Ms. Swati Gangwar | Chemical Engineering | Women Researcher Award
Research scholar from Indian institute of Technology, India
Swati Gangwar is a dedicated research scholar currently pursuing her PhD in Chemical Engineering at the Indian Institute of Technology (IIT), Jammu. With a strong academic foundation marked by a first-class chemical engineering degree from AITH Kanpur and a Master’s degree from Harcourt Butler Technical University (HBTU), Kanpur, she has steadily advanced her expertise in thermal hydraulics and fluid flow. Under the mentorship of P.K. Vijayan, a distinguished expert with extensive experience at BARC, Swati has focused on natural circulation systems, which are critical in energy-efficient and safe passive heat transfer technologies. Her research contributions include experimental, numerical, and analytical studies of thermosyphon heat transport devices, indoor solar cooktops, and passive cooling systems applicable to renewable energy and nuclear safety sectors. Swati’s work has been published in prestigious international journals such as Nuclear Engineering and Design and IEEE Electrification Magazine, demonstrating her ability to contribute novel insights to her field. With ongoing projects and collaborative efforts, she continues to advance research that bridges theoretical understanding and practical innovation in heat transfer mechanisms, positioning herself as a promising leader in chemical engineering research.
Professional Profile
Education
Swati Gangwar completed her Bachelor of Technology (B.Tech) degree in Chemical Engineering from AITH Kanpur in 2016, graduating with first-class honors. She pursued her Master of Technology (M.Tech) in Chemical Engineering at Harcourt Butler Technical University (HBTU), Kanpur, completing it in 2019. Her graduate studies laid a solid foundation in core chemical engineering principles, with a growing interest in thermal systems and fluid mechanics. Currently, she is enrolled in a PhD program at the Indian Institute of Technology Jammu, focusing on heat transfer and fluid flow under the guidance of Professor P.K. Vijayan. The doctoral program enables her to engage deeply in research related to natural circulation loops, thermosyphon heat transport devices, and their applications in sustainable energy systems and nuclear safety. Her education trajectory reflects a consistent focus on advancing her expertise in thermal hydraulics and related engineering challenges, supported by rigorous academic training and research exposure at premier Indian institutions.
Professional Experience
Swati’s professional experience is primarily academic and research-oriented, centered on her PhD studies at IIT Jammu. She has actively contributed to research projects involving thermosyphon heat transport devices and natural circulation systems, focusing on experimental design, numerical modeling, and performance analysis. Her collaboration with her supervisor, Prof. P.K. Vijayan, who has a rich background in nuclear thermal hydraulics and reactor engineering, has enriched her exposure to practical challenges in energy systems design and safety. Swati has also worked on projects related to solar indoor cooktops, a novel application of thermosyphon technology, reflecting her ability to translate research into practical innovations. She has been involved in publishing several peer-reviewed papers in high-impact journals and presenting findings at scientific forums, contributing to the academic community. Although her experience is mainly research-focused, it reflects strong technical skills, teamwork in collaborative environments, and dedication to advancing applied thermal engineering solutions.
Research Interests
Swati’s research interests lie in the field of heat transfer, fluid dynamics, and passive cooling systems. Specifically, she focuses on natural circulation loops (NCLs) and thermosyphon heat transport devices (THTDs), which utilize buoyancy-driven flow to enable efficient heat transfer without mechanical pumps. Her work encompasses both single-phase and two-phase natural circulation systems, with a strong emphasis on stability analysis and flow instabilities. She is particularly interested in developing innovative applications of these passive heat transfer technologies, such as solar indoor cooking devices, passive fuel cooling systems in small modular reactors (SMRs), and sustainable energy solutions like solar space heating. Swati’s research aims to address critical challenges in renewable energy and nuclear safety by optimizing thermal-hydraulic performance and enhancing system stability. Her work bridges theoretical modeling, numerical simulations, and experimental validations to provide comprehensive insights into these systems’ behavior under various boundary conditions, contributing to safer and more efficient energy technologies.
