. These well-rounded skills allow her to conduct fundamental and applied research at an internationally competitive level.

Awards and Honors

Prof. Harapriya Rath has received several prestigious awards and honors that underscore her outstanding contributions to chemical research. She was awarded the Ramanujan Fellowship by the Science and Engineering Research Board (SERB), Government of India, recognizing her as a young scientist with high potential. she was elected as a Fellow of the Royal Society of Chemistry (FRSC), a testament to her global standing in the field of chemical sciences. Earlier, she was the recipient of the Royal Society Newton International Fellowship, which allowed her to conduct pioneering research in molecular materials at the University of Manchester. She has also been a JSPS Postdoctoral Fellow in Japan, highlighting her early career excellence and international collaborations. Prof. Rath has been invited to deliver talks at national and international conferences, chaired scientific sessions, and contributed to academic panels and editorial review boards. She has received project funding from DST, SERB, and international partners. Her achievements in publishing high-impact research articles and mentoring future scientists further amplify her influence. Collectively, these accolades affirm her position as a leader in macrocyclic chemistry and molecular design.

Publication Top Notes

  1. Syntheses of Variants of π(σ) Aromatic Modified N-Methyl N-Confused Porphyrinoids with Adaptive Properties, Chemistry – An Asian Journal, 2025.

  2. Copper(III) Organometallic Complexes of Non (Anti)aromatic and Aromatic Doubly N-Confused Porphyrinoids: Syntheses and Characterization, Dalton Transactions, 2025,

  3. X-ray Characterization of Core-Modified N-Confused Fused Porphyrinogen and Genesis of π(σ) (Anti)aromatic N-Confused Fused Porphyrinoids, Organic Chemistry Frontiers, 2024, Citations: 3

  4. Organometallic Copper(II) Complex of meso-meso N-Methyl N-Confused Pyrrole-Bridged Doubly N-Methyl N-Confused Hexaphyrin, Organic & Biomolecular Chemistry, 2024, Citations: 3

  5. Rational and Controllable Syntheses of Variants of Modified N-Confused N-Fused Porphodimethenes and a Porphotrimethene with Adaptive Properties, Dalton Transactions, 2024, Citations: 3

Conclusion

Prof. Harapriya Rath is a trailblazer in the field of macrocyclic chemistry, particularly in the design and development of porphyrinoid-based materials with tailored electronic and optical properties. Her extensive body of work has not only advanced the fundamental understanding of aromaticity, conformational dynamics, and molecular recognition but also opened new avenues in functional materials for sensing, optoelectronics, and nonlinear optics. With a strong academic foundation built through her education in India and research fellowships in Japan and the UK, she brings a rare blend of theoretical insight and experimental rigor. As a professor at IACS Kolkata, she continues to inspire and mentor a new generation of chemists while actively contributing to global scientific discourse. Her recognition through prestigious fellowships and society memberships highlights her influence and dedication to scientific excellence. In every dimension—education, research, international collaboration, and community service—Prof. Rath exemplifies the qualities of a globally impactful researcher. With ongoing contributions and future potential for even broader interdisciplinary integration, she is well-positioned to shape the future of molecular materials science both in India and on the international stage.

Laxminarayana Eppakayala | Chemistry | Best Researcher Award

Prof. Dr. Laxminarayana Eppakayala | Chemistry | Best Researcher Award

Professor from Sreenidhi Institute of Science and Technology, India

Dr. E. Laxminarayana is a distinguished academician and researcher specializing in Organic Chemistry. With over two decades of teaching experience and 14 years dedicated to research, he has made significant contributions to the field. Currently serving as an Associate Professor at Sreenidhi Institute of Science and Technology, Dr. Laxminarayana has been instrumental in mentoring students and advancing research initiatives within the department. His scholarly work is reflected in his impressive portfolio of 165 publications in both national and international journals. Beyond teaching, he has guided five Ph.D. scholars from Jawaharlal Nehru Technological University Hyderabad, focusing on innovative synthetic methodologies and computational studies. His commitment to excellence in education and research has been recognized through various awards, including the Best Teacher and Best Researcher accolades. Dr. Laxminarayana’s expertise and dedication continue to inspire students and colleagues alike, solidifying his reputation as a leading figure in the field of Organic Chemistry.

Professional Profile

Education

Dr. E. Laxminarayana’s academic journey is rooted in Kakatiya University, where he pursued all his higher education degrees. He completed his Bachelor of Science (B.Sc.) in 1999, laying a strong foundation in the sciences. His passion for chemistry led him to undertake a Master of Science (M.Sc.) in Organic Chemistry, which he completed in 2002. Driven by a quest for deeper knowledge and research, he pursued a Doctor of Philosophy (Ph.D.) in Organic Chemistry, culminating in 2009. His doctoral research focused on the development of novel synthetic methodologies, contributing valuable insights to the field. Throughout his academic pursuits, Dr. Laxminarayana demonstrated a consistent commitment to excellence, which has been the cornerstone of his subsequent teaching and research career.

Professional Experience

With over 20 years of teaching experience, Dr. E. Laxminarayana has been a pivotal figure in shaping the academic landscape at Sreenidhi Institute of Science and Technology. As an Associate Professor in the Department of Chemistry, he has been instrumental in delivering comprehensive education in subjects like Engineering Chemistry and Environmental Science. His pedagogical approach combines theoretical knowledge with practical applications, fostering a conducive learning environment for students. Beyond classroom teaching, Dr. Laxminarayana has actively engaged in curriculum development, research mentorship, and departmental administration. His leadership has been crucial in initiating co-curricular and extracurricular activities, enhancing the holistic development of students. His dedication to education and research has not only elevated the department’s stature but also contributed significantly to the institution’s academic excellence.

Research Interests

Dr. E. Laxminarayana’s research interests are primarily centered around Organic Synthesis and Computational Studies. His work in Organic Synthesis involves developing innovative methodologies for constructing complex organic molecules, which has significant implications in pharmaceuticals and material science. In the realm of Computational Studies, he employs computational chemistry techniques to model and predict the behavior of organic compounds, facilitating a deeper understanding of reaction mechanisms and molecular properties. This interdisciplinary approach allows for the integration of theoretical and practical aspects of chemistry, leading to more efficient and sustainable chemical processes. His research has not only contributed to academic knowledge but also holds potential for real-world applications in drug development and industrial chemistry.

Research Skills

Dr. E. Laxminarayana possesses a robust set of research skills that underpin his contributions to Organic Chemistry. His expertise in Organic Synthesis enables him to design and execute complex chemical reactions, leading to the creation of novel compounds with potential therapeutic applications. He is proficient in various spectroscopic and chromatographic techniques, essential for the characterization and analysis of chemical substances. In Computational Chemistry, he utilizes advanced software tools to simulate molecular structures and predict chemical behaviors, aiding in the rational design of experiments. His ability to integrate computational insights with experimental data enhances the efficiency and accuracy of his research. Additionally, his experience in guiding Ph.D. students reflects his mentorship skills and commitment to fostering new talent in the field.

Awards and Honors

Dr. E. Laxminarayana’s dedication to teaching and research has been recognized through several prestigious awards. He has been honored with the Best Teacher Award, acknowledging his exceptional contributions to education and student development. His research excellence has earned him the Best Researcher Award, reflecting the impact and quality of his scholarly work. Furthermore, he has received the Best Citizens of India award from the Indian Institute of Financial Studies (IIFS), New Delhi, highlighting his contributions to the nation through education and research. These accolades underscore his commitment to academic excellence and his influence as a thought leader in the field of Organic Chemistry.

Conclusion

In summary, Dr. E. Laxminarayana stands out as a dedicated educator and a prolific researcher in Organic Chemistry. His extensive teaching experience, coupled with a strong research portfolio, has significantly contributed to the academic community. His work in Organic Synthesis and Computational Studies not only advances scientific understanding but also has practical implications in various industries. The recognition he has received through multiple awards attests to his excellence and influence in the field. As he continues to mentor students and pursue innovative research, Dr. Laxminarayana remains a vital asset to Sreenidhi Institute of Science and Technology and the broader scientific community.

