Chuan-Jun Wang | Material Chemistry | Best Researcher Award

Prof. Chuan-Jun Wang | Material Chemistry | Best Researcher Award

Professor from Shandong Agricultural University, China

Professor Wang Chuanjun is a distinguished academic and researcher currently serving at Shandong Agricultural University. With a deep-rooted background in chemistry and catalysis, his work primarily focuses on advancing sustainable energy solutions through photo- and electrocatalytic processes. Prof. Wang’s scholarly journey is marked by excellence and international collaboration, having undergone postdoctoral research at the Institute of Chemical Research of Catalonia (ICIQ) in Spain—a globally recognized hub for chemical innovation. His contributions span green catalysis, nitrogen conversion, and biomass valorization, all critical for a low-carbon future. He has published over 30 research articles in high-impact journals indexed in SCI and Scopus and has secured 6 patents, reflecting a strong translational aspect to his research. With a citation index exceeding 1800, his work is widely acknowledged by peers in the scientific community. Prof. Wang leads national and provincial projects focused on catalytic ammonia synthesis, showcasing his capacity to spearhead innovative and impactful research. His portfolio also includes participation in international collaborations and consultancies, adding depth to his academic profile. Passionate about scientific development and knowledge dissemination, Prof. Wang continues to drive meaningful progress in sustainable technologies and energy conversion systems.

Professional Profile

Education

Professor Wang Chuanjun’s academic foundation reflects a consistent pursuit of excellence in chemistry and material science. He began his undergraduate studies at Shandong Agricultural University (2006–2010), majoring in chemistry, where he laid the groundwork for his future in catalysis and green technology. He then advanced to the Technical Institute of Physics and Chemistry at the Chinese Academy of Sciences (TIPC-CAS), completing both his Master’s (2010–2012) and Doctoral (2012–2015) degrees. At TIPC-CAS, he specialized in electrochemical systems and advanced materials, gaining hands-on experience in catalytic reactions, particularly those involving nitrogen and hydrogen transformations. Eager to broaden his research perspective, Prof. Wang undertook a prestigious postdoctoral fellowship (2015–2018) at the Institut Català d’Investigació Química (ICIQ) in Tarragona, Spain. During this time, he engaged with world-leading researchers and technologies, deepening his expertise in molecular catalysis and photoinduced reactions. This international exposure has significantly influenced his methodological approach and innovation in his later projects. His academic path has been integral to shaping his current focus areas, including green catalysis, nanomaterial development, and electrocatalytic processes for sustainable energy solutions.

Professional Experience

Prof. Wang Chuanjun’s professional career is a testament to his dedication to scientific research and education. He has been a full-time Professor at Shandong Agricultural University since January 2019, where he teaches, supervises postgraduate research, and leads several national and provincial scientific projects. His current position allows him to explore catalytic solutions for global challenges, such as clean ammonia synthesis and nitrogen fixation, by integrating metal-based nanomaterials and advanced light-driven systems. Prior to this role, he served as a postdoctoral researcher at ICIQ, Spain (2015–2018), where he worked on photochemical and organometallic catalysis, gaining invaluable international exposure and enhancing his collaborative research skills. His time at ICIQ built a strong foundation in synthetic methodology and catalysis that he has since translated into practical, scalable energy applications in China. Earlier, as a graduate and doctoral student at the Technical Institute of Physics and Chemistry (TIPC-CAS), he conducted pioneering studies on electrochemical materials and reaction mechanisms. With experience that spans both academic institutions and cross-border scientific initiatives, Prof. Wang has developed a dynamic professional portfolio, combining teaching excellence with real-world research impact in energy science and sustainable chemistry.

