Yang Cui | System Control | Best Researcher Award

Dr. Yang Cui | System Control | Best Researcher Award

Dr. Yang Cui is an accomplished Associate Professor at the School of Electronics and Information Engineering, University of Science and Technology Liaoning. Born in February 1985, he earned his academic degrees from Northeastern University and has since dedicated his career to research in advanced control theory and systems engineering. Over the years, Dr. Cui has built a solid reputation in nonlinear system control, multi-agent coordination, and adaptive control strategies. He has led several high-impact research projects at both national and provincial levels, with funding from prestigious institutions such as the National Natural Science Foundation of China and the Liaoning Provincial Government. His work focuses on practical and theoretical challenges in modern control systems, contributing to developments in intelligent automation, robotics, and system stability analysis. Dr. Cui is recognized for his leadership in project execution and for advancing theoretical frameworks that have real-world applications. His research also supports the development of future technologies in artificial intelligence and collaborative systems. With a clear commitment to innovation, academic excellence, and knowledge dissemination, Dr. Cui is considered a rising figure in the Chinese academic landscape and a valuable contributor to the global research community in engineering control systems.

Professional Profile

Education

Dr. Yang Cui completed his higher education at Northeastern University, one of China’s prestigious institutions renowned for its strong engineering programs. At Northeastern University, he developed a solid foundation in electrical and information engineering, which later served as a springboard for his advanced research in nonlinear and intelligent control systems. His education was marked by rigorous training in systems theory, control algorithms, signal processing, and mathematical modeling, equipping him with the technical competencies necessary to conduct innovative research in a highly specialized domain. Through graduate and possibly doctoral-level studies, Dr. Cui would have engaged in intensive coursework and thesis-based research under the supervision of leading scholars, allowing him to refine his analytical thinking, research methodology, and problem-solving skills. This academic background laid the groundwork for his subsequent research on multi-agent systems, fuzzy logic, and adaptive control, which are now central to his scholarly contributions. Northeastern University’s environment of academic rigor and applied science likely provided Dr. Cui with exposure to both theoretical models and their industrial applications. His educational journey has clearly informed his current role as an academic leader, researcher, and mentor in the field of control systems engineering at the University of Science and Technology Liaoning.

Professional Experience

Dr. Yang Cui currently serves as an Associate Professor at the School of Electronics and Information Engineering, University of Science and Technology Liaoning. In this role, he has undertaken responsibilities that span teaching, research supervision, and leading multiple funded projects. His professional trajectory reflects steady growth in academic responsibilities and recognition as a specialist in advanced control systems. At the university, Dr. Cui mentors undergraduate and graduate students, develops research proposals, publishes in technical journals, and participates in institutional development. His experience also includes leading complex, multi-year research initiatives supported by national and provincial agencies. These include prestigious programs such as the National Natural Science Foundation of China and Liaoning Province’s “Xing Liao Ying Cai Program.” He has demonstrated strong research management skills by overseeing project teams, coordinating with stakeholders, and ensuring timely research outcomes. His work in cooperative control and nonlinear systems has led to practical applications in automation and intelligent control environments. Through his career, Dr. Cui has also likely engaged in peer review activities, curriculum design, and academic collaboration across departments or universities. His professional experience is marked by a balance between theoretical exploration and the practical execution of control and engineering system innovations.

Research Interests

Dr. Yang Cui’s research interests lie at the intersection of control theory, intelligent systems, and applied mathematics. His work primarily focuses on nonlinear system control, multi-agent system coordination, adaptive fuzzy control, and fully actuated system theory. These areas are essential to the advancement of modern engineering technologies, especially in the context of robotics, autonomous systems, and distributed control networks. In nonlinear system control, Dr. Cui explores techniques to manage systems that exhibit complex and unpredictable behavior, a common challenge in real-world applications. His work on multi-agent systems involves understanding how independent entities interact and coordinate to achieve collective goals, which is crucial for swarm robotics, intelligent transportation, and sensor networks. Adaptive fuzzy control integrates human-like reasoning into automated systems, allowing them to handle uncertainty and adapt to dynamic environments. Fully actuated system theory, another of Dr. Cui’s specialties, focuses on systems where every degree of freedom is controllable—key for precise manipulation in robotic arms and aerospace systems. These research interests position Dr. Cui at the forefront of intelligent control, enabling innovations that bridge theoretical development with high-impact engineering solutions. His interdisciplinary approach makes him a valuable contributor to both academia and industry applications.