Publications Top Notes

  • Title: Design, synthesis, in silico ADME, toxicity prediction, molecular docking studies of 1,2,4-oxadiazole incorporated indolizine-thiadiazole derivatives and their biological evaluation as anticancer agents
    Authors: Ketha, Swarupa; Chithaluri, Sudhakar; Kethireddy, Shashikala; Eppakayala, Laxminarayana; Asiri, Yahya I.
    Journal: Tetrahedron
    Year: 2025

  • Title: Synthesis and biological evaluation of thiazolo[3,2-b][1,2,4]triazole substituted 1,3,4-oxadiazole and pyridine derivatives as anticancer agents
    Authors: Alkhathami, Ali Gaithan; Tasqeeruddin, Syed; Sultana, Shaheen; Eppakayala, Laxminarayana; Somaiah, Nalla
    Journal: Tetrahedron
    Year: 2025

  • Title: In silico and antibacterial studies of Thiadiazole and Triazole linked 1,8-Napthyridine derivatives
    Authors: Lakshmi, Bhargavi J.; Pittala, Bhaskar; Eppakayala, Laxminarayana; Donta, Paramesh; Reddy, Chittireddy Venkata Ramana
    Journal: Research Journal of Chemistry and Environment
    Year: 2025

  • Title: Synthesis and biological evaluation of aryl derivatives of indole-1,3,4-thiadiazole as anticancer agents
    Authors: Kalagara, Sudhakar; Baddam, Sudhakar Reddy; Ganta, Srinivas; Damarancha, Anil; Eppakayala, Laxminarayana
    Journal: Synthetic Communications
    Year: 2025

  • Title: Synthesis and molecular docking studies of some new 2-N-acylaminobenzothiazole derivatives
    Authors: Pittala, Bhaskar; Bireddy, Srinivasa Reddy; Eppakayala, Laxminarayana; Chittireddy, Venkata Ramana Reddy
    Journal: Indian Journal of Heterocyclic Chemistry
    Year: 2025

  • Title: Highly Efficient Synthesis of 1,3,5-Oxadiazinan-4-one and 5-Methyl-1,3,5-triazinan-2-one Derivatives of Benzimidazolyl Pyrimidine and Their Activity Analysis through Docking Studies
    Authors: Patolla, S.; Kethireddy, Shashikala; Pittala, Bhaskar; Eppakayala, Laxminarayana; Bireddy, Srinivasa Reddy
    Journal: Russian Journal of Organic Chemistry
    Year: 2024

KUN LUO | Energy Chemistry | Best Researcher Award

Prof. Dr. KUN LUO | Energy Chemistry | Best Researcher Award

Professor from Tianjin University of Technology, China

Prof. Dr. Kun Luo is a distinguished researcher and academic in the field of energy materials and inorganic chemistry, with a robust background in materials science and engineering. With over two decades of experience in research and academia, he has made significant contributions to the advancement of battery technologies and sustainable energy materials. Dr. Luo is currently a professor at Tianjin University of Technology in China, where he leads innovative research in energy storage and materials synthesis. He completed his PhD in Inorganic Chemistry at the University of Oxford and has held prominent research positions at the University of St Andrews and Oxford, reflecting a solid international academic background. His research has been published in prestigious journals such as Nature Chemistry, Nano Letters, ACS Sustainable Chemistry & Engineering, and Journal of the American Chemical Society, demonstrating a high impact and relevance in the scientific community. Prof. Luo’s work focuses on novel electrode materials, redox chemistry, and the development of efficient, durable battery systems. His contributions are not only academic but also highly practical, supporting the global transition to sustainable energy. With a rich portfolio of publications and consistent research productivity, Prof. Luo is an exemplary candidate for the Best Researcher Award.

Professional Profile

Education

Prof. Dr. Kun Luo has a distinguished educational background that has laid a strong foundation for his scientific career. He began his academic journey at Zhejiang University, China, where he earned both his Bachelor’s and Master’s degrees in Materials Science and Engineering between 2003 and 2010. These formative years provided him with extensive knowledge of materials synthesis, characterization, and engineering principles. Recognized for his academic excellence, he pursued doctoral studies at the prestigious University of Oxford, where he received his PhD in Inorganic Chemistry in 2013. During his PhD, he focused on the synthesis and structural characterization of complex transition metal oxides, which would later become a cornerstone of his research expertise in energy materials. The combination of his background in materials engineering and deep chemical insight allowed him to approach energy problems with a unique interdisciplinary perspective. His education at institutions known for research rigor and innovation prepared him to tackle advanced scientific problems and train future generations of researchers. The academic diversity and international exposure in both Chinese and British universities gave him a global outlook and an adaptable approach to collaborative research and teaching, making his educational profile both versatile and elite.

Professional Experience

Prof. Dr. Kun Luo has accumulated an impressive array of professional experiences across some of the world’s leading academic institutions. Following his PhD at the University of Oxford, he began his postdoctoral research at the University of St Andrews from 2013 to 2014, where he deepened his expertise in solid-state chemistry and advanced materials. He then returned to Oxford as a postdoctoral researcher from 2014 to 2017, contributing to cutting-edge projects on battery materials and redox chemistry. In 2018, he assumed a professorial role at Nankai University in Tianjin, China, where he led research in inorganic chemistry until 2022. During this period, his research group focused on developing high-performance electrode materials and exploring the fundamental science behind electrochemical energy storage. In 2022, he joined Tianjin University of Technology as a full professor in the School of Materials Science and Engineering. Throughout his career, Prof. Luo has demonstrated a consistent trajectory of advancement, reflecting both his research excellence and leadership capabilities. His academic appointments have allowed him to secure substantial research funding, supervise graduate students, and collaborate with global scholars. These roles underscore his commitment to both research and education, firmly establishing him as a leader in the field of energy materials.

Research Interests

Prof. Dr. Kun Luo’s research interests lie at the intersection of energy storage, inorganic chemistry, and materials engineering. His primary focus is on the development and optimization of advanced energy materials, particularly for battery technologies. He is deeply engaged in designing novel electrode materials, such as lithium-ion and sodium-ion battery components, which exhibit superior capacity, stability, and charge-discharge performance. His work explores solid-state reactions, redox mechanisms, and structural evolution during electrochemical cycling. He also investigates the role of oxygen and anion redox processes in transition metal oxide electrodes to improve energy density and safety. Another vital area of interest is the integration of sustainable practices into energy materials design, such as using abundant and environmentally benign elements. Prof. Luo’s research extends to hydrogen storage materials, where he examines reaction kinetics and thermodynamics to improve storage efficiency. His interdisciplinary approach blends chemistry, materials science, and engineering, enabling practical applications in renewable energy and sustainable technology development. By addressing both theoretical and applied challenges, his research contributes significantly to global efforts toward clean energy solutions. His work is at the forefront of next-generation battery technologies, making his research highly relevant for industries aiming to revolutionize portable and large-scale energy systems.

Research Skills

Prof. Dr. Kun Luo possesses a wide array of advanced research skills that enable him to conduct cutting-edge investigations in energy materials and inorganic chemistry. He is proficient in the synthesis of complex oxide materials, employing methods such as solid-state reactions, hydrothermal synthesis, and topochemical modifications. His expertise extends to structural characterization using techniques like X-ray diffraction (XRD), neutron diffraction, transmission electron microscopy (TEM), and pair distribution function (PDF) analysis, allowing precise determination of crystallographic and local atomic structures. Dr. Luo is also adept in electrochemical characterization, including cyclic voltammetry, galvanostatic charge-discharge tests, and electrochemical impedance spectroscopy (EIS), which he uses to assess battery performance and reaction mechanisms. He is highly experienced in analyzing redox processes, particularly oxygen redox activity, and understanding charge compensation phenomena in transition metal oxides. Furthermore, his familiarity with computational modeling and thermodynamic analysis enhances his ability to predict and explain material behavior under various conditions. His interdisciplinary skill set bridges chemistry, materials science, and engineering, enabling him to tackle complex challenges in sustainable energy storage. These skills not only underscore his scientific depth but also his adaptability to evolving research frontiers, reinforcing his status as a top-tier researcher in energy materials.