Research Interests

Prof. Wang Chuanjun’s research interests are centered on catalysis-driven solutions for sustainable energy and environmental systems. His work focuses on the synthesis and application of nanostructured metal phosphides and transition metal complexes for photo- and electrocatalytic nitrogen conversion, aiming to produce ammonia and hydrogen under mild conditions. He is particularly interested in green catalysis strategies that mimic natural enzymatic processes, especially nitrogenase-like systems that enable low-energy nitrogen fixation. His work also explores biomass conversion, utilizing renewable sources for energy and chemical production. A core area of his research is the design of photocatalytic systems for enhanced solar-driven reactions, integrating light harvesting with catalytic processes for higher efficiency and selectivity. Additionally, Prof. Wang investigates the fundamental kinetics and mechanistic pathways involved in these transformations, leveraging spectroscopy and electrochemical analysis to refine catalytic designs. Through collaborations and interdisciplinary approaches, he aims to bridge material synthesis, reaction engineering, and environmental science. His research not only contributes to academic understanding but also has potential implications for industrial ammonia production and sustainable agricultural practices.

Research Skills

Prof. Wang Chuanjun possesses a diverse and robust set of research skills that span synthetic chemistry, catalysis, material characterization, and electrochemical analysis. He is highly proficient in the synthesis of nanostructured metal phosphides, transition metal complexes, and functionalized photocatalysts, which are central to his work on nitrogen fixation and hydrogen evolution. His expertise includes the use of advanced characterization techniques such as X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM/TEM), and spectroscopy (UV-Vis, FTIR, NMR), which he employs to elucidate material structures and reaction mechanisms. In electrochemistry, he is adept in cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy, allowing detailed insights into charge transfer processes and catalytic activity. His skills also encompass computational modeling and mechanistic studies to simulate catalytic pathways and optimize energy efficiency. Prof. Wang’s research is strengthened by his ability to integrate lab-scale findings with scalable design, often considering industrial relevance and sustainability. His multidisciplinary competencies make him a versatile and forward-thinking scientist capable of addressing complex challenges in green chemistry and renewable energy technologies.

Awards and Honors

Throughout his career, Prof. Wang Chuanjun has been recognized for his contributions to the field of catalysis and green chemistry. He has received funding and honors from prominent institutions, including the Youth Project of the Natural Science Foundation of Shandong Province, where he serves as the project lead on electrocatalytic nitrate/nitrite reduction to ammonia. Additionally, he was awarded the Shandong Provincial High-level Foreign Experts Project to explore visible-light-driven synthesis of nanomaterials for nitrogen conversion—a prestigious recognition of his innovative research in sustainable materials. He also participated in the Shandong University Youth Talent Promotion Project on green catalysis and synthesis, further validating his expertise in eco-friendly chemical processes. Prof. Wang has published 33 papers in international peer-reviewed journals and has a citation index of over 1800, reflecting his scientific impact. He holds six patents and has provided consultancy services to industry, demonstrating the practical applicability of his work. These accolades underscore his leadership in the field and his commitment to developing next-generation technologies for energy and environmental sustainability.

Conclusion

Prof. Wang Chuanjun is an accomplished researcher whose work exemplifies innovation, sustainability, and academic rigor in the field of chemical catalysis. His academic background, international research experience, and ongoing leadership in multiple funded projects position him as a valuable contributor to the scientific community. With research spanning nitrogen conversion, biomass utilization, and green energy, Prof. Wang’s efforts address urgent global challenges in clean energy and environmental stewardship. His skillset integrates material science, electrochemical analysis, and catalytic system design, bridging fundamental research with real-world impact. The high citation index and patent record highlight both scholarly influence and practical relevance. While expanding editorial involvement and global scientific engagement could enhance his profile further, his current contributions already make him a strong candidate for high-level recognition. His leadership in provincial and international projects, combined with a commitment to academic excellence and interdisciplinary research, affirms his suitability for the Best Researcher Award. Prof. Wang represents the next generation of chemists driving transformative advances in sustainable science.

Publications Top Notes

  1. Hyaluronic acid-functionalized nanoarmor enhances the stable colonization ability of Paenibacillus polymyxa JF_P68 and boosts its biological control efficacy against pear anthracnose
    Journal: Pest Management Science, 2025
    Authors: Du, J.; Li, H.; Wu, L.; Liu, Y.; Sun, F.; Tian, X.; Lu, N.; Jiao, Y.; Liu, S.; Zhao, X.; Wang, C.-J.