Research Skills

Dr. Yang Cui possesses a robust set of research skills that support his work in complex control systems and intelligent automation. His technical expertise includes nonlinear dynamics analysis, stability theory, control algorithm development, and simulation modeling using tools such as MATLAB/Simulink and potentially Python or other engineering software. He is skilled in designing and implementing adaptive control strategies, especially those involving fuzzy logic and cooperative control techniques. These skills allow him to build robust control systems capable of operating in uncertain and dynamic environments. Additionally, Dr. Cui is adept in mathematical modeling and theoretical validation, essential for publishing in peer-reviewed journals and securing competitive research funding. He also demonstrates strong project management abilities, including proposal writing, budgeting, team leadership, and research dissemination. His communication skills facilitate effective collaboration across multidisciplinary teams, while his mentoring abilities contribute to training the next generation of control engineers. Furthermore, his experience with fully actuated systems adds practical implementation capabilities, likely involving real-time control hardware and embedded systems. Altogether, Dr. Cui’s combination of analytical, technical, and managerial skills makes him exceptionally equipped to undertake innovative and impactful research in the field of nonlinear and intelligent control systems.

Awards and Honors

Dr. Yang Cui has been recognized with several prestigious awards and honors that reflect his contributions to the field of control systems engineering. He has received funding from the National Natural Science Foundation of China, a competitive and highly regarded grant that supports innovative and high-impact research. Additionally, he was selected for the “Xing Liao Ying Cai Program,” a top-talent initiative in Liaoning Province aimed at identifying and supporting young researchers with exceptional potential. This recognition underscores both his research excellence and leadership in advancing key scientific initiatives in his region. He has also been awarded the Liaoning Provincial Doctoral Startup Fund, which supports promising early-career academics in establishing independent research programs. These accolades affirm Dr. Cui’s ability to identify important research questions, execute high-quality projects, and contribute to national scientific development. Although details of international honors, publications, or conference awards are not listed, the support he has received at the national and provincial levels demonstrates sustained academic credibility. These achievements not only reflect personal success but also highlight the broader impact of his research on academic, technological, and industrial communities within China.

Conclusion

In conclusion, Dr. Yang Cui is a highly competent and forward-thinking researcher whose work contributes meaningfully to the field of control systems and intelligent automation. With a solid educational foundation from Northeastern University and a strong academic position at the University of Science and Technology Liaoning, he has demonstrated leadership in both research and teaching. His research on nonlinear systems, adaptive control, and multi-agent coordination addresses critical challenges in engineering and has wide-ranging applications in robotics, aerospace, and smart systems. Dr. Cui’s success in securing competitive national and provincial funding illustrates not only his technical capability but also his strategic vision for impactful research. His research skills span theoretical modeling, practical implementation, and team management, all of which are crucial for innovation and knowledge transfer. While increasing international visibility through high-impact publications and global collaborations would further elevate his profile, Dr. Cui is already a significant contributor to China’s academic and technological landscape. Based on his accomplishments, leadership in research, and consistent scholarly growth, he stands out as a strong candidate for the Best Researcher Award, reflecting both promise and performance in advancing the frontiers of engineering science.