Awards and Honors

While Prof. Dr. Kun Luo’s curriculum vitae does not explicitly list awards and honors, his scholarly impact and publication record strongly suggest a career marked by distinction and recognition in the scientific community. His research has been featured in some of the most prestigious and high-impact journals in materials science and chemistry, such as Nature Chemistry, Nano Letters, Journal of the American Chemical Society, and ACS Sustainable Chemistry & Engineering. The consistent publication of impactful work over the years highlights the academic community’s acknowledgment of his research quality and relevance. Moreover, he has served as a peer reviewer for reputable journals, including ACS Applied Energy Materials, further reflecting his standing as a trusted expert in his field. His appointments at globally respected institutions like the University of Oxford and Nankai University also signify academic recognition and trust in his abilities. Although not explicitly detailed, it is reasonable to infer that he has been the recipient of internal and collaborative research funding, enabling him to lead and execute high-level projects. These forms of implicit recognition, combined with his citation impact and leadership roles, indicate that Prof. Luo is highly esteemed and likely to be honored further as his research continues to influence the energy materials field.

Conclusion

Prof. Dr. Kun Luo exemplifies excellence in research, academic leadership, and scientific innovation. With a robust educational background, extensive professional experience at top-tier institutions, and a prolific research portfolio, he stands out as a leading figure in the field of energy materials. His pioneering contributions to battery materials, inorganic chemistry, and sustainable energy technologies have advanced both theoretical understanding and real-world applications. Dr. Luo’s interdisciplinary approach, integrating chemistry and engineering, demonstrates his capacity to address pressing global challenges such as clean energy storage. His research not only contributes to academic progress but also holds significant potential for industrial and environmental impact. Furthermore, his mentoring of young scientists and involvement in peer review activities underline his commitment to the advancement of science and education. Although his formal accolades may not be extensively documented, his publication history and professional trajectory clearly establish him as a thought leader in his domain. Given his consistent research output, global academic involvement, and deep technical expertise, Prof. Dr. Kun Luo is an outstanding candidate for the Best Researcher Award. His profile embodies the values of innovation, integrity, and excellence that such an honor is intended to celebrate.

Publications Top Notes

  • Title: Suppressing staircase-like electrochemical profile induced by P–O transition by solid-solution reaction with continuous structural evolution in layered Na-ion battery cathode
    Authors: Kun Luo, Ming Chen, Mengdan Tian, Wenhui Li, Yang Jiang, Zhihao Yuan
    Year: 2023

  • Title: High-Capacity Anode Material for Lithium-Ion Batteries with a Core–Shell NiFe₂O₄/Reduced Graphene Oxide Heterostructure
    Authors: Chang Liu, Tong Zhang, Lixin Cao, Kun Luo
    Year: 2021

  • Title: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
    Authors: Niccolo Guerrini, Liyu Jin, Juan G. Lozano, Kun Luo, Adam Sobkowiak, Kazuki Tsuruta, Felix Massel, Laurent-C. Duda, Matthew R. Roberts, Peter Bruce
    Year: 2020

  • Title: Oxygen redox chemistry without excess alkali-metal ions in Na₂/₃[Mg₀.₂₈Mn₀.₇₂]O₂
    Authors: Urmimala Maitra, Robert A. House, James W. Somerville, Nuria Tapia-Ruiz, Juan G. Lozano, Niccoló Guerrini, Rong Hao, Kun Luo, Liyu Jin, Miguel A. Pérez-Osorio et al.
    Year: 2018

  • Title: Identifying the local structural units in La₀.₅Ba₀.₅MnO₂.₅ and BaY₀.₂₅Fe₀.₇₅O₂.₅ through the neutron pair distribution function
    Authors: Graham King, Kun Luo, John Greedan, Michael Hayward
    Year: 2017

  • Title: One-Pot Synthesis of Lithium-Rich Cathode Material with Hierarchical Morphology
    Authors: Kun Luo, Matthew R. Roberts, Rong Hao, Niccoló Guerrini, Emanuela Liberti, Christopher S. Allen, Angus I. Kirkland, Peter G. Bruce
    Year: 2016

  • Title: Anion Redox Chemistry in the Cobalt Free 3d Transition Metal Oxide Intercalation Electrode Li[Li₀.₂Ni₀.₂Mn₀.₆]O₂
    Authors: Kun Luo, Matthew R. Roberts, Niccoló Guerrini, Nuria Tapia-Ruiz, Rong Hao, Felix Massel, David M. Pickup, Silvia Ramos, Yi-Sheng Liu, Jinghua Guo et al.
    Year: 2016

  • Title: Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
    Authors: Kun Luo, Matthew R. Roberts, Rong Hao, Niccoló Guerrini, David M. Pickup, Yi-Sheng Liu, Kristina Edström, Jinghua Guo, Alan V. Chadwick, Laurent C. Duda et al.
    Year: 2016

  • Title: Ca₂Cr₀.₅Ga₁.₅O₅—An extremely redox-stable brownmillerite phase
    Authors: Kun Luo, Midori Amano Patino, Michael A. Hayward
    Year: 2015

  • Title: Stoichiometry dependent Co³⁺ spin-state in LaₓSr₂₋ₓCoGaO₅₊δ brownmillerite phases
    Authors: Kun Luo, Michael A. Hayward
    Year: 2014

 

 

 

Nadezhda Markova | Chemistry | Best Researcher Award

Assoc. Prof. Dr. Nadezhda Markova | Chemistry | Best Researcher Award

Theoretical chemistry at Institute of Organic Chemistry with Centre of Phytochemistry (IOCCP), Bulgarian 

Nadezhda Vasileva Markova is a distinguished Bulgarian scientist specializing in theoretical chemistry. She currently holds the position of Associate Professor at the Institute of Organic Chemistry with Centre of Phytochemistry, part of the Bulgarian Academy of Sciences. With a rich academic and professional background, she is renowned for her expertise in quantum chemical calculations, tautomerism, and the application of theoretical models to elucidate the structure and biological activity of plant-derived compounds. Throughout her career, she has demonstrated a strong commitment to advancing scientific knowledge through extensive research, mentoring, and collaboration with international scientific partners. Markova has co-authored 44 published and 2 accepted scientific articles, receiving over 600 citations. Her impactful research focuses on proton transfer reactions, solvent effects, and the molecular modeling of biologically active compounds. She is also recognized for her collaborative spirit and organizational skills in leading scientific projects. Her notable achievements include winning first place in the competition for high scientific achievements by the Union of Scientists in Bulgaria in 2011. Markova’s contributions continue to shape the field of theoretical and quantum chemistry, making her a leading figure in the Bulgarian scientific community.

Professional Profile

Education

Nadezhda Markova has a strong educational background in chemistry, with a focus on theoretical and organic chemistry. She earned her PhD in Theoretical Chemistry from the Bulgarian Academy of Sciences’ Institute of Organic Chemistry with Centre of Phytochemistry, where she honed her expertise in quantum chemical calculations and molecular modeling. Prior to her doctoral studies, she completed her Master of Science in Organic Chemistry at Shoumen University “Konstantin Preslavsky” between 1995 and 2000. Her master’s studies equipped her with a solid foundation in organic synthesis, analytical methods, and computational chemistry. Markova’s academic training emphasized both experimental and theoretical approaches, enabling her to develop skills in applying quantum chemical models to real-world molecular challenges. Her education has been instrumental in her ability to explore complex chemical processes, particularly in the areas of tautomerism, proton transfer reactions, and the interaction of biological molecules. With a robust academic foundation, she has continued to build on her expertise, contributing significantly to scientific research and publications in the field of theoretical chemistry.

Professional Experience

Nadezhda Markova’s professional career spans nearly two decades, during which she has held various academic and research positions at the Institute of Organic Chemistry with Centre of Phytochemistry, part of the Bulgarian Academy of Sciences. Since 2020, she has served as an Associate Professor, where she leads research projects, supervises doctoral students, and conducts cutting-edge studies in theoretical chemistry. From 2006 to 2020, she worked as an Assistant Professor, actively engaging in research focused on quantum chemical modeling, solvent effects, and the molecular structure of biologically active compounds. During her early career (2005–2006), she held the position of Chemist at the same institute, gaining hands-on experience in experimental and computational chemistry. Throughout her career, Markova has excelled in applying specialized software for quantum chemical calculations, such as GAMESS, GAUSSIAN, ChemCraft, and ChemOffice. Her professional journey highlights her dedication to advancing theoretical chemistry through meticulous research, scientific publications, and collaborative projects.