  2. Synergistic Pd-CoFe sites for efficient and selective electrooxidation of glycerol to glyceric acid coupled with H₂ evolution
    Journal: Chemical Engineering Journal, 2025
    Authors: Zhou, J.; Shi, R.; Gao, Q.; Liu, F.; Chen, Y.; Chen, J.; Guo, Z.; Tse, E.C.M.; Zhao, X.; Wang, C.-J.

  3. Facile construction of CuFe-based metal phosphides for synergistic NOₓ⁻ reduction to NH₃ and Zn–nitrite batteries in electrochemical cell
    Journal: Small, 2024
    Authors: Wang, G.; Wang, C.; Liu, S.; Zhao, X.; Xu, J.; Tian, X.; Li, Q.; Waterhouse, G.I.N.

  4. Methane sulfonic acid-assisted synthesis of g-C₃N₄/Ni₂P/Ni foam: Efficient, stable and recyclable for photocatalytic nitrogen fixation under visible light
    Journal: Journal of Environmental Chemical Engineering, 2024
    Authors: Gao, X.; Zhang, B.; Cao, L.; Liu, F.; Fan, H.; Wang, C.; Xu, J.

  5. Visible light-driven synthesis of PtCu alloy nanodendrites for electrocatalytic nitrogen-conversion reactions
    Journal: Advanced Sustainable Systems, 2024
    Authors: Wang, G.; Wang, C.; Zhao, X.; Liu, S.; Zhang, Y.; Lv, X.; Xu, J.; Waterhouse, G.I.N.

  6. Glufosinate ammonium-loaded halloysite nanotubes for slow-release weeding polymer mulch films
    Journal: ACS Applied Nano Materials, 2023
    Authors: Jia, X.; Zhang, K.; Wang, C.; You, X.; Yang, S.; Wang, J.; Zhang, B.; Xu, J.; Yan, Y.; Wang, Y.

  7. CoP nanowires on carbon cloth for electrocatalytic NOₓ⁻ reduction to ammonia
    Journal: Journal of Electroanalytical Chemistry, 2022
    Authors: Zhang, H.; Wang, G.; Wang, C.; Liu, Y.; Yang, Y.; Jiang, W.; Fu, L.; Xu, J.

  8. Electrochemical ammonia synthesis from nitrite assisted by in situ generated hydrogen atoms on a nickel phosphide catalyst
    Journal: Chemical Communications, 2021
    Authors: Yang, X.; Liu, F.; Chen, Y.; Kang, L.; Wang, C.-J.

 

Bünyamin Ciçek | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Bünyamin Ciçek | Materials Science | Best Researcher Award

Hitit University, Turkey

Assoc. Prof. Dr. Bünyamin Çiçek is a distinguished academic in the field of Metallurgical and Materials Engineering, currently serving at Hitit University, Turkey. With a strong foundation in manufacturing technologies, powder metallurgy, and welding technologies, he has contributed extensively to material innovation, particularly in biocompatible alloys and composite materials. Over the years, Dr. Çiçek has played key roles in national projects supported by TÜBİTAK and higher education institutions, establishing himself as a leader in applied and experimental research. He has supervised doctoral theses, published over 25 peer-reviewed international articles, and presented at numerous international conferences. His research is recognized for its industrial applicability, particularly in alloy development, corrosion resistance, and biocompatibility. In addition to his academic responsibilities, he has held administrative roles such as Vice Director of a vocational school and Head of Department. Dr. Çiçek has also received prestigious awards, including the “Young Researcher of the Year” and publication incentives from TÜBİTAK and his home institution. His dedication to advancing metal and polymer-based research has positioned him as a key contributor to the scientific and industrial communities.