Publications Top Notes

  • Title: Adaptive neural network tracking control for robotic manipulator with input dead zone and function constraints on states
    Authors: Wang, Jiayao; Cui, Yang
    Journal: Nonlinear Dynamics
    Year: 2025

  • Title: Discrete-time high-order fully actuated robust stabilization control for a type of combined spacecraft subject to uncertainties
    Authors: Cui, Kaixin; Duan, Guangren; Cui, Yang
    Journal: Asian Journal of Control
    Year: 2025

  • Title: Dynamically optimized fixed-time fast terminal sliding surface design for manipulator trajectory tracking
    Authors: Li, Dan; Cui, Yang; Chen, Ming
    Journal: Asian Journal of Control
    Year: 2025

 

 

Doojin Lee | Electrical Engineering | Best Researcher Award

Prof. Dr. Doojin Lee | Electrical Engineering | Best Researcher Award

Changwon National University, South Korea

Dr. Doojin Lee is an Assistant Professor in the Department of Electronic Engineering at Changwon National University (CWNU), South Korea. His work bridges theoretical and applied aspects of antenna design, ultra-wideband (UWB) radar systems, electromagnetic cloaking, and advanced signal processing. With postdoctoral and research experience at globally recognized institutions — including The Ohio State University, University of Waterloo, University of Mississippi, and South Korea’s Agency for Defense Development — Dr. Lee has established himself as a rising expert in his field. His research includes contributions to NASA projects, military radar systems, biomedical sensing, and wearable imaging technologies. Dr. Lee’s expertise spans hardware and software, covering antenna simulation, fabrication, electromagnetic measurements, and radar algorithm development. Beyond research, he contributes actively as a reviewer for prestigious journals such as IEEE Transactions on Antennas and Propagation, IEEE Access, and IET Electronics Letters, reflecting his international reputation. He is also a long-standing member of the Korean Institute of Electromagnetic Engineering and Science. Dr. Lee’s professional trajectory is marked by steady academic growth, international collaborations, and technical excellence, making him a promising candidate for research recognition. He continues to push the boundaries of radar and antenna technologies, with a vision to develop next-generation electromagnetic sensing systems for diverse applications.

Professional Profile

Education

Dr. Doojin Lee completed his integrated M.S./Ph.D. program at the Gwangju Institute of Science and Technology (GIST), South Korea, earning his doctorate in Biomedical and Electronic Engineering in 2017. His dissertation focused on ultra-wideband electromagnetic sensors, particularly resistively loaded dipole antennas for skull imaging applications, setting the stage for his specialization in biomedical and radar sensing technologies. Before his graduate studies, he earned his B.S. in Electronic Engineering from Changwon National University (CWNU) in 2012, where his foundation in mechatronics and electronics developed. Post-Ph.D., Dr. Lee pursued advanced research as a postdoctoral fellow at the University of Waterloo, Canada, where he worked on UWB pulsed radar sensors for UAV applications and electromagnetic remote sensing. He continued as a postdoctoral fellow at The Ohio State University, focusing on GNSS receiver design and ground-penetrating radar antennas in collaboration with NASA. Later, as a research associate at the University of Mississippi, he explored electromagnetic cloaking using mantle metasurfaces. This diverse international educational and research background has shaped Dr. Lee’s multidisciplinary approach, blending antenna design, signal processing, and sensing technologies. His formal education and postdoctoral training reflect a consistent focus on cutting-edge electromagnetic research.

Professional Experience

Dr. Doojin Lee’s professional experience spans both academic and applied research settings, reflecting a balance of theoretical innovation and practical development. Since October 2022, he has served as an Assistant Professor in the School of Electrical, Electronic, and Control Engineering at Changwon National University (CWNU), South Korea, where he focuses on ultrawideband (UWB) antenna design and electromagnetic cloaking theories. Prior to this, Dr. Lee worked as a senior researcher at the Agency for Defense Development (ADD) in South Korea from 2020 to 2022, contributing to the analysis of electromagnetic interference on integrated masts for advanced naval combat systems under the KDDX project. Earlier, he gained international research experience at leading institutions: at the University of Mississippi, he worked on metasurface-based electromagnetic cloaking; at The Ohio State University’s ElectroScience Laboratory, he collaborated with NASA on GNSS receivers and non-contact GPR antennas; and at the University of Waterloo, he developed UWB radar sensors for UAVs and military surveillance. These roles demonstrate his broad expertise in antenna design, radar systems, electromagnetic sensing, and applied defense technologies. His career path highlights a progressive blend of academic leadership, government-funded research, and cross-national collaborations in cutting-edge electromagnetic engineering.

