Tan Wang | Materials Science | Best Researcher Award

Dr. Tan Wang | Materials Science | Best Researcher Award

Assistant Researcher from Qingdao Institute of Bio Energy and Bioprocess Technology Chinese Academy of Sciences, China

Wang Tan is an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences. His expertise lies in organic photovoltaic materials and solar energy conversion. With a solid academic background in energy chemistry, he has contributed to high-impact research in polymer donor materials for solar cells. His work has been published in prestigious journals, highlighting his role in advancing renewable energy technologies. He has also secured funding for independent research projects, demonstrating his growing leadership in the field. His contributions extend beyond publications to patents, indicating a strong focus on practical applications.

Professional Profile

Education

Wang Tan obtained his Ph.D. in Energy Chemistry from Xiamen University (2015-2020), where he specialized in photovoltaic materials and device performance. He also earned a bachelor’s degree in Chemistry from Xiamen University (2011-2015), providing him with a strong foundation in material science. His postdoctoral research was conducted at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology, CAS (2022-2024), where he further explored organic solar cells and material synthesis.

Professional Experience

Since January 2025, Wang Tan has been an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, working in the Key Laboratory of Solar Photovoltaic Conversion and Utilization. His postdoctoral experience includes research at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology (2022-2024). Throughout his career, he has focused on the design and synthesis of novel organic materials for solar energy applications. His experience extends to leading research projects and collaborating with interdisciplinary teams on high-efficiency photovoltaic materials.

Research Interests

Wang Tan’s research interests primarily focus on organic photovoltaic materials, solar energy conversion, and high-efficiency polymer donor materials. He is particularly interested in developing novel organic semiconductors for next-generation solar cells. His work explores molecular design strategies for enhancing the power conversion efficiency and stability of organic solar cells. Additionally, he investigates charge transfer mechanisms and optoelectronic properties of new photovoltaic materials to improve device performance. His research aims to bridge the gap between fundamental material science and practical applications in renewable energy technologies.

Research Skills

Wang Tan has expertise in the design and synthesis of organic photovoltaic materials, including deep-energy-level donor materials. He is skilled in various characterization techniques such as steady-state and transient fluorescence spectroscopy, electrochemical analysis, and charge transfer studies. His proficiency extends to device fabrication and performance evaluation of organic solar cells. Additionally, he has experience in computational modeling to study molecular interactions and charge dynamics in photovoltaic materials. His multidisciplinary skill set enables him to contribute to both theoretical and experimental advancements in organic solar energy research.

Awards and Honors

Wang Tan has received funding from the Shandong Natural Science Foundation (2023-2026) and the Qingdao Postdoctoral Funding Program (2022-2024) for his work on high-performance organic photovoltaic materials. He has co-authored publications in top-tier journals such as Science Bulletin and Nano Energy, showcasing his research impact. He has also been granted patents for novel polymer materials and conductive nanoparticles in solar energy applications. His contributions to organic solar cell development have been recognized within the scientific community through conference presentations and invited talks.

Conclusion

Wang Tan is a dedicated researcher in the field of organic photovoltaic materials and solar energy conversion. His academic background, research experience, and technical skills position him as a valuable contributor to renewable energy advancements. While he has made significant strides in securing funding and publishing influential research, he has the potential to further establish himself as an independent research leader. Strengthening his role as a principal investigator and securing national-level grants could enhance his impact in the field. His combination of innovation, technical expertise, and research productivity makes him a promising candidate for future advancements in organic solar energy technologies.

Publications Top Notes

  • HOF-Enabled Synthesis of Porous PEDOT as an Improved Electrode Material for Supercapacitor
    Authors: Z. Zhong, Zihan; Q. Shao, Qingqing; B. Ni, Baoxin; A.K. Cheetham, Anthony Kevin; T. Wang, Tiesheng
    Year: 2025

Danish Tahir | Materials Science | Best Researcher Award

Mr. Danish Tahir | Materials Science | Best Researcher Award

Danish Tahir is a dedicated research professional specializing in materials engineering with a strong focus on biodegradable composites, fiber-reinforced composites, and advanced materials characterization. With extensive experience in academia and research, he has contributed significantly to the field through high-impact publications, conference presentations, and laboratory supervision. His expertise spans a wide range of experimental techniques, including Scanning Electron Microscopy (SEM), Thermo-Mechanical Analysis (TMA), and Fourier Transform Infrared Spectroscopy (FTIR). Danish has also played a vital role in mentoring students, assisting in course delivery, and managing laboratory operations. His research contributions have been recognized in leading scientific journals, emphasizing innovation and sustainability in material sciences. In addition to his research excellence, he has gained industrial exposure through internships in production and quality control. Danish’s commitment to advancing scientific knowledge and his ability to work across multiple domains make him a strong candidate for research excellence awards. His ongoing work in biodegradable composites and material characterization aligns with global sustainability goals, reinforcing his contributions to the evolving field of advanced materials. Through continuous learning, research, and collaboration, Danish aims to expand his impact in academia and industry while fostering innovation in material science applications.