Research Interest

Nadezhda Markova’s research interests center around theoretical and quantum chemistry, with a particular focus on molecular modeling, proton transfer reactions, and solvent effects. She is deeply engaged in the study of tautomerism and its impact on the biological activity of various chemical compounds. Her work frequently explores the application of quantum chemical calculations in phytochemistry to elucidate the structure and biological action of plant-derived compounds. Additionally, Markova investigates the interactions of biologically significant molecules with nucleic acids, exploring their potential as fluorescent probes and antiviral agents. Her recent studies include the quantum chemical and metabolomic characterization of plant compounds against SARS-CoV-2 and Herpes Simplex Virus DNA polymerase, showcasing her contribution to medicinal chemistry. She is also interested in the effects of external electric fields on molecular tautomeric equilibrium, highlighting her innovative approach to molecular dynamics. Through her research, Markova aims to bridge the gap between computational models and experimental validation, offering valuable insights into molecular behavior and drug development.

Research Skills

Nadezhda Markova possesses an extensive set of research skills, particularly in the field of quantum chemical modeling and computational chemistry. She is highly proficient in utilizing specialized software for quantum chemical calculations, including GAMESS, GAUSSIAN, ChemCraft, and ChemOffice. Her expertise lies in conducting complex simulations to study proton transfer reactions, solvent effects, and tautomeric equilibria. Markova is skilled in applying hybrid statistical mechanics and quantum chemical models to investigate molecular interactions, making her a leader in the field of theoretical chemistry. Additionally, she is adept at using molecular docking and metabolomic profiling techniques to explore the inhibitory potential of natural compounds against viral enzymes. Her research skills extend to scientific writing, data analysis, and result interpretation, as evidenced by her numerous peer-reviewed publications. Furthermore, she excels in collaborating with multidisciplinary teams, organizing research projects, and mentoring doctoral students. Her technical proficiency and analytical capabilities have contributed to significant advancements in the study of molecular structure and biological activity.

Awards and Honors

Nadezhda Markova’s scientific excellence has been recognized through various awards and honors. In 2011, she achieved first place in the competition for high scientific achievements organized by the Union of Scientists in Bulgaria. This prestigious accolade highlighted her impactful contributions to the field of theoretical chemistry. Additionally, Markova’s extensive publication record—comprising 44 published and 2 accepted scientific articles—has received over 600 citations, underscoring the influence and recognition of her research within the scientific community. Her collaborative work with international research teams and participation in high-impact scientific projects further demonstrate her reputation as a leading figure in her field. Through her dedication to scientific innovation and knowledge dissemination, Markova has earned respect and recognition from peers and institutions alike. Her contributions continue to inspire and drive advancements in quantum chemical research and its applications in medicinal and organic chemistry.

Conclusion

Nadezhda Markova is a highly accomplished scientist whose expertise in theoretical chemistry has made a significant impact on the scientific community. Her academic background, extensive research experience, and proficiency in quantum chemical calculations have positioned her as a leading figure in her field. With a strong focus on molecular modeling, proton transfer reactions, and phytochemistry, she continues to push the boundaries of scientific knowledge. Markova’s dedication is reflected in her numerous publications, collaborations, and mentoring of young researchers. Her innovative work has earned her prestigious awards and widespread recognition, highlighting her role as a pioneer in quantum chemistry. As she continues to contribute to the advancement of scientific research, Markova’s legacy of excellence will undoubtedly inspire future generations of scientists and researchers.

Publications Top Notes

  1. Evaluation of chalcone derivatives for their role as antiparasitic and neuroprotectant in experimentally induced cerebral malaria mouse model

    • Authors: Shweta Sinha, Bikash Medhi, B. D. Radotra, Daniela Batovska, Nadezhda Markova, Rakesh
    • Year: 2023
  2. Potential of hydroxybenzoic acids from Graptopetalum paraguayense for inhibiting herpes simplex virus DNA polymerase – metabolome profiling, molecular docking, and quantum-chemical analysis

    • Authors: Nadezhda Todorova, Miroslav Rangelov, Ivayla Dincheva, Ilian Badjakov, Venelin Enchev, Nadezhda Markova
    • Year: 2022
  3. Potential of Hydroxybenzoic Acids From Graptopetalum paraguayense for Inhibiting Herpes Simplex Virus DNA Polymerase – Metabolome Profiling, Molecular Docking and Quantum-chemical Analysis

    • Authors: Nadezhda Hristova Todorova, Miroslav Angelov Rangelov, Ivayla Nedyalkova Dincheva, Ilian Kostadinov Badjakov, Venelin Georgiev Enchev, Nadezhda Vasileva Markova
    • Year: 2021
  4. Binding Expedient of 2‐carbamido‐1,3‐indandione to Nucleic Acids: Potential Fluorescent Probe

    • Authors: Nina Stoyanova, Nadezhda Markova, Ivan Angelov, Irena Philipova, Venelin Enchev
    • Year: 2021
  5. Ultrastructural alterations in Plasmodium falciparum induced by chalcone derivatives

    • Authors: Shweta Sinha, B.D. Radotra, Bikash Medhi, Daniela Batovska, Nadezhda Markova, Rakesh Sehgal
    • Year: 2020
  6. Anti-Herpes Simplex virus and antibacterial activities of Graptopetalum paraguayense E. Walther leaf extract: a pilot study

    • Authors: Margarita Zaharieva, Penka Genova-Kalоu, Ivayla Dincheva, Ilian Badjakov, Svetla Krumova, Venelin Enchev, Hristo Najdenski, Nadezhda Markova
    • Year: 2019
  7. Experimental and theoretical conformational studies of hydrazine derivatives bearing a chromene scaffold

    • Authors: Nadezhda V. Markova, Milen I. Rogojerov, Valentina T. Angelova, Nikolay G. Vassilev
    • Year: 2019
  8. In vitro anti-malarial efficacy of chalcones: Cytotoxicity profile, mechanism of action and their effect on erythrocytes

    • Authors: Shweta Sinha, Daniela I. Batovska, Bikash Medhi, B.D. Radotra, Anil Bhalla, Nadezhda Markova, Rakesh Sehgal
    • Year: 2019
  9. Synthesis, characterization, quantum-chemical calculations, and cytotoxic activity of 1,8-naphthalimide derivatives with non-protein amino acids

    • Authors: Ekaterina D. Naydenova, Milen N. Marinov, Georgi T. Momekov, Ralitsa Y. Prodanova, Nadezhda V. Markova, Yavor T. Voynikov, Nikolay M. Stoyanov
    • Year: 2019
  10. Tautomerism of Inosine in Water: Is It Possible?

  • Authors: Nadezhda Markova, Venelin Enchev
  • Year: 2019
  1. 2-Methylthio-imidazolins: a rare case of different tautomeric forms in solid state and in solution
  • Authors: Venelin Enchev, Nadezhda Markova, Milen Marinov, Nikolay Stoyanov, Milen Rogojerov, Aleksandr Ugrinov, Ireneusz Wawer, Dorota M. Pisklak
  • Year: 2017
  1. Green synthesis, structure and fluorescence spectra of new azacyanine dyes
  • Authors: Venelin Enchev, Nikolay Gadjev, Ivan Angelov, Stefka Minkovska, Atanas Kurutos, Nadezhda Markova, Todor Deligeorgiev
  • Year: 2017
  1. Hybrid MC/QC simulations of water-assisted proton transfer in nucleosides. Guanosine and its analog acyclovir
  • Authors: Nadezhda Markova, Ljupco Pejov, Nina Stoyanova, Venelin Enchev
  • Year: 2017
  1. Ultrasound-assisted green bromination of N-cinnamoyl amino acid amides – Structural characterization and antimicrobial evaluation
  • Authors: Borislava Stoykova, Mariya Chochkova, Gergana Ivanova, Nadezhda Markova, Venelin Enchev, Ivanka Tsvetkova, Hristo Najdenski, Miloslav Štícha, Tatiana Milkova
  • Year: 2017
  1. 2-Carbamido-1,3-indandione – A Fluorescent Molecular Probe and Sunscreen Candidate
  • Authors: Venelin Enchev, Ivan Angelov, Violeta Mantareva, Nadezhda Markova
  • Year: 2015
  1. A hybrid statistical mechanics – Quantum chemical model for proton transfer in 5-azauracil and 6-azauracil in water solution
  • Authors: Nadezhda Markova, Ljupco Pejov, Venelin Enchev
  • Year: 2015
  1. Synthesis of 3′,4′-Dihydro-2H,2′H,5H-spiro [imidazolidine-4,1′-naphthalene]-2,5-dione and its Derivatives
  • Authors: Milen Marinov, Plamena Marinova, Nikolay Stoyanov, Nadezhda Markova, Venelin Enchev
  • Year: 2014
  1. A model system with intramolecular hydrogen bonding: Effect of external electric field on the tautomeric conversion and electronic structures
  • Authors: Venelin Enchev, Vasil Monev, Nadezhda Markova, Milen Rogozherov, Snezhina Angelova, Maria Spassova
  • Year: 2013
  1. Excited state proton transfer in 3,6-bis(4,5-dihydroxyoxazo-2-yl)benzene-1, 2-diol
  • Authors: Venelin Enchev, Nadezhda Markova, Milena Stoyanova, Plamen Petrov, Milen Rogozherov, Natalia Kuchukova, Ivanka Timtcheva, Vasil Monev, Snezhina Angelova, Maria Spassova
  • Year: 2013
  1. Tautomeric equilibria of 5-fluorouracil anionic species in water
  • Authors: Nadezhda Markova, Venelin Enchev, Gergana Ivanova
  • Year: 2010
  1. Physicochemical characterization and in vitro behavior of daunorubicin-loaded poly(butylcyanoacrylate) nanoparticles
  • Authors: Maria Simeonova, Gergana Ivanova, Venelin Enchev, Nadezhda Markova, Milen Kamburov, Chavdar Petkov, Aidan Devery, Rod O’Connor, Declan Brougham
  • Year: 2009
  1. Ab initio and DFT study of the structure of metal ion complexes with N-benzalaniline-15-crown-5
  • Authors: Venelin Enchev, Snezhina Angelova, Nadezhda Markova, Ireneusz Wawer, Evgenia Stanoeva, Mariana Mitewa
  • Year: 2008
  1. Ab initio study of 2,4-substituted azolidines. II. Amino-imino tautomerism of 2-aminothiazolidine-4-one and 4-aminothiazolidine-2-one in water solution
  • Authors: Venelin Enchev, Nadezhda Markova, Snezhina Angelova
  • Year: 2005