Research Interests

Dr. Doojin Lee’s research interests center on the design, development, and verification of advanced electromagnetic and radar systems. His work on ultra-wideband (UWB) impulse radar sensors addresses critical applications such as ground-penetrating radar, foliage-penetration radar, and through-wall radar imaging, making significant contributions to both civilian and military sectors. He is particularly interested in antenna innovations, including the design of small, planar, resistive, wrapped, and bowtie antennas, as well as the development of multi-input multi-output (MIMO) antenna arrays and packaging techniques. Another major focus area is electromagnetic cloaking, where Dr. Lee explores mantle metasurfaces to decouple closely spaced or overlapping phased antenna arrays, aiming to minimize electromagnetic interference and improve system efficiency. Additionally, his work on GNSS antenna receiver design advances the field of precise global navigation technologies, which are critical for aerospace and geospatial applications. He also has strong interests in physics-based and radar image signal processing, where algorithm development complements his hardware innovations. Overall, Dr. Lee’s research integrates electromagnetic theory, materials, hardware design, and signal processing, creating a comprehensive portfolio that addresses both fundamental scientific challenges and real-world sensing and communication problems.

Research Skills

Dr. Doojin Lee possesses a wide range of advanced research skills that span simulation, fabrication, measurement, and analysis. He is proficient in using leading electromagnetic simulation software such as HFSS, CST, FEKO, ADS, AutoCAD, and OrCAD, which allow him to design and optimize complex antenna structures and radar systems. His programming and data analysis capabilities are supported by strong MATLAB skills, essential for algorithm development and signal processing tasks. In hardware, Dr. Lee is experienced in photolithography and chemical etching techniques for precise PCB fabrication, enabling the creation of experimental prototypes for antenna and radar testing. His measurement expertise includes operating vector network analyzers, conducting far-field and near-field antenna measurements, and analyzing electromagnetic interference, ensuring accurate experimental validation of designs. Additionally, Dr. Lee is skilled in using LaTeX for scientific publishing, reflecting his experience in preparing high-quality technical reports and journal articles. These combined technical competencies allow him to bridge the full cycle of research and development, from theoretical design and simulation to prototype fabrication, experimental testing, and performance optimization across a broad range of electromagnetic applications.

Awards and Honors

While specific named awards or honors are not detailed in the available records, Dr. Doojin Lee’s professional recognition is evidenced by his continuous role as a reviewer for top-tier international journals, including IEEE Transactions on Antennas and Propagation, IEEE Access, and IET Electronics Letters. Serving as a reviewer for these journals since 2017–2018 demonstrates that his expertise is trusted and valued by the global scientific community, an acknowledgment that often parallels formal academic honors. Additionally, Dr. Lee’s selection as a research collaborator on NASA-supported projects and national defense research programs such as the KDDX initiative reflects a level of professional respect and trust awarded only to highly competent and reliable experts. His early-career achievements, including publication highlights and a featured interview in Electronics Letters, further underscore his growing recognition in the field of electromagnetic engineering. While expanding his portfolio with formal awards, fellowships, or competitive research grants would further boost his profile, his current standing as a respected contributor and international collaborator already places him among promising researchers with a steadily rising reputation.