Professional Profile

Education

Dr. Bünyamin Çiçek holds a Ph.D. in Metallurgical and Materials Engineering from Karabük University, which he completed in 2021. His doctoral research focused on the production and characterization of biocompatible alloys using a newly designed powder injection molding method, under the supervision of Prof. Yavuz Sun. Prior to his doctoral studies, he earned a Master’s degree with thesis from the same university in 2011, where he examined the wear and corrosion behavior of Mg2Si particle-reinforced magnesium alloys. His academic journey began with a Bachelor’s degree in Metal Teaching from Karabük University, completed in 2009. The strong technical emphasis of his undergraduate and graduate training laid the groundwork for his later contributions in advanced manufacturing technologies and materials characterization. Dr. Çiçek’s academic formation combines in-depth metallurgical knowledge with practical applications, enabling him to explore and innovate in areas such as metal injection molding, biocompatibility of alloys, corrosion mechanisms, and additive manufacturing. Throughout his educational career, he has consistently focused on developing solutions to real-world engineering problems, especially in the context of biomedical and structural materials.

Professional Experience

Dr. Bünyamin Çiçek currently serves as an Associate Professor at Hitit University in the Department of Welding Technology. He began his academic career as a lecturer at Gedik University and later joined Hitit University, where he has held several key positions, including Lecturer at Alaca Avni Çelik Vocational School and Vice Director of the same institution. Over the years, Dr. Çiçek has contributed significantly to curriculum development, student mentorship, and industry-academia collaboration. His administrative experience includes serving as Head of the Department of Machinery and Metal Technologies. His work in academic leadership has complemented his teaching, which covers subjects like Powder Metallurgy, Technical Drawing, and Computer-Aided Design. Beyond academia, he has actively participated in national research projects, often taking on roles as project coordinator, consultant, and principal researcher. These experiences have enabled him to develop strong ties with industrial partners and apply academic findings to real-world challenges. His leadership in multidisciplinary projects focused on novel alloy production, corrosion resistance, and 3D printing technologies underscores his broad impact in both educational and applied research domains.

Research Interests

Dr. Çiçek’s research interests are centered around materials science and engineering, with a particular focus on powder metallurgy, biocompatible materials, composite materials, and welding technology. His academic curiosity lies in improving the mechanical, tribological, and corrosion properties of metal matrix composites and magnesium-based biodegradable alloys. A significant portion of his research explores the development and optimization of metal injection molding systems for medical and structural applications. He is also interested in investigating the effects of alloying elements such as rare earth metals on high-entropy alloys and their performance at cryogenic temperatures. In recent years, he has expanded his work to include 3D-printed polymer and metal parts, especially for use in biomedical implants and radiation shielding. His collaboration in TUBITAK-funded projects reflects his dedication to applied research that combines nanotechnology with traditional manufacturing methods. Additionally, Dr. Çiçek actively investigates environmentally friendly materials, including the use of recycled products in aluminum matrix composites. This diversity of interests not only broadens the scope of his research output but also aligns with global scientific trends in sustainable and functional material development.

Research Skills

Dr. Bünyamin Çiçek is highly skilled in experimental techniques and research methodologies that span across several domains of materials science. He has hands-on expertise in powder metallurgy, including metal injection molding processes, alloy synthesis, sintering, and characterization. He is proficient in conducting wear and corrosion tests, mechanical property assessments, and metallographic analyses. His work often incorporates advanced microscopy techniques such as SEM for microstructural investigation. In the realm of additive manufacturing, he has led studies involving stereolithography-based 3D printing and the integration of nano-structured materials to enhance mechanical performance. He also has a solid background in computer-aided design and simulation tools, which he integrates into both teaching and research. Moreover, his ability to manage and coordinate large-scale, multi-institutional research projects demonstrates his strong project management and collaboration skills. Dr. Çiçek is adept at formulating hypotheses, designing experiments, analyzing data, and drawing actionable conclusions—skills that are evidenced by his extensive publication record. His interdisciplinary approach bridges the gap between materials development, biomedical applications, and sustainable engineering solutions.

Awards and Honors

Throughout his academic career, Dr. Çiçek has been the recipient of numerous awards that highlight both his research excellence and publication productivity. In 2024, he was honored by Hitit University for having the highest number of Q1 publications indexed by Web of Science. The same year, he received an innovation award for developing commercially viable products in collaboration with the manufacturing sector, under the theme of specialization in machinery and manufacturing technologies. TÜBİTAK recognized his achievements with multiple Publication Incentive Awards in 2023, 2016, and 2012. Notably, in 2018, he was named “Young Researcher of the Year” by Al-Quds University, Palestine, marking an international acknowledgment of his early-career accomplishments. These accolades reflect his consistent contributions to high-impact research, particularly in the areas of biocompatible materials and industrial applications. His ability to translate academic work into practical solutions has also earned him leadership roles in various national R&D projects. The awards validate not only his scholarly output but also his impact on scientific innovation and industrial relevance.