Arun Kodoth | Chemistry | Best Researcher Award

Dr. Arun Kodoth | Chemistry | Best Researcher Award

Scientist at Dr Bansi Dhar Institute, India

Dr. Arun Krishna Kodoth is an accomplished researcher with a Ph.D. in Chemistry specializing in polymer and material science. With over a decade of academic and industrial experience, he has built a career centered on innovative research in polymer synthesis, hydrogels, nanofibers, and nanocomposites. His expertise spans green chemistry, microwave-assisted polymer synthesis, and advanced material applications in drug delivery, water treatment, and environmental sustainability. Dr. Kodoth has an impressive publication record, having authored 17 peer-reviewed articles and actively contributed to numerous conferences. His work has been recognized with prestigious awards for both oral and poster presentations. With a commitment to advancing scientific knowledge and a strong passion for collaboration, he has worked with academic institutions and industrial organizations to deliver impactful research solutions. As a reviewer for high-impact journals, Dr. Kodoth plays a vital role in shaping research in his field. His professional integrity, extensive technical skills, and dedication to research excellence make him a valuable contributor to global scientific advancements.

Professional Profile

Education

Dr. Kodoth holds a Ph.D. in Chemistry from Mangalore University, India (2019), with a thesis on “Synthesis, Characterization, and Applications of Copolymer-based Composite Hydrogels.” He completed his Master’s in Industrial Chemistry at Mangalore University, securing an impressive 72.125% in 2011. His undergraduate studies in Chemistry were undertaken at Govt. College Kasaragod, Kerala, where he earned a commendable 65.1%. Dr. Kodoth’s academic journey highlights a strong foundation in polymer science and material chemistry, supplemented by extensive practical exposure to advanced techniques. Throughout his education, he displayed a keen interest in interdisciplinary research, which laid the groundwork for his successful academic and industrial career. His robust academic achievements demonstrate his commitment to excellence, which has translated into impactful research contributions in polymer and material sciences.

Professional Experience

Dr. Kodoth has extensive experience in both academia and industry, making significant contributions as a scientist and educator. As a postdoctoral researcher at Mangalore University (2019–2024), he synthesized advanced polymeric nanofibers and hydrogels for applications in agriculture, dye adsorption, and drug delivery. In his role as a scientist at Shriram Institute for Industrial Research, Haryana, he developed cutting-edge materials, including hydrogels for water treatment and bio-based photocatalysts for environmental remediation. His industry experience includes a stint at AstraZeneca India, where he worked on Suzuki coupling reactions, showcasing his ability to bridge fundamental research with industrial needs. Additionally, he has successfully guided 11 MSc students, demonstrating his leadership and mentorship skills. His professional trajectory reflects a seamless blend of academic rigor and industry-oriented problem-solving.

Research Interests

Dr. Kodoth’s research interests focus on polymer and material science, with applications in environmental sustainability and healthcare. He is deeply involved in the development of hydrogels, nanofibers, and nanocomposites for advanced applications such as drug delivery, wastewater treatment, and agricultural innovation. His work on green synthesis of nanoparticles and microwave-assisted polymerization aligns with his commitment to eco-friendly and sustainable solutions. He has collaborated on projects to develop transdermal patches for cervical cancer treatment, demonstrating his interest in interdisciplinary and translational research. With a passion for addressing real-world challenges through material innovation, Dr. Kodoth aims to contribute to the fields of energy storage, environmental remediation, and smart material development.

Research Skills

Dr. Kodoth possesses an extensive repertoire of research skills in advanced material synthesis and characterization. His expertise includes the fabrication of hydrogels, nanofibers, and nanocomposites, along with drug delivery formulations. He is adept at using sophisticated analytical instruments like FTIR, UV-Vis spectrophotometers, TGA, DSC, and HPLC, ensuring thorough material analysis and data interpretation. Dr. Kodoth is skilled in electrospinning and advanced surface characterization methods, making him proficient in nanomaterial fabrication. His proficiency in software tools like ChemDraw, ChemSketch, and OriginPro complements his technical skills, enabling efficient research documentation and publication. These skills, combined with his expertise in polymer applications, position him as a leading researcher in the field of material science.

Awards and Honors

Dr. Kodoth has received several accolades recognizing his contributions to research and academia. His work has earned him awards for the best poster and oral presentations at national conferences, highlighting the quality and relevance of his research. As a referee for prominent journals such as Wiley’s Journal of Applied Polymer Science and Elsevier’s International Journal of Biological Macromolecules, he is acknowledged as an expert in his field. He has participated in multiple advanced training programs, such as LCMS/MS analysis and X-ray crystallography workshops, further solidifying his credentials. These honors reflect his dedication to research excellence and his impactful contributions to the scientific community.

Conclusion

Dr. Arun Krishna Kodoth is a highly accomplished researcher whose work in polymer and material science has significantly impacted both academia and industry. His dedication to innovative research, coupled with his extensive technical expertise, has led to advancements in drug delivery, water treatment, and sustainable materials. With a strong academic foundation, numerous publications, and awards, Dr. Kodoth is a deserving candidate for recognition as a leading researcher. His contributions exemplify the power of interdisciplinary collaboration and the application of science to address pressing global challenges.

Publication Top Notes

  1. Pectin-based silver nanocomposite film for transdermal delivery of Donepezil
    Authors: AK Kodoth, VM Ghate, SA Lewis, B Prakash, V Badalamoole
    Year: 2019
    Citations: 67
  2. Gellan gum‐based novel composite hydrogel: evaluation as adsorbent for cationic dyes
    Authors: K Arun Krishna, B Vishalakshi
    Year: 2017
    Citations: 61
  3. Application of pectin‑zinc oxide hybrid nanocomposite in the delivery of a hydrophilic drug and a study of its isotherm, kinetics and release mechanism
    Authors: AK Kodoth, VM Ghate, SA Lewis, V Badalamoole
    Year: 2018
    Citations: 43
  4. Silver nanoparticle-embedded pectin-based hydrogel for adsorptive removal of dyes and metal ions
    Authors: AK Kodoth, V Badalamoole
    Year: 2020
    Citations: 42
  5. Colloidal nanostructured lipid carriers of pentoxifylline produced by microwave irradiation ameliorates imiquimod-induced psoriasis in mice
    Authors: VM Ghate, AK Kodoth, A Shah, B Vishalakshi, SA Lewis
    Year: 2019
    Citations: 28
  6. Development of MART for the rapid production of nanostructured lipid carriers loaded with all-trans retinoic acid for dermal delivery
    Authors: VM Ghate, AK Kodoth, S Raja, B Vishalakshi, SA Lewis
    Year: 2019
    Citations: 18
  7. Effective removal of ionic dyes from aqueous media using modified karaya gum–PVA semi-interpenetrating network system
    Authors: PB Krishnappa, AK Kodoth, P Kulal, V Badalamoole
    Year: 2023
    Citations: 16
  8. Pectin based graft copolymer–ZnO hybrid nanocomposite for the adsorptive removal of crystal violet
    Authors: AK Kodoth, V Badalamoole
    Year: 2019
    Citations: 16
  9. Non-Propellant Foams of Green Nano-Silver and Sulfadiazine: Development and In Vivo Evaluation for Burn Wounds
    Authors: A Kurowska, V Ghate, A Kodoth, A Shah, B Vishalakshi, …
    Year: 2019
    Citations: 14
  10. Chitosan/hydroxyethyl cellulose gel immobilized polyaniline/CuO/ZnO adsorptive-photocatalytic hybrid nanocomposite for Congo red removal
    Authors: TB Gelaw, BK Sarojini, AK Kodoth
    Year: 2022
    Citations: 11