Conclusion

In conclusion, Dr. Doojin Lee presents himself as a highly capable, technically skilled researcher with a clear focus on advancing antenna and radar system technologies. His academic and professional journey demonstrates a consistent commitment to both foundational and applied research, with projects that span biomedical sensing, aerospace communication, ground-penetrating radar, and electromagnetic cloaking. His technical mastery across simulation, fabrication, measurement, and signal processing enables him to contribute meaningfully to complex, multidisciplinary projects. Dr. Lee’s reputation as a regular reviewer for top international journals and his history of collaboration with prestigious organizations like NASA and national defense agencies position him as an emerging leader in his field. To maximize his competitiveness for high-level research awards, he may benefit from increasing his formal leadership in large-scale projects, expanding his independent research funding, and documenting high-impact contributions such as patents, innovations, or societal applications. Overall, Dr. Lee’s research excellence, international collaborations, and specialized expertise make him a strong candidate for recognition through a Best Researcher Award, reflecting both his current accomplishments and his significant potential for future contributions.

Publications Top Notes

  1. Design of Multi-Time Programmable Intellectual Property with Built-In Error Correction Code Function Based on Bipolar–CMOS–DMOS Process

    • Authors: L. Li, S. Kwon, D. Kim, D. Lee, Y. Kim

    • Year: 2025

  2. Investigation of Dual-Mode Cloaked Cylindrical Slot Antennas with a Pulsed Radar Signal Processing

    • Authors: D. Lee, A.B. Yakovlev

    • Year: 2024

  3. Design and Investigation on Antipodal Vivaldi Antenna Emitting a Pulse-Like Waveform for Imaging Close-Range Objects

    • Authors: D. Lee, S. Raman, R. Augustine

    • Year: 2024

    • Citations: 1

 

Hua Li | Modern Signal Processing | Best Researcher Award

Prof. Hua Li | Modern Signal Processing | Best Researcher Award

Subject Leader at Guizhou University, China.

Hua Li, an associate professor and Ph.D. in Engineering, is currently a postdoctoral fellow at Tsinghua University. With expertise in mechanical system health monitoring, modern signal processing, and big data fault diagnosis, he contributes significantly to the field. Serving as a peer review expert for prestigious journals and holding memberships in esteemed professional committees, Hua Li’s contributions are widely recognized. He has published over 20 academic papers and holds multiple invention patents, reflecting his commitment to innovation. Engaging in numerous national and provincial research projects, including those funded by the National Natural Science Foundation of China, he continues to push the boundaries of knowledge in his field. Hua Li’s extensive skill set in spatial computing, data analysis, modeling, and rendering further enhances his research capabilities, making him a valuable asset to the scientific community.

Professional Profiles:

Education:

Hua Li pursued his Ph.D. in Engineering and currently holds the position of associate professor. He has a diverse educational background, having engaged in advanced studies in mechanical engineering and related fields.

Research Experience:

Hua Li has extensive research experience in the field of mechanical engineering, particularly focusing on intelligent health monitoring and maintenance of mechanical systems, modern signal processing, and structural health monitoring. He has actively contributed to various research projects and academic endeavors, demonstrating his expertise and commitment to advancing knowledge in his field.

Research Interest:

Hua Li is an accomplished researcher with a strong focus on intelligent health monitoring and maintenance of mechanical systems. With extensive expertise in modern signal processing techniques, Hua’s work revolves around advancing fault diagnosis and prognosis methodologies. Additionally, he is deeply engaged in structural health monitoring, contributing significantly to ensuring the integrity and safety of various engineering structures. Leveraging advanced data analytics and machine learning algorithms, he strives to enhance condition monitoring and predictive maintenance practices. Through his innovative methodologies, Hua aims to improve the reliability and efficiency of mechanical systems, making valuable contributions to the field of engineering.

