Moshe Ben Shalom | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Moshe Ben Shalom | Materials Science | Best Researcher Award

Tel Aviv University | Israel

Assoc. Prof. Dr. Moshe Ben Shalom is a distinguished academic and researcher recognized for his significant contributions to science, technology, and education. His career reflects a blend of scientific excellence, innovative research, and impactful teaching. With an unwavering dedication to advancing knowledge, he has established himself as an authority in his field and continues to influence both the academic community and industry practices. His works span across multiple disciplines, reflecting a highly interdisciplinary approach that bridges theory with practical application. Beyond research, he is deeply committed to mentoring students, fostering international collaborations, and contributing to the development of innovative methodologies and solutions. Dr. Ben Shalom has consistently demonstrated leadership in academic initiatives and professional organizations, showcasing a strong ability to drive impactful change. His role as an educator and researcher has enabled him to inspire future generations of scientists while contributing meaningfully to global knowledge. With an impressive track record of publications, professional memberships, and recognition, he stands as a model scholar and leader in his discipline. His academic journey reflects not only personal achievement but also a broader commitment to advancing society through science and education.

Professional Profile

Education

Assoc. Prof. Dr. Moshe Ben Shalom has pursued a comprehensive academic path that laid a strong foundation for his distinguished career. He completed undergraduate studies in core scientific disciplines, which provided him with essential knowledge in theoretical and applied sciences. His graduate studies expanded into specialized areas, focusing on advanced concepts in physics, chemistry, and materials science. During his doctoral training, he engaged in high-level research that integrated rigorous experimentation with innovative theoretical frameworks. This stage of his education allowed him to develop a deep understanding of scientific methods and the ability to design and conduct impactful research. Throughout his academic journey, he gained extensive exposure to interdisciplinary studies, which later shaped his research philosophy of combining multiple scientific approaches to solve complex problems. His education also involved international training opportunities, exposing him to diverse scientific environments and collaborations. This combination of structured learning and independent research instilled in him a strong sense of academic curiosity and professional discipline. Today, his educational background serves as a cornerstone of his research and teaching philosophy, enabling him to guide students and colleagues while contributing to the advancement of science on a global scale.

Professional Experience

Assoc. Prof. Dr. Moshe Ben Shalom has built an extensive professional portfolio characterized by academic leadership, innovative research, and global collaboration. He has held teaching and research positions at leading universities, where he combined classroom instruction with active laboratory work. His professional roles encompass not only academic teaching but also mentoring graduate and doctoral students, guiding them in cutting-edge research projects. He has played a pivotal role in establishing international collaborations, working with scientists from diverse backgrounds to develop solutions for emerging scientific challenges. His expertise extends beyond academia into advisory roles for research institutions and organizations, where his insights have shaped projects with societal and industrial relevance. He has been actively involved in peer reviewing for high-impact journals and conferences, contributing to the integrity of scholarly communication. Additionally, he has participated in organizing academic events, workshops, and conferences, promoting interdisciplinary dialogue and innovation. His professional journey reflects a balance between leadership responsibilities and continuous contributions to scientific advancement. Through his experience, Dr. Ben Shalom has demonstrated the ability to integrate research excellence with educational impact, ensuring that his work benefits both the academic community and broader society.

Research Interests

Assoc. Prof. Dr. Moshe Ben Shalom’s research interests span a wide spectrum of advanced scientific fields, reflecting his interdisciplinary approach and commitment to addressing global challenges. His primary focus lies in materials science, nanotechnology, and applied physics, with a particular interest in developing novel materials for technological applications. He explores areas such as electronic devices, quantum phenomena, and advanced biomaterials, seeking to design systems that contribute to sustainable technological growth. His interests also extend into the interface of physics and biology, investigating molecular interactions and their applications in medicine and diagnostics. Dr. Ben Shalom actively engages with emerging research areas that bridge theoretical frameworks with experimental innovation, making his work highly adaptable to evolving scientific needs. He is particularly drawn to projects that involve cross-disciplinary collaborations, leveraging expertise from multiple fields to address complex questions. His long-term goal is to create practical applications from fundamental research, ensuring that discoveries translate into societal benefits. These research interests highlight his vision of combining deep scientific exploration with real-world problem-solving, positioning him as a leader in driving research that impacts both academia and industry.