 

LAKHDARI WASSIMA | Chemistry | Best Researcher Award

Prof. LAKHDARI WASSIMA | Chemistry | Best Researcher Award

RESPONSABLE LABO at INRAA, Algeria.

Dr. Wassima Dehliz-Lakhdari is a distinguished researcher at the National Institute of Agronomic Research of Algeria (INRAA) in Touggourt, Ouargla. She earned her doctorate in Sciences from the University of Ouargla in 2015 and has been leading research projects in agronomy, particularly focusing on biological control and integrated pest management of strategic crops. Dr. Dehliz-Lakhdari has made significant contributions to the study of plant protection, with a strong emphasis on sustainable agriculture in arid regions. Her work includes numerous national conference presentations and workshops on topics such as the bio-insecticidal properties of Saharan plants and the development of biocontrol methods against phytopathogens. As a Master of Research “A,” she has played a pivotal role in advancing agricultural practices in Algeria’s Saharan regions, making her a key figure in the field of agricultural sustainability and pest management.

Profile

Education

Dr. Wassima Dehliz-Lakhdari is a distinguished researcher with a solid educational background in agronomy and plant protection. She began her academic journey by earning her Bachelor’s degree in Natural Sciences in 1992 from Lycée Emir Abdelkader, Touggourt. Pursuing her passion for agriculture, she obtained an engineering degree in Agronomy with a specialization in Plant Protection from INFSA de Mostaganem in 1997. Driven by a deep interest in biological control and integrated pest management, she completed her Magister degree in 2010 at the University of Mostaganem, focusing on biological and integrated control against crop bio-aggressors. Further advancing her expertise, Dr. Dehliz-Lakhdari earned her Doctorate in Sciences from the University of Ouargla in 2015. Her academic credentials were solidified when she attained the Habilitation to Direct Research from the same university in 2017, reflecting her significant contributions to agronomic research and education.

Professional Experience

Dr. Wassima Dehliz-Lakhdari is a distinguished researcher and academic with a rich background in agronomy, specializing in biological and integrated pest control. Her professional journey began as a mathematics and French teacher in Touggourt, Algeria, where she honed her skills in education before transitioning into the agronomy field. She served as a laboratory engineer in the milling industry, where she managed physico-chemical and microbiological analyses. Since 2011, Dr. Dehliz-Lakhdari has been a dedicated researcher at the National Institute of Agronomic Research of Algeria (INRAA), focusing on plant protection in arid regions. Currently, she holds the position of Maître de Recherche “A” at INRAA in Touggourt, where she continues to lead significant research initiatives. Her work is pivotal in developing sustainable agricultural practices in Algeria, particularly in combating plant pathogens and pests through biological control methods. Dr. Dehliz-Lakhdari’s contributions are widely recognized in national and international scientific communities.

Research Interest

Dr. Wassima Dehliz-Lakhdari’s research is primarily focused on the integrated biological control of crop pests and diseases, particularly within arid and semi-arid regions. Her work explores the use of natural and environmentally sustainable methods to manage agricultural challenges, with a special emphasis on the application of biopesticides and antagonistic fungi such as Trichoderma harzianum. Dr. Dehliz-Lakhdari investigates the efficacy of various plant extracts and indigenous biological agents in combating phytopathogenic fungi and insect pests that threaten crops like tomatoes and melons. Her research contributes to the development of sustainable agricultural practices, promoting biodiversity and reducing reliance on chemical pesticides. Through her work, she aims to enhance crop resilience and productivity in harsh environmental conditions, thereby supporting sustainable agriculture and food security in vulnerable regions.

Research Skills

Dr. Dehliz-Lakhdari Wassima possesses a robust set of research skills honed through years of academic and professional experience in agronomy, particularly in plant protection. Her expertise in biological and integrated pest management, as evidenced by her magister and doctoral research, highlights her proficiency in developing sustainable agricultural practices. Dr. Dehliz-Lakhdari’s work at the National Institute of Agronomic Research of Algeria (INRAA) underscores her ability to conduct meticulous laboratory analyses, including physico-chemical and microbiological assessments. She is well-versed in identifying and combating plant pathogens and pests, demonstrated through her numerous national communications and publications. Her experience in leading research projects, coupled with her ability to apply innovative biocontrol methods, positions her as a capable researcher who can address complex agricultural challenges. Additionally, her collaborative efforts in workshops and seminars reflect her commitment to advancing agronomic research and contributing to the scientific community.

Award and Recognition

Dr. Wassima Dehliz-Lakhdari is a distinguished researcher and academic whose contributions to agricultural science have garnered widespread recognition. With a Ph.D. in Sciences and an Habilitation to Direct Research from the University of Ouargla, Dr. Dehliz-Lakhdari has made significant strides in the field of plant protection, particularly in the biological and integrated control of crop bio-aggressors. Her extensive research, primarily focused on sustainable agriculture in arid and semi-arid regions, has led to numerous publications and national presentations. As a Senior Researcher at the National Institute of Agronomic Research of Algeria (INRAA), she has been instrumental in advancing knowledge on phytopathogenic fungi and bio-insecticides. Her work is highly regarded, reflecting her dedication to addressing critical challenges in agriculture. Dr. Dehliz-Lakhdari’s achievements have established her as a leading expert, earning her recognition and respect within the scientific community.

Conclusion

Dr. Wassima Dehliz-Lakhdari is a strong candidate for the Best Researcher Award, with her extensive experience, academic achievements, and impactful research in sustainable agriculture. Her contributions to biological pest control and her active role in the Algerian scientific community highlight her as a leader in her field. However, to strengthen her candidacy, she might focus on increasing her

Publication Top Notes

  1. Chemical composition and insecticidal activity of Artemisia absinthium L. essential oil against adults of Tenebrio molitor L.
    • Authors: W. Lakhdari, M. Mounir Bouhenna, N. Salah Neghmouche, H. Bendif, S. Garzoli
    • Year: 2024
    • Journal: Biochemical Systematics and Ecology
  2. Exploration and Evaluation of Secondary Metabolites from Trichoderma harzianum: GC-MS Analysis, Phytochemical Profiling, Antifungal and Antioxidant Activity Assessment
    • Authors: W. Lakhdari, I. Benyahia, M.M. Bouhenna, F. Boufahja, A. Dehliz
    • Year: 2023
    • Journal: Molecules
    • Citations: 8
  3. Insecticidal activity and physiopathological effects of Cotula cinerea crude extract against Culex pipiens
    • Authors: L. Demouche, F. Acheuk, K. Mokrane, C. Bensouici, A. Dehliz
    • Year: 2023
    • Journal: Tropical Biomedicine
    • Citations: 1
  4. Chemical composition and biological properties of Cotula cinerea essential oil from Sahara of Algeria
    • Authors: N.E. Mekhadmi, R. Mlik, M. Ramdani, P. Chalard, G. Figueredo
    • Year: 2023
    • Journal: Biocatalysis and Agricultural Biotechnology
    • Citations: 3
  5. Chemical composition and bioactivity of essential oil against the green peach aphid (Myzus persicae)
    • Authors: A. Dehliz, W. Lakhdari, R. Mlik, B. Mohammed, Z. Badjadi
    • Year: 2022
    • Journal: Organic Agriculture
    • Citations: 4
  6. Fungal conservation in Arab countries
    • Authors: T.A. Mohamed, R.M. Abed, M.A. Mezher, S.Y. Abdul-Hadi, A.M. Abdel-Azeem
    • Year: 2021
    • Journal: Microbial Biosystems
  7. Bio-stimulant, what is its promoting effect on the cultivation of safflower (Carthamus tinctorius L.)?
    • Authors: W. Lakhdari, A. Dehliz, R. Mlik, H. Hammi, D. Guasmi
    • Year: 2020
    • Journal: Organic Agriculture
  8. Potential of Zygophyllum album L. to control Tuta absoluta in Southeastern Algeria
    • Authors: D. Abderrahmene, L. Wassima, M. Randa, B. Mohammed, G. Sofiane
    • Year: 2020
    • Journal: Organic Agriculture
    • Citations: 2
  9. Checklist of Algerian fungi – Part 5: Dothideomycetes (Ascomycota)
    • Authors: S. Amrani, S. Djouadi, A. Bouherama, P. Kirk, A.M. Abdel-Azeem
    • Year: 2020
    • Journal: Microbial Biosystems
  10. Euphorbia guyoniana aqueous extract efficiency against tomato leaf miner in southern East Algeria
    • Authors: A. Dehliz, W. Lakhdari, F. Acheuk, K. Guermit, S. Matallah
    • Year: 2018
    • Journal: Organic Agriculture
    • Citations: 4