Education

Danish Tahir has a strong academic foundation in materials engineering, demonstrated by his outstanding academic performance and research engagements. He completed his Master of Science (M.Sc.) in Materials Engineering from Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Pakistan, between January 2018 and March 2020, achieving an impressive CGPA of 3.96/4.00 and earning multiple distinctions on the Dean’s Honor Roll. His research during his master’s focused on biodegradable polymer composites and advanced characterization techniques. Prior to his master’s degree, Danish earned his Bachelor of Science (B.Sc.) in Materials Engineering from National University of Sciences and Technology (NUST), Pakistan, between September 2013 and June 2017, securing a CGPA of 3.27/4.00. His undergraduate studies provided him with a strong foundation in materials processing, mechanical testing, and corrosion analysis. Throughout his academic career, Danish has consistently demonstrated excellence, receiving multiple honors, including a Silver Medal in Matriculation and Dean’s Honor Roll distinctions at both undergraduate and postgraduate levels. His strong educational background, coupled with hands-on research experience, has enabled him to contribute significantly to the field of materials science and engineering.

Professional Experience

Danish Tahir is currently serving as a Research Assistant at The Hong Kong Polytechnic University (since January 2022), where he focuses on the development and characterization of biodegradable composites. His responsibilities include conducting advanced material characterization, supervising laboratory operations, and assisting instructors in research and course delivery. Prior to his current role, Danish worked as a Graduate Research Assistant (January 2018 – March 2020) at Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, where he played a key role in a Pakistan Science Foundation Research Project on bamboo fiber-reinforced composites. His responsibilities included designing experimental methodologies, developing standard operating procedures (SOPs), and conducting mechanical and chemical analysis. His earlier experience includes working as a Research Assistant at Advanced Materials Technology (July 2017 – January 2018) and undertaking internships at Qadcast Foundry Ltd (June 2016 – August 2016) and Oil and Gas Development Company Ltd (August 2015 – September 2015). These roles allowed him to gain industrial exposure in manufacturing, quality control, and characterization of engineering materials. Danish’s professional experience reflects his ability to integrate research with practical applications, making significant contributions to both academia and industry.

Research Interests

Danish Tahir’s research interests primarily revolve around biodegradable and fiber-reinforced composites, advanced materials characterization, and sustainability-driven material innovations. His focus is on developing eco-friendly materials that offer superior mechanical properties while minimizing environmental impact. A key area of interest for Danish is the chemical and thermal characterization of polymer composites, where he utilizes techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC) to assess material properties. He is also deeply involved in the mechanical performance analysis of composite materials, including tensile, impact, and thermo-mechanical behavior assessments. In addition, Danish is passionate about nano-composites and surface engineering, specifically in the optimization of coatings using anodization and other advanced surface treatments. His work on sodium carbonate treatment of bamboo fibers demonstrates his commitment to developing sustainable materials with enhanced mechanical performance. His long-term research goals include expanding the application of biodegradable materials in various industries, optimizing auxetic materials for personal protection, and collaborating on multidisciplinary research projects integrating materials engineering with biomedical and environmental sciences.

Research Skills

Danish Tahir possesses a diverse set of research skills that make him proficient in both experimental and analytical aspects of materials engineering. His expertise includes advanced material characterization techniques such as Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Thermo-Mechanical Analysis (TMA). He is also well-versed in chemical and thermal analysis techniques such as FTIR, TGA, and DSC, which are critical for understanding polymer and composite material properties. His hands-on skills in mechanical characterization include tensile testing, impact testing, and hardness testing of various materials, including metals, polymers, and composites. He is an expert in polymer processing techniques, including injection molding and composite fabrication, making him well-equipped to develop new materials with enhanced properties. Danish has significant experience with research project management, including experimental design, standard operating procedures (SOPs) preparation, data analysis, and research documentation. His technical proficiency is complemented by strong software skills, including SolidWorks, Microsoft Office, Origin Pro, and ImageJ, which aid in material simulations and data interpretation. His well-rounded skill set ensures that he can conduct high-quality research, analyze complex material behaviors, and contribute to innovative advancements in materials engineering.