Research Skills
Swati possesses a robust set of research skills combining experimental, analytical, and computational techniques. She is proficient in designing and conducting experiments related to thermosyphon heat transport devices and natural circulation loops, including setup fabrication, instrumentation, and data acquisition. Her skills include numerical modeling and simulation using system codes to predict thermo-hydraulic behavior and flow stability. She has experience in analytical methods for stability criteria development and performance analysis under varying operating conditions. Swati’s ability to integrate experimental data with numerical models allows her to validate and refine theoretical predictions effectively. Additionally, she has strong scientific writing skills, demonstrated through multiple publications in reputed journals. Her research also involves using computational fluid dynamics (CFD) tools for detailed flow analysis. Collaborating with multidisciplinary teams and managing complex research projects further highlights her organizational and teamwork capabilities. Overall, Swati’s research skills position her to make meaningful contributions to passive cooling and heat transfer technologies.
Awards and Honors
Swati Gangwar’s recognition primarily stems from her academic excellence and research contributions during her ongoing PhD. While specific external awards or honors were not explicitly mentioned, her work’s acceptance and publication in high-impact, peer-reviewed journals such as Nuclear Engineering and Design and IEEE Electrification Magazine are significant markers of her research quality and impact. Being mentored by a leading expert in the field, Prof. P.K. Vijayan, also adds to her academic prestige. Her participation in advanced research projects and collaborations, coupled with acceptance of her work in reputed journals, reflects peer recognition within the scientific community. Future recognition may include awards related to innovations in renewable energy or nuclear safety, given the societal relevance of her research areas. Encouragingly, her trajectory and ongoing scholarly output suggest a promising career with potential for further accolades and honors as she continues to contribute to her field.
Conclusion
Swati Gangwar exemplifies a promising young researcher with strong academic foundations, relevant professional experience, and a clear focus on impactful research in thermal hydraulics and fluid flow. Her work on natural circulation loops and thermosyphon devices addresses important challenges in renewable energy and nuclear safety, combining theoretical, numerical, and experimental approaches. With multiple high-quality journal publications and ongoing innovative projects, she is steadily establishing herself as a capable and impactful researcher. To strengthen her profile further, opportunities to demonstrate leadership in research projects, increase engagement with the wider scientific community through conferences, and pursue external funding or patents would be beneficial. Overall, Swati’s dedication and contributions position her well as a deserving candidate for the Women Researcher Award, highlighting her potential as a future leader in engineering research.
Publications Top Notes
-
Title: Insight on the steady-state performance of single-phase Natural circulation loops
Year: 2025
Authors: Swati Gangwar, P. K. Vijayan, Goutam Dutta
Journal: Nuclear Engineering and Design, Volume 440, 114128 -
Title: Insights on the instability and stabilizing techniques for natural circulation loops
Year: 2025
Authors: P. K. Vijayan, Swati Gangwar, Dev Banitia, U. C. Arunachala, S. Nakul, D. N. Elton, K. Varun
Journal: Nuclear Engineering and Design, Volume 438, 114017 -
Title: Intrinsically Safe Thermohydraulic Designs for SMRs: Design advantages and challenges
Year: 2024
Authors: P. K. Vijayan, Swati Gangwar
Journal: IEEE Electrification Magazine, Volume 12, Issue 4, pp. 75–83
DOI: 10.1109/MELE.2024.3473332 -
Title: CFD analysis of the steady-state performance of a cooktop integrated Thermosyphon heat transport device with two bends
Year: 2025
Authors: Sonu Kumar, Pallippattu Krishnan Vijayan, Swati Gangwar, Satya Sekhar Bhogilla
Journal: Heat Transfer Engineering Journal (Accepted for publication) -
Title: Experimental performance of a novel solar indoor cooktop using THTD
Year: 2024
Authors: Swati Gangwar, A. Budakoti, S. S. Bhogilla, G. Dutta, P. K. Vijayan
Journal: ASTFE Digital Library, Begell House Inc.