Research Skills

Assoc. Prof. Dr. Moshe Ben Shalom possesses an impressive set of research skills that reflect his academic training, professional experience, and innovative mindset. He is highly skilled in experimental design, laboratory methodologies, and advanced data analysis, enabling him to generate reliable and impactful results. His expertise covers a range of techniques in nanotechnology, material characterization, spectroscopy, and molecular modeling. He is adept at employing computational tools alongside experimental research, ensuring that his findings are both theoretically robust and practically applicable. Collaboration is a key strength, as he frequently integrates multidisciplinary perspectives into his projects, combining physics, chemistry, biology, and engineering methods. Dr. Ben Shalom also demonstrates strong skills in scientific communication, evident in his ability to publish in high-impact journals and present at international conferences. His proficiency in supervising research teams, mentoring students, and managing collaborative projects further underscores his leadership in research. Additionally, he has experience in securing competitive research funding, reflecting his ability to align scientific goals with institutional priorities. Collectively, these skills not only strengthen his own research portfolio but also empower the broader scientific community through shared expertise and innovative contributions.

Awards and Honors

Assoc. Prof. Dr. Moshe Ben Shalom has received multiple awards and honors in recognition of his exceptional contributions to science and academia. These accolades highlight his research excellence, innovative discoveries, and leadership within the academic community. He has been recognized by professional associations, universities, and research organizations for his achievements in interdisciplinary research. Awards have acknowledged both his scholarly publications and his impact on education through mentoring and student guidance. International recognition has further strengthened his reputation as a leading researcher, with invitations to serve on editorial boards and participate in global academic networks. His honors also reflect the broader societal value of his work, particularly where scientific research intersects with practical applications in technology and healthcare. Through these recognitions, Dr. Ben Shalom has demonstrated not only academic excellence but also a consistent commitment to contributing knowledge that advances science and benefits society. His awards symbolize the trust placed in him by both colleagues and institutions, reaffirming his status as a respected scholar and a leader in his field.

Publication Top Notes

  • Shaping exciton polarization dynamics in 2D semiconductors by tailored ultrafast pulses — 2025

  • Polytype switching by super-lubricant van der Waals cavity arrays — 2025 — 7 citations

  • Sliding van der Waals polytypes — 2025 — 11 citations

  • Polarization Saturation in Multilayered Interfacial Ferroelectrics — 2024 — 17 citations

Conclusion

Assoc. Prof. Dr. Moshe Ben Shalom stands as an accomplished academic whose work continues to shape scientific progress and educational excellence. His career embodies a rare combination of deep research expertise, professional leadership, and a vision for future innovation. By contributing groundbreaking research in materials science, nanotechnology, and interdisciplinary studies, he has advanced both fundamental knowledge and practical applications. His commitment to education through mentorship and academic service reflects his dedication to nurturing the next generation of scientists. Recognized through awards, professional memberships, and international collaborations, his influence extends well beyond his institution, impacting the global scientific community. Looking forward, Dr. Ben Shalom is poised to expand his contributions by engaging in new research initiatives, fostering global partnerships, and advancing leadership roles in academic organizations. His achievements to date provide a strong foundation for continued excellence, ensuring that his future work will further enhance scientific knowledge and societal development. With his proven record of innovation and leadership, he is deserving of recognition as a distinguished researcher and academic leader of international stature.

Tan Wang | Materials Science | Best Researcher Award

Dr. Tan Wang | Materials Science | Best Researcher Award

Assistant Researcher from Qingdao Institute of Bio Energy and Bioprocess Technology Chinese Academy of Sciences, China

Wang Tan is an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences. His expertise lies in organic photovoltaic materials and solar energy conversion. With a solid academic background in energy chemistry, he has contributed to high-impact research in polymer donor materials for solar cells. His work has been published in prestigious journals, highlighting his role in advancing renewable energy technologies. He has also secured funding for independent research projects, demonstrating his growing leadership in the field. His contributions extend beyond publications to patents, indicating a strong focus on practical applications.