Award and Honors:

Hua Li has garnered recognition for his outstanding contributions to the field of engineering. His dedication and expertise have earned him prestigious awards and honors, including the Best Poster Award at the Transportation Research Board (TRB) in 2024. Additionally, he was honored with the Dr. and Mrs. Milton Leong Graduate Student Award for the 2023-24 academic year, acknowledging his exceptional performance as a graduate student in the Faculty of Science. These accolades underscore Hua’s commitment to excellence and his significant impact on the advancement of research in mechanical engineering and related disciplines.

Research Skills:

Hua Li possesses a diverse range of research skills that enable him to excel in his field. Proficient in spatial computing, he is adept at utilizing tools such as ArcGIS, PostgreSQL, and spatial syntax to analyze complex data related to mechanical systems and structural health monitoring. Additionally, his expertise in data analysis extends to Python, SPSS, and Excel, allowing him to extract valuable insights from research findings. Hua is skilled in modeling using software such as SketchUp and CAD, with a solid understanding of Rhino and Revit. Furthermore, he is proficient in rendering using various software like Photoshop, Illustrator, and Enscape, complemented by his familiarity with Premiere and Lumion. With his comprehensive skill set, Hua Li demonstrates a strong foundation in research methodology and data analysis, essential for conducting impactful research in engineering and related disciplines.

Publications:

  1. An optimized VMD method and its applications in bearing fault diagnosis
    • Authors: H. Li, T. Liu, X. Wu, Q. Chen
    • Year: 2020
    • Citations: 177
    • Journal: Measurement, 166, 108185
  2. Research on bearing fault feature extraction based on singular value decomposition and optimized frequency band entropy
    • Authors: H. Li, T. Liu, X. Wu, Q. Chen
    • Year: 2019
    • Citations: 120
    • Journal: Mechanical Systems and Signal Processing, 118, 477-502
  3. Application of EEMD and improved frequency band entropy in bearing fault feature extraction
    • Authors: H. Li, T. Liu, X. Wu, Q. Chen
    • Year: 2019
    • Citations: 99
    • Journal: ISA transactions, 88, 170-185
  4. A bearing fault diagnosis method based on enhanced singular value decomposition
    • Authors: H. Li, T. Liu, X. Wu, Q. Chen
    • Year: 2021
    • Citations: 82
    • Journal: IEEE Transactions on Industrial Informatics, 17 (5), 3220-3230
  5. Enhanced frequency band entropy method for fault feature extraction of rolling element bearings
    • Authors: H. Li, T. Liu, X. Wu, Q. Chen
    • Year: 2020
    • Citations: 54
    • Journal: IEEE Transactions on Industrial Informatics, 16 (9), 5780-5791
  6. Composite fault diagnosis for rolling bearing based on parameter-optimized VMD
    • Authors: H. Li, X. Wu, T. Liu, S. Li, B. Zhang, G. Zhou, T. Huang
    • Year: 2022
    • Citations: 41
    • Journal: Measurement, 201, 111637
  7. Research on test bench bearing fault diagnosis of improved EEMD based on improved adaptive resonance technology
    • Authors: H. Li, T. Liu, X. Wu, S. Li
    • Year: 2021
    • Citations: 40
    • Journal: Measurement, 185, 109986
  8. A weak fault feature extraction of rolling element bearing based on attenuated cosine dictionaries and sparse feature sign search
    • Authors: H. Zhou, H. Li, T. Liu, Q. Chen
    • Year: 2020
    • Citations: 36
    • Journal: ISA transactions, 97, 143-154
  9. Application of optimized variational mode decomposition based on kurtosis and resonance frequency in bearing fault feature extraction
    • Authors: H. Li, T. Liu, X. Wu, Q. Chen
    • Year: 2020
    • Citations: 34
    • Journal: Transactions of the Institute of Measurement and Control, 42 (3), 518-527
  10. Correlated SVD and its application in bearing fault diagnosis
    • Authors: H. Li, T. Liu, X. Wu, S. Li
    • Year: 2023
    • Citations: 18
    • Journal: IEEE Transactions on Neural Networks and Learning Systems, 34 (1), 355-365