Awards and Honors

Danish Tahir has received multiple accolades throughout his academic and professional career, recognizing his excellence in research and education. He has been awarded four consecutive Dean’s Honor Roll distinctions during his Master’s degree at Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, highlighting his outstanding academic performance. He was also the recipient of a Graduate Financial Assistantship, which funded his research endeavors during his Master’s studies. At the undergraduate level, he secured a Dean’s Honor Roll distinction at NUST, further demonstrating his strong academic capabilities. His early academic achievements include earning a Silver Medal in Matriculation, a testament to his consistent excellence from an early stage. Apart from his academic recognitions, Danish has played leadership roles in extracurricular activities, serving as Sports Coordinator at GIKI Graduate Society and Executive of Industrial Linkages at NUST Materials Advantage Chapter. These accolades underscore Danish’s commitment to research, education, and leadership, making him a distinguished professional in materials engineering.

Conclusion

Danish Tahir is a highly accomplished researcher in materials engineering, with expertise spanning biodegradable composites, polymer characterization, and advanced material processing. His strong academic background, professional experience, and high-impact research contributions position him as a leading researcher in his field. His extensive skill set in materials characterization, mechanical testing, and research project management, combined with a robust publication record, underscores his ability to advance scientific knowledge. Danish’s dedication to sustainability and innovative material solutions aligns with the global push for eco-friendly engineering advancements. While he has already demonstrated significant research excellence, opportunities for securing independent research funding, interdisciplinary collaborations, and technology commercialization could further enhance his impact. With his passion for research and commitment to academic excellence, Danish is well-positioned to make continued contributions to the field of materials science and engineering.

Publications Top Notes

  • Title: Auxetic materials for personal protection: a review
    Authors: D. Tahir, M. Zhang, H. Hu
    Year: 2022
    Citations: 52

  • Title: Natural fibres as promising environmental-friendly reinforcements for polymer composites
    Authors: M.R.A. Karim, D. Tahir, E.U. Haq, A. Hussain, M.S. Malik
    Year: 2021
    Citations: 48

  • Title: Sources, chemical functionalization, and commercial applications of nanocellulose and nanocellulose-based composites: a review
    Authors: D. Tahir, M.R.A. Karim, H. Hu, S. Naseem, M. Rehan, M. Ahmad, M. Zhang
    Year: 2022
    Citations: 41

  • Title: Load-bearing characteristics of 3D auxetic structures made with carbon fiber reinforced polymer composite
    Authors: E. Etemadi, M. Zhang, K. Li, M. Bashtani, M.M.P. Ho, D. Tahir, H. Hu
    Year: 2023
    Citations: 33

  • Title: Sodium carbonate treatment of fibres to improve mechanical and water absorption characteristics of short bamboo natural fibres reinforced polyester composite
    Authors: M.R. Abdul Karim, D. Tahir, A. Hussain, E. Ul Haq, K.I. Khan
    Year: 2020
    Citations: 25

  • Title: Improved mechanical and water absorption properties of epoxy-bamboo long natural fibres composites by eco-friendly Na₂CO₃ treatment
    Authors: M.R. Abdul Karim, D. Tahir, K.I. Khan, A. Hussain, E.U. Haq, M.S. Malik
    Year: 2023
    Citations: 10

  • Title: Analysis of mechanical and water absorption properties of hybrid composites reinforced with micron-size bamboo fibers and ceramic particles
    Authors: D. Tahir, M.R. Abdul Karim, H. Hu
    Year: 2024
    Citations: 5

  • Title: Experimental Investigation of the Micro-Milling of Additively Manufactured Titanium Alloys: Selective Laser Melting and Wrought Ti6Al4V
    Authors: M. Rehan, T. He, A.K. Khalil, D. Tahir, W.S. Yip, S.S. To
    Year: 2024
    Citations: 3

  • Title: Effect of nano-silica volume reinforcement on the microstructure, mechanical, phase distribution and electrochemical behavior of pre-alloyed titanium-nickel (Ti-Ni) powder
    Authors: S.A. Raza, M.I. Khan, M. Ahmad, D. Tahir, A. Iltaf, R.B. Naqvi
    Year: 2021
    Citations: 3

  • Title: Magnetic field assisted micro-milling of selective laser melted titanium alloy
    Authors: M. Rehan, D. Tahir, P. Guo, W.S. Yip, S.S. To
    Year: 2025
    Citations: 1