 

 

Kamal Kishore | Chemistry | Academic Research Impact Award

Assoc Prof Dr. Kamal Kishore | Chemistry | Academic Research Impact Award

Associate Professor of Eternal University, India.

Dr. Kamal Kishore holds a Ph.D. in Chemistry from B.U. Bhopal, India, and has over fourteen years of teaching experience, coupled with one year in the pharmaceutical industry. His research primarily focuses on the physicochemical and thermodynamic behavior of rare earth soaps and surfactants. Currently, he is an Associate Professor at Eternal University, Himachal Pradesh, India, and has previously served at Career Point University and Sri Sai University. Dr. Kishore’s research has been published in numerous international and national journals, including Journal of Molecular Liquids and Scopus-indexed journals. He has also contributed to textbooks and edited volumes on chemistry and nanotechnology. Dr. Kishore is an active member of several editorial boards and has supervised numerous M.Sc. and Ph.D. students. His work is recognized for its contribution to understanding surfactant behavior and material properties, with a strong track record of conference presentations and publications.

Profile
Education

Kamal Kishore earned his Doctor of Philosophy (Ph.D.) in Chemistry from Bhopal University (B.U.) in 2010, where his thesis focused on the “Physico-chemical, thermal, and acoustical behavior of terbium soaps,” supervised by Prof. S.K. Upadhyaya. He completed his Master of Science (M.Sc.) in Chemistry at Bhopal University in 2004 and his Bachelor of Science (B.Sc.) in Non-Medical from Himachal Pradesh University (H.P.U.), Shimla, in 2001. Additionally, he holds a Bachelor of Education (B.Ed.) in Science from Jammu University, awarded in 2002. Kishore’s educational qualifications are complemented by his Teachers Eligibility Test (HPTET) certification, affirming his competence in teaching. His diverse academic background has equipped him with a solid foundation in chemistry and education, contributing significantly to his professional and research endeavors.

Professional Experience

Dr. Kamal Kishore has a robust academic and industrial background spanning over fourteen years. He is currently an Associate Professor in the Department of Chemistry & Biochemistry at Akal College of Basic Sciences, Eternal University, Baru Sahib, Himachal Pradesh, India, a position he has held since January 2021. Before this, he served as an Assistant Professor at Eternal University and Career Point University, where he contributed significantly to the field of Chemistry. His career began with a role as a Lecturer at MIT College of Engineering & Management and includes experience as an IPQA Chemist at Alkem Laboratories LTD. His diverse roles underscore his commitment to both teaching and practical applications of chemistry, demonstrating a strong blend of academic rigor and industrial insight. His career trajectory highlights a continuous dedication to education and research in the field of chemistry.

Research Interest

Dr. Kamal Kishore’s research interests primarily focus on the physicochemical properties of surfactants and their applications in various fields. His work includes the detailed study of acoustic, thermal, and conductometric behaviors of different metal soaps, particularly terbium-based compounds. Dr. Kishore’s research extends to the synthesis and characterization of surfactants, including imidazolium and other gemini surfactants, exploring their surface-active properties, micellization behavior, and thermal stability. He is also interested in the application of nanotechnology in environmental engineering, examining the fundamental principles of nanomaterials for environmental sustainability and remediation. His contributions to the field are reflected in his numerous publications in reputed journals and his involvement in editing significant textbooks. Dr. Kishore’s interdisciplinary approach combines fundamental research with practical applications, aiming to advance the understanding of surfactant chemistry and its potential uses in industrial and environmental contexts.

Research Skills

Kamal Kishore’s research skills are extensive and well-honed, encompassing a broad range of techniques and methodologies in the field of chemistry. His expertise includes physico-chemical and acoustic analyses, demonstrated by his work on the behavior of terbium soaps and other compounds in various solvents. He excels in conducting detailed studies using methods such as spectroscopy, conductometry, and ultrasonic velocity measurements, which are critical for understanding molecular interactions and material properties. Kishore’s proficiency in thermal stability and structural analysis, along with his experience in synthesizing and characterizing surfactants, further highlights his versatility. His role as an editorial board member and reviewer for several reputed journals underscores his critical evaluation skills and commitment to advancing scientific knowledge. Additionally, his experience supervising both M.Sc. and Ph.D. students reflects his capability to mentor and guide emerging researchers in the field.

Awards and Recognition

Kamal Kishore has received several awards and recognitions throughout his academic and professional career. He was honored with a merit certificate for achieving a rank in state-level matriculation by the HP Board of School Education in 1996 and a recognition for disciplined service at Career Point University, Hamirpur. Kishore’s excellence as an educator was acknowledged with the “Best Teacher” award for the academic session 2012-13 at Career Point University. In addition, he received the “Award of Honor” for the 41st Junior Girls (U-20) National Handball Championship in 2019 and an “Award of Appreciation” for organizing the 4th Kishan Mela at Eternal University, Baru Sahib. He was also certified as a Publons Academy Mentor in 2020, highlighting his contribution to scholarly mentorship and peer review. These accolades underscore his commitment to education, research, and community involvement.

Conclusion

The individual is a strong candidate for the Research for Best Researcher Award based on their extensive experience, significant research contributions, and active role in academia. To enhance their candidacy, focusing on increasing the impact of their publications, diversifying their research areas, and showcasing collaborative projects and grant funding would be beneficial. Their proven track record in teaching, research, and professional service aligns well with the criteria for a prestigious research award.

Publications Top Notes

  • State-of-Art Review on Smart Perovskites Materials: Properties and Applications
    • Authors: Thakur, P., Sharma, N., Pathak, D., Dhar, S., Lal, M.
    • Year: 2024
    • Citations: 3
  • Removal of Heavy Metals from Waste Water Using Different Biosensors
    • Authors: Kishore, K., Walia, Y.K.
    • Year: 2024
  • Progress in the Development of Smart and High-Performing Analytical Tools to Detect Infectious Diseases Using Nanomaterial-Based Sensors: Sensitivity, Rapidity of Reaction, Selectivity, and Robustness
    • Authors: Chintapalli, I., Kishore, K., Singh, M., Usha, R., Ankireddy, S.R.
    • Year: 2024
  • Synthesis, Self-Assembly and Surface-Active Properties of Alkyl Halide Mediated Imidazolium Monomeric Surfactants
    • Authors: Kaur, J., Farzeen, R., Kumar, A., Upadhyaya, S.K., Kishore, K.
    • Year: 2024
  • Electrochemical Behavior, Antimicrobial Activities, and Effect of Temperature on Micellization of Imidazolium Monomeric Surfactants
    • Authors: Sharma, V., Getahun, T., Singh, M., Thakur, N., Kishore, K.
    • Year: 2023
    • Citations: 1
  • Structural, Morphological, and Magnetic Properties of CoFe2O4 Nano-Ferrites Synthesized via Co-Precipitation Route
    • Authors: Thakur, P., Thakur, P., Kishore, K., Sharma, P., Lal, M.
    • Year: 2023
    • Citations: 13
  • Investigation on Conductance, Acoustical and Refractive Index Behavior of Stearalkonium Chloride in Methanol at 301 K
    • Authors: Singh, C., Negi, S., Singh, M., Kishore, K.
    • Year: 2022
  • Multiferroic Properties of Mn-Substituted BiFeO3
    • Authors: Singh, M., Kumari, P., Kishore, K., Verma, K.C.
    • Year: 2021
    • Citations: 4
  • Recent Developments in the Diagnosis of COVID-19 with Micro- and Nanosystems
    • Authors: Singh, M., Kishore, K., Ankireddy, S.R.
    • Year: 2021
  • Synthesis, Thermal Stability and Surface Activity of Imidazolium Monomeric Surfactants
    • Authors: Sharma, V., Bhatia, C., Singh, M., Upadhyaya, S.K., Kishore, K.
    • Year: 2020
    • Citations: 17

 

Ahmet Ozdemir | Medicinal Chemistry | Best Researcher Award

Dr Ahmet Ozdemir | Medicinal Chemistry | Best Researcher Award

Professor Doctorate, Anadolu University ,Turkey.