Professional Profile

Education

Wang Tan obtained his Ph.D. in Energy Chemistry from Xiamen University (2015-2020), where he specialized in photovoltaic materials and device performance. He also earned a bachelor’s degree in Chemistry from Xiamen University (2011-2015), providing him with a strong foundation in material science. His postdoctoral research was conducted at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology, CAS (2022-2024), where he further explored organic solar cells and material synthesis.

Professional Experience

Since January 2025, Wang Tan has been an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, working in the Key Laboratory of Solar Photovoltaic Conversion and Utilization. His postdoctoral experience includes research at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology (2022-2024). Throughout his career, he has focused on the design and synthesis of novel organic materials for solar energy applications. His experience extends to leading research projects and collaborating with interdisciplinary teams on high-efficiency photovoltaic materials.

Research Interests

Wang Tan’s research interests primarily focus on organic photovoltaic materials, solar energy conversion, and high-efficiency polymer donor materials. He is particularly interested in developing novel organic semiconductors for next-generation solar cells. His work explores molecular design strategies for enhancing the power conversion efficiency and stability of organic solar cells. Additionally, he investigates charge transfer mechanisms and optoelectronic properties of new photovoltaic materials to improve device performance. His research aims to bridge the gap between fundamental material science and practical applications in renewable energy technologies.

Research Skills

Wang Tan has expertise in the design and synthesis of organic photovoltaic materials, including deep-energy-level donor materials. He is skilled in various characterization techniques such as steady-state and transient fluorescence spectroscopy, electrochemical analysis, and charge transfer studies. His proficiency extends to device fabrication and performance evaluation of organic solar cells. Additionally, he has experience in computational modeling to study molecular interactions and charge dynamics in photovoltaic materials. His multidisciplinary skill set enables him to contribute to both theoretical and experimental advancements in organic solar energy research.

Awards and Honors

Wang Tan has received funding from the Shandong Natural Science Foundation (2023-2026) and the Qingdao Postdoctoral Funding Program (2022-2024) for his work on high-performance organic photovoltaic materials. He has co-authored publications in top-tier journals such as Science Bulletin and Nano Energy, showcasing his research impact. He has also been granted patents for novel polymer materials and conductive nanoparticles in solar energy applications. His contributions to organic solar cell development have been recognized within the scientific community through conference presentations and invited talks.

Conclusion

Wang Tan is a dedicated researcher in the field of organic photovoltaic materials and solar energy conversion. His academic background, research experience, and technical skills position him as a valuable contributor to renewable energy advancements. While he has made significant strides in securing funding and publishing influential research, he has the potential to further establish himself as an independent research leader. Strengthening his role as a principal investigator and securing national-level grants could enhance his impact in the field. His combination of innovation, technical expertise, and research productivity makes him a promising candidate for future advancements in organic solar energy technologies.

Publications Top Notes

  • HOF-Enabled Synthesis of Porous PEDOT as an Improved Electrode Material for Supercapacitor
    Authors: Z. Zhong, Zihan; Q. Shao, Qingqing; B. Ni, Baoxin; A.K. Cheetham, Anthony Kevin; T. Wang, Tiesheng
    Year: 2025

Danish Tahir | Materials Science | Best Researcher Award

Mr. Danish Tahir | Materials Science | Best Researcher Award

Danish Tahir is a dedicated research professional specializing in materials engineering with a strong focus on biodegradable composites, fiber-reinforced composites, and advanced materials characterization. With extensive experience in academia and research, he has contributed significantly to the field through high-impact publications, conference presentations, and laboratory supervision. His expertise spans a wide range of experimental techniques, including Scanning Electron Microscopy (SEM), Thermo-Mechanical Analysis (TMA), and Fourier Transform Infrared Spectroscopy (FTIR). Danish has also played a vital role in mentoring students, assisting in course delivery, and managing laboratory operations. His research contributions have been recognized in leading scientific journals, emphasizing innovation and sustainability in material sciences. In addition to his research excellence, he has gained industrial exposure through internships in production and quality control. Danish’s commitment to advancing scientific knowledge and his ability to work across multiple domains make him a strong candidate for research excellence awards. His ongoing work in biodegradable composites and material characterization aligns with global sustainability goals, reinforcing his contributions to the evolving field of advanced materials. Through continuous learning, research, and collaboration, Danish aims to expand his impact in academia and industry while fostering innovation in material science applications.