Conclusion

Assoc. Prof. Dr. Bünyamin Çiçek stands out as a leading researcher whose work intersects materials innovation, biocompatible systems, and industrial manufacturing processes. With over a decade of experience, his multidisciplinary expertise in metallurgy, powder injection molding, and composite materials places him at the forefront of applied research in Turkey and beyond. He has contributed significantly to the scientific community through a prolific publication record and active participation in national research projects. His leadership roles in academia and collaboration with industry partners underline his commitment to knowledge transfer and sustainable development. The numerous awards and recognitions he has received reinforce his status as a dedicated scientist and educator. Dr. Çiçek’s ongoing projects in biocompatible materials and environmentally friendly composites demonstrate his responsiveness to current global challenges. As he continues to mentor students and lead cutting-edge research, his contributions are poised to influence the next generation of materials science innovations. He is undoubtedly a strong candidate for the Best Researcher Award, with a portfolio that exemplifies academic rigor, practical relevance, and long-term impact.

Publications Top Notes

  1. Enhancement of Tribological Characteristics for Fe-0.55C PM Steel via Addition of Mo-Ni under Different Deformation Ratios
    Journal: Journal of Materials Engineering and Performance
    Year: 2025
    Citations: 1
  2. Investigation of Tribological Characteristics of Cu-Fe-Ni-Al-Mn Heat Exchanger Alloys for Automotive Applications in Different Antifreeze Ratios
    Journal: International Journal of Automotive Science and Technology
    Year: 2025

 

 

Wen Chen | Materials Science | Best Researcher Award

Prof. Dr. Wen Chen | Materials Science
| Best Researcher Award

Teacher at Wuhan University of Technology, China

Prof. Dr. Wen Chen, born in April 1963, is a distinguished Chinese scientist and educator specializing in functional materials. He serves as a professor at Wuhan University of Technology, where he has made significant contributions to material science through teaching and research. With a career spanning decades, Prof. Chen is well-regarded for his expertise in piezoelectric and dielectric ceramics, composite materials, and advanced thin film technologies. Known for his academic rigor and innovation, he has earned respect in the national and international research community. His scientific output and dedication to education continue to shape the future of material science in China. Prof. Chen remains active in leading research projects and mentoring future scientists in cutting-edge material technologies.

Professional Profile​

Education

Prof. Dr. Wen Chen completed his entire higher education at Wuhan University of Technology, one of China’s premier institutions for engineering and materials science. Through a rigorous academic journey, he developed a solid foundation in physical and materials sciences, eventually earning his doctoral degree with a focus on functional materials. His educational background includes extensive research training in structure-property relationships, thin film deposition techniques, and ceramic engineering. During his academic formation, Prof. Chen demonstrated exceptional aptitude and was often involved in collaborative research and laboratory projects. His education provided the groundwork for his later innovations in piezoelectric materials and functional composites, and helped him build a lifelong career in academia and research within the same institution that shaped his early professional identity.

Professional Experience

Prof. Dr. Wen Chen has devoted his professional life to Wuhan University of Technology, where he serves as a professor and mentor in the field of materials science. His academic career spans research, teaching, and institutional leadership. He has supervised numerous postgraduate students, published extensively in high-impact journals, and led multiple research projects related to functional ceramics and composite materials. Beyond teaching, Prof. Chen has been actively engaged in developing national and provincial research initiatives. His collaborative efforts with industry and academic institutions have fostered innovation in thin-film technology and piezoelectric systems. His professional journey reflects a commitment to scientific excellence, educational development, and interdisciplinary collaboration within China’s rapidly advancing research ecosystem.