Ahmet ÖZDEMİR, born on July 24, 1972, in Muğla, Turkey, is a Professor of Pharmaceutical Chemistry at Anadolu University, where he has been a faculty member since 1997. He earned his undergraduate degree in Pharmacy from Anadolu University (1990-1994), followed by an M.Sc. in Pharmaceutical Chemistry (1995-1996) and a Ph.D. in the same field (1996-2004), with research focusing on the synthesis and biological activities of novel compounds. Dr. ÖZDEMİR has held various academic positions at Anadolu University, advancing from Research Assistant to Professor. He has also served in administrative roles, including Associate Director of Anadolu University Yunus Emre Vocational School and Vice Academic Director of the Open Education Faculty’s Department of Health Administration. His research is well-regarded, earning him multiple awards, including the Anadolu University Article Performance Award and the ISIF’21 Silver Medal for his work on targeted novel triazolothiadiazine derivatives for lung cancer treatment.

Profile:

Education

Prof. Dr. Ahmet Özdemir’s educational journey began at Salihli Cumhuriyet Elementary School, where he completed his primary education from 1978 to 1983. He continued his secondary education at Salihli 50. Yıl Secondary School from 1983 to 1986, and then attended Salihli High School from 1986 to 1989, where he completed his high school education. Prof. Dr. Özdemir pursued his undergraduate studies at Anadolu University Faculty of Pharmacy, graduating in 1994. He furthered his education with a Master’s Degree in Pharmaceutical Chemistry at Anadolu University’s Graduate School of Health Sciences from 1995 to 1996, where he completed his thesis. He continued at Anadolu University for his Doctoral Degree in Pharmaceutical Chemistry, which he achieved in 2004. Additionally, he possesses intermediate proficiency in English, which complements his academic background and research expertise.

Academic Titles

Prof. Dr. Ahmet Özdemir’s academic career at Anadolu University’s Faculty of Pharmacy spans several roles and achievements. He began his journey as a Research Assistant in 1997, a position he held until 2004. Following this, he advanced to the role of Research Assistant Doctor, continuing his work at the same institution from 2004 to 2005. Dr. Özdemir was then appointed as a Lecturer from 2005 to 2007, showcasing his growing expertise in the field. His contributions were recognized with a promotion to Assistant Professor Doctor, a role he embraced from 2007 to 2010. His exceptional work led to his promotion to Associate Professor Doctor, a position he held from 2010 to 2015. Since 2015, Prof. Dr. Özdemir has served as Professor Doctor, continuing to make significant contributions to the Faculty of Pharmacy and the broader academic community.

Awards

Prof. Dr. Ahmet Özdemir has received several prestigious awards for his academic and research contributions. In 2014, he was honored with the Anadolu University Article Performance Award. His outstanding achievements continued with the Anadolu University Gold Article Performance Award and the Anadolu University Platinum Article Performance Award in 2015. He maintained a high standard of excellence, receiving the Anadolu University Article Performance Award annually from 2016 to 2018. In 2019, Dr. Özdemir was recognized with the Anadolu University Academic Success Award. His consistent performance earned him the Anadolu University Article Performance Award again in 2020. Notably, in 2021, he was awarded the ISIF’21 Silver Medal for the invention titled “Targeted Novel Triazolothiadiazine Derivatives for the Treatment of Lung Cancer” at the 6th Istanbul International Inventions Fair (ISIF’21). This award was shared with Assoc. Prof. Dr. Belgin Sever, Prof. Dr. Mehlika Dilek Altintop, and Prof. Dr. Gülşen Akalın Çiftçi.

Research Focus

Prof. Dr. Ahmet Özdemir’s research is dedicated to the field of medicinal chemistry, with a keen focus on several key areas. He specializes in the synthesis of bioactive compounds, aiming to develop novel chemical entities with potential therapeutic uses, particularly targeting antifungal and antibacterial applications. His work in pharmaceutical chemistry involves investigating the physicochemical properties of these compounds, which has significant implications for drug design and efficacy. Dr. Özdemir also explores antimicrobial agents, focusing on the synthesis and evaluation of compounds designed to combat bacterial and fungal pathogens. In the realm of drug design and development, he examines structure-activity relationships to create effective and selective pharmaceutical agents. Additionally, his contributions extend to invention and innovation, where he develops novel chemical derivatives, such as triazolothiadiazine derivatives, for potential applications in treating diseases like lung cancer.

Publications

  1. “Design, synthesis and biological evaluation of a new series of imidazothiazole-hydrazone hybrids as dual EGFR and Akt inhibitors for NSCLC therapy”
    • Authors: Altıntop, M.D., Ertorun, İ., Akalın Çiftçi, G., Özdemir, A.
    • Year: 2024
  2. “Design, Synthesis, and In Vivo Evaluation of a New Series of Indole-Chalcone Hybrids as Analgesic and Anti-Inflammatory Agents”
    • Authors: Baramaki, I., Altıntop, M.D., Arslan, R., Hasan, A., Bektaş Türkmen, N.
    • Year: 2024
  3. “Design, Synthesis, and Evaluation of a New Series of 2-Pyrazolines as Potential Antileukemic Agents”
    • Authors: Altıntop, M.D., Cantürk, Z., Özdemir, A.
    • Year: 2023
  4. “Design, Synthesis, and Evaluation of a New Series of Hydrazones as Small-Molecule Akt Inhibitors for NSCLC Therapy”
    • Authors: Erdönmez, B., Altıntop, M.D., Akalın Çiftçi, G., Özdemir, A., Ece, A.
    • Year: 2023
  5. “A new series of hydrazones as small-molecule aldose reductase inhibitors”
    • Authors: Altıntop, M.D., Demir, Y., Türkeş, C., Beydemir, Ş., Özdemir, A.
    • Year: 2023
  6. “A new series of thiazole-hydrazone hybrids for Akt-targeted therapy of non-small cell lung cancer”
    • Authors: Orujova, T., Ece, A., Akalın Çiftçi, G., Özdemir, A., Altıntop, M.D.
    • Year: 2023
  7. “Discovery of Small Molecule COX-1 and Akt Inhibitors as Anti-NSCLC Agents Endowed with Anti-Inflammatory Action”
    • Authors: Altıntop, M.D., Akalın Çiftçi, G., Yılmaz Savaş, N., Alataş, Ö., Özdemir, A.
    • Year: 2023
  8. “Microwave-assisted synthesis of a series of 4,5-dihydro-1H-pyrazoles endowed with selective COX-1 inhibitory potency”
    • Authors: Altıntop, M.D., Temel, H.E., Özdemir, A.
    • Year: 2023
  9. “Design, synthesis and biological evaluation of a new series of arylidene indanones as small molecules for targeted therapy of non-small cell lung carcinoma and prostate cancer”
    • Authors: Altıntop, M.D., Özdemir, A., Temel, H.E., Kaplancıklı, Z.A., Akalın Çiftçi, G.
    • Year: 2022
  10. “A new series of thiosemicarbazone-based anti-inflammatory agents exerting their action through cyclooxygenase inhibition”
    • Authors: Altıntop, M.D., Sever, B., Akalın Çiftçi, G., Alataş, Ö., Özdemir, A.
    • Year: 2022