Education

Danish Tahir has a strong academic foundation in materials engineering, demonstrated by his outstanding academic performance and research engagements. He completed his Master of Science (M.Sc.) in Materials Engineering from Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Pakistan, between January 2018 and March 2020, achieving an impressive CGPA of 3.96/4.00 and earning multiple distinctions on the Dean’s Honor Roll. His research during his master’s focused on biodegradable polymer composites and advanced characterization techniques. Prior to his master’s degree, Danish earned his Bachelor of Science (B.Sc.) in Materials Engineering from National University of Sciences and Technology (NUST), Pakistan, between September 2013 and June 2017, securing a CGPA of 3.27/4.00. His undergraduate studies provided him with a strong foundation in materials processing, mechanical testing, and corrosion analysis. Throughout his academic career, Danish has consistently demonstrated excellence, receiving multiple honors, including a Silver Medal in Matriculation and Dean’s Honor Roll distinctions at both undergraduate and postgraduate levels. His strong educational background, coupled with hands-on research experience, has enabled him to contribute significantly to the field of materials science and engineering.

Professional Experience

Danish Tahir is currently serving as a Research Assistant at The Hong Kong Polytechnic University (since January 2022), where he focuses on the development and characterization of biodegradable composites. His responsibilities include conducting advanced material characterization, supervising laboratory operations, and assisting instructors in research and course delivery. Prior to his current role, Danish worked as a Graduate Research Assistant (January 2018 – March 2020) at Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, where he played a key role in a Pakistan Science Foundation Research Project on bamboo fiber-reinforced composites. His responsibilities included designing experimental methodologies, developing standard operating procedures (SOPs), and conducting mechanical and chemical analysis. His earlier experience includes working as a Research Assistant at Advanced Materials Technology (July 2017 – January 2018) and undertaking internships at Qadcast Foundry Ltd (June 2016 – August 2016) and Oil and Gas Development Company Ltd (August 2015 – September 2015). These roles allowed him to gain industrial exposure in manufacturing, quality control, and characterization of engineering materials. Danish’s professional experience reflects his ability to integrate research with practical applications, making significant contributions to both academia and industry.

Research Interests

Danish Tahir’s research interests primarily revolve around biodegradable and fiber-reinforced composites, advanced materials characterization, and sustainability-driven material innovations. His focus is on developing eco-friendly materials that offer superior mechanical properties while minimizing environmental impact. A key area of interest for Danish is the chemical and thermal characterization of polymer composites, where he utilizes techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC) to assess material properties. He is also deeply involved in the mechanical performance analysis of composite materials, including tensile, impact, and thermo-mechanical behavior assessments. In addition, Danish is passionate about nano-composites and surface engineering, specifically in the optimization of coatings using anodization and other advanced surface treatments. His work on sodium carbonate treatment of bamboo fibers demonstrates his commitment to developing sustainable materials with enhanced mechanical performance. His long-term research goals include expanding the application of biodegradable materials in various industries, optimizing auxetic materials for personal protection, and collaborating on multidisciplinary research projects integrating materials engineering with biomedical and environmental sciences.

Research Skills

Danish Tahir possesses a diverse set of research skills that make him proficient in both experimental and analytical aspects of materials engineering. His expertise includes advanced material characterization techniques such as Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Thermo-Mechanical Analysis (TMA). He is also well-versed in chemical and thermal analysis techniques such as FTIR, TGA, and DSC, which are critical for understanding polymer and composite material properties. His hands-on skills in mechanical characterization include tensile testing, impact testing, and hardness testing of various materials, including metals, polymers, and composites. He is an expert in polymer processing techniques, including injection molding and composite fabrication, making him well-equipped to develop new materials with enhanced properties. Danish has significant experience with research project management, including experimental design, standard operating procedures (SOPs) preparation, data analysis, and research documentation. His technical proficiency is complemented by strong software skills, including SolidWorks, Microsoft Office, Origin Pro, and ImageJ, which aid in material simulations and data interpretation. His well-rounded skill set ensures that he can conduct high-quality research, analyze complex material behaviors, and contribute to innovative advancements in materials engineering.