Research Interests

Prof. Dr. Wen Chen’s research centers on functional material structures and their physical effects, with emphasis on piezoelectric and dielectric ceramics and advanced thin-film materials. His work explores the fundamental relationships between microstructure and physical properties, aiming to enhance the performance of smart and responsive materials. Key areas include the synthesis and characterization of ceramic composites for energy harvesting, sensing, and actuation applications. He also investigates novel functional thin films for use in electronic and optoelectronic devices. His multidisciplinary approach integrates materials chemistry, solid-state physics, and device engineering. Prof. Chen’s research contributes to the development of next-generation materials with enhanced efficiency, miniaturization potential, and multifunctionality for emerging applications in electronics, aerospace, and biomedical fields.

Awards and Honors

Prof. Dr. Wen Chen has received several prestigious awards and honors throughout his career in recognition of his contributions to material science and education. He has been honored for his work in functional materials, especially in piezoelectric and dielectric ceramic systems, by both academic societies and governmental bodies. His research projects have earned competitive funding, and he has received accolades for outstanding teaching and mentorship. Prof. Chen’s scholarly publications and patents have also garnered awards for innovation and technological impact. His recognition extends beyond China, with international collaborations and citations highlighting his global influence. These honors reflect not only his scientific acumen but also his dedication to advancing materials research and fostering future scientific talent.

Conclusion

Prof. Dr. Wen Chen stands as a leading expert in the field of functional materials, with decades of experience in research, teaching, and technological innovation. His enduring commitment to academic excellence and scientific discovery has made him a pillar of Wuhan University of Technology and a respected voice in China’s materials science community. Through his contributions to ceramic and thin film materials, he has influenced a wide range of applications, from electronics to energy solutions. As a mentor, he continues to guide future scientists and engineers, fostering a culture of inquiry and innovation. Prof. Chen’s legacy is one of impactful research, dedicated mentorship, and an unwavering pursuit of scientific progress in the field of advanced materials.

Publications Top Notes

  • Qin, Z., Zhou, J., Liu, R., Cheng, Z., Liu, K., Zhou, J., Shen, J., Jin, W., & Chen, W. (2025). A novel strategy for measuring the Villari effect of amorphous alloys by utilizing low frequency magnetic emission. Measurement, 2025-09. https://doi.org/10.1016/j.measurement.2025.117480

  • Liu, Y., Shao, L., Ding, L., Chen, X., Bao, Y., & Chen, W. (2025). In Situ Anchoring of Co Single Atoms within Keto-Enamine COFs via the Coordination of an Interlayer N Atom with Co for the Enhanced Photocatalytic CO₂ Reduction Efficiency. ACS Applied Materials & Interfaces, 2025-04-24. https://doi.org/10.1021/acsami.5c02762

  • Li, X., Zhu, C., Zhou, J., Shen, J., & Chen, W. (2025). Polytetrafluoroethylene‐based composites with improved thermal properties and excellent mechanical, dielectric properties using the synergy of mesoporous silica and aramid fiber. Polymer Composites, 2025-04-23. https://doi.org/10.1002/pc.29984

  • Shen, J., Chen, X., Qi, Y., He, W., Li, Q., Zhang, J., Zhou, J., & Chen, W. (2025). Introduction of the interfacial layer between filler and matrix: An effective approach towards developing high thermal conductive dielectric composite. Ceramics International, 2025-03. https://doi.org/10.1016/j.ceramint.2025.03.127

  • Tang, X., Zhang, S., Sun, H., Zhang, H., Jian, Z., Hu, S., & Chen, W. (2025). Incorporation of Organic Benzoquinone Framework Into rGO via Strong π–π Interaction for High‐Performance Aqueous Ammonium‐Ion Battery. Small, 2025-01. https://doi.org/10.1002/smll.202410374

  • Hu, Y., Shen, J., Chen, B., Zhang, H., Zhou, J., & Chen, W. (2025). The Wake-Up Behavior in Bi₁/₂(Na₀.₈K₀.₂)₁/₂TiO₃ Thin Films by Nb Doping. ACS Applied Electronic Materials, 2025-01-28. https://doi.org/10.1021/acsaelm.4c01988