Awards and Honors

Danish Tahir has received multiple accolades throughout his academic and professional career, recognizing his excellence in research and education. He has been awarded four consecutive Dean’s Honor Roll distinctions during his Master’s degree at Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, highlighting his outstanding academic performance. He was also the recipient of a Graduate Financial Assistantship, which funded his research endeavors during his Master’s studies. At the undergraduate level, he secured a Dean’s Honor Roll distinction at NUST, further demonstrating his strong academic capabilities. His early academic achievements include earning a Silver Medal in Matriculation, a testament to his consistent excellence from an early stage. Apart from his academic recognitions, Danish has played leadership roles in extracurricular activities, serving as Sports Coordinator at GIKI Graduate Society and Executive of Industrial Linkages at NUST Materials Advantage Chapter. These accolades underscore Danish’s commitment to research, education, and leadership, making him a distinguished professional in materials engineering.

Conclusion

Danish Tahir is a highly accomplished researcher in materials engineering, with expertise spanning biodegradable composites, polymer characterization, and advanced material processing. His strong academic background, professional experience, and high-impact research contributions position him as a leading researcher in his field. His extensive skill set in materials characterization, mechanical testing, and research project management, combined with a robust publication record, underscores his ability to advance scientific knowledge. Danish’s dedication to sustainability and innovative material solutions aligns with the global push for eco-friendly engineering advancements. While he has already demonstrated significant research excellence, opportunities for securing independent research funding, interdisciplinary collaborations, and technology commercialization could further enhance his impact. With his passion for research and commitment to academic excellence, Danish is well-positioned to make continued contributions to the field of materials science and engineering.

Publications Top Notes

  • Title: Auxetic materials for personal protection: a review
    Authors: D. Tahir, M. Zhang, H. Hu
    Year: 2022
    Citations: 52

  • Title: Natural fibres as promising environmental-friendly reinforcements for polymer composites
    Authors: M.R.A. Karim, D. Tahir, E.U. Haq, A. Hussain, M.S. Malik
    Year: 2021
    Citations: 48

  • Title: Sources, chemical functionalization, and commercial applications of nanocellulose and nanocellulose-based composites: a review
    Authors: D. Tahir, M.R.A. Karim, H. Hu, S. Naseem, M. Rehan, M. Ahmad, M. Zhang
    Year: 2022
    Citations: 41

  • Title: Load-bearing characteristics of 3D auxetic structures made with carbon fiber reinforced polymer composite
    Authors: E. Etemadi, M. Zhang, K. Li, M. Bashtani, M.M.P. Ho, D. Tahir, H. Hu
    Year: 2023
    Citations: 33

  • Title: Sodium carbonate treatment of fibres to improve mechanical and water absorption characteristics of short bamboo natural fibres reinforced polyester composite
    Authors: M.R. Abdul Karim, D. Tahir, A. Hussain, E. Ul Haq, K.I. Khan
    Year: 2020
    Citations: 25

  • Title: Improved mechanical and water absorption properties of epoxy-bamboo long natural fibres composites by eco-friendly Na₂CO₃ treatment
    Authors: M.R. Abdul Karim, D. Tahir, K.I. Khan, A. Hussain, E.U. Haq, M.S. Malik
    Year: 2023
    Citations: 10

  • Title: Analysis of mechanical and water absorption properties of hybrid composites reinforced with micron-size bamboo fibers and ceramic particles
    Authors: D. Tahir, M.R. Abdul Karim, H. Hu
    Year: 2024
    Citations: 5

  • Title: Experimental Investigation of the Micro-Milling of Additively Manufactured Titanium Alloys: Selective Laser Melting and Wrought Ti6Al4V
    Authors: M. Rehan, T. He, A.K. Khalil, D. Tahir, W.S. Yip, S.S. To
    Year: 2024
    Citations: 3

  • Title: Effect of nano-silica volume reinforcement on the microstructure, mechanical, phase distribution and electrochemical behavior of pre-alloyed titanium-nickel (Ti-Ni) powder
    Authors: S.A. Raza, M.I. Khan, M. Ahmad, D. Tahir, A. Iltaf, R.B. Naqvi
    Year: 2021
    Citations: 3

  • Title: Magnetic field assisted micro-milling of selective laser melted titanium alloy
    Authors: M. Rehan, D. Tahir, P. Guo, W.S. Yip, S.S. To
    Year: 2025
    Citations: 1