Yuriy Maletin | Energy | Best Researcher Award

Prof. Yuriy Maletin | Energy | Best Researcher Award

Head of laboratory from Institute for sorption and Problems of Endoecology National Academy of Sciences of Ukraine, Ukraine

Yuriy A. Maletin is an accomplished chemist with over five decades of scientific contributions in inorganic and physical chemistry. Born on January 15, 1949, in Moscow, Russia, he has established a profound legacy in the field of nanosized carbon materials and energy storage systems. Currently serving as Head of the Department of Nanosized Carbon Materials for Energy Storage at the Institute for Sorption and Problems of Endoecology in Kyiv, Ukraine, and as Chief Scientist at Yunasko-Ukraine LLC, he combines academic leadership with industrial innovation. His commitment to advancing science has earned him membership in several prestigious boards and societies, including being a Corresponding Member of the National Academy of Sciences of Ukraine. With over 105 published papers and 35 patents, his work has left a significant mark on scientific and technological development in Ukraine and beyond. Throughout his career, he has held notable leadership roles at various institutions, contributing to both theoretical and applied research. Maletin continues to be active in international scientific dialogue, frequently invited to deliver keynote lectures. His distinguished career embodies a blend of research excellence, innovation, and mentorship that reflects an enduring passion for scientific progress.

Professional Profile

Education

Yuriy A. Maletin pursued his academic journey at some of the most prestigious institutions in the former Soviet Union. He graduated in 1971 with an MSc in Chemistry from the renowned Moscow State University named after M.V. Lomonosov, a leading institution known for producing world-class scientists. Following his graduate studies, he earned a Ph.D. in Inorganic Chemistry from the Institute of General and Inorganic Chemistry in Kiev in 1977. This was followed by his Doctor of Science (Dr. habil.) degree in Physical Chemistry from the Institute of Chemical Physics in Moscow in 1989, marking the peak of academic qualifications in the former USSR and Eastern Europe. These degrees reflect a deep academic foundation in both theoretical and applied chemistry. His education laid the groundwork for his later achievements in research and leadership, particularly in the fields of coordination chemistry, sorption technologies, and nanomaterials for energy storage. His multidisciplinary training provided him with the ability to work at the interface of various scientific domains and effectively lead complex research projects with national and international significance.

Professional Experience

Yuriy A. Maletin’s professional career spans over four decades of continuous engagement in scientific research, academic leadership, and industrial collaboration. He is currently the Head of the Department of Nanosized Carbon Materials for Energy Storage at the Institute for Sorption and Problems of Endoecology, National Academy of Sciences of Ukraine, a position he has held since 2009. Since 2010, he has also served as the Chief Scientist at Yunasko-Ukraine LLC, focusing on advanced energy storage solutions. From 2002 to 2008, he was Head of the Physical Chemistry Department at the National Technical University of Ukraine “KPI.” Prior to that, from 1987 to 2002, he headed the Coordination Chemistry Department at the Institute of General and Inorganic Chemistry. His career also includes serving on national advisory boards in inorganic chemistry and electrochemistry. This diverse experience reflects not only his scientific expertise but also his ability to manage research teams, influence policy, and bridge academia with industry. Through each of these roles, he has contributed significantly to Ukraine’s scientific infrastructure and its positioning within global scientific communities.

Research Interests

Yuriy A. Maletin’s research interests lie primarily in the areas of inorganic chemistry, physical chemistry, and materials science, with a particular emphasis on nanosized carbon materials for energy storage. His early work focused on coordination chemistry and the synthesis of complex compounds, while his later career has evolved toward the design, characterization, and application of materials relevant to energy technologies. He has been at the forefront of research on supercapacitors, batteries, and other energy storage systems, developing novel carbon-based nanostructures that enhance storage efficiency and device longevity. His interest in sorption processes and endoecology further reflects his multidisciplinary approach, addressing both energy needs and environmental challenges. In addition to core chemistry domains, he actively engages in applied sciences and industrial innovation, contributing to the development of practical technologies. His current work continues to explore advanced physical and chemical methods for improving material performance in energy devices, guided by a strong foundation in electrochemistry, thermodynamics, and nanotechnology. His long-standing contributions reflect a career dedicated to pushing the boundaries of material science and contributing to global efforts toward sustainable and efficient energy solutions.

Research Skills

Yuriy A. Maletin possesses a diverse set of research skills that span across multiple disciplines within chemistry and materials science. He is proficient in the synthesis and characterization of inorganic compounds, particularly within coordination and physical chemistry. His expertise includes the design and fabrication of nanosized carbon materials, with applications in energy storage technologies such as batteries and supercapacitors. Maletin has demonstrated strong analytical skills through his work on the physical and chemical behavior of materials, employing various spectroscopic, electrochemical, and thermal analysis methods. He also has significant experience in sorption studies, enabling him to assess environmental interactions and the efficiency of materials in filtration and separation processes. Beyond laboratory skills, he has a strategic mindset for guiding research directions, demonstrated through his leadership in multiple scientific institutions. His patent portfolio underscores a practical orientation in translating theoretical insights into functional applications. Additionally, he has cultivated scientific writing, mentoring, and public speaking abilities through numerous publications and invited lectures. These comprehensive research skills position him as a leader capable of both deep scientific inquiry and high-impact innovation.

Awards and Honors

Yuriy A. Maletin has received numerous awards and honors in recognition of his outstanding scientific contributions. Among his most prestigious accolades is his election as a Corresponding Member of the National Academy of Sciences of Ukraine in 2021, acknowledging his lifetime achievements and leadership in chemical sciences. Earlier in his career, he was a Fellow of the Royal Society of Chemistry (United Kingdom) from 1996 to 2014, a testament to his international recognition and influence. He has also served on national and international advisory boards, including the Advisory Board of Inorganic Chemistry Communications (1998–2002), which highlights his authoritative role in the global research community. His consistent presence in high-level scientific committees—such as the All-Ukrainian Boards on Inorganic Chemistry and Electrochemistry—demonstrates his long-standing impact on the development of Ukraine’s scientific ecosystem. With over 105 peer-reviewed articles and 35 patents and applications, Maletin’s research has not only advanced theoretical understanding but also led to practical applications, earning both academic and industrial accolades. These honors reflect a career marked by excellence, influence, and a dedication to scientific advancement at both national and global levels.

Conclusion

Yuriy A. Maletin’s career represents a rare blend of academic brilliance, research innovation, and scientific leadership. His journey from Moscow State University to leading institutions in Ukraine showcases a lifelong dedication to advancing chemistry and materials science. His work on nanosized carbon materials for energy storage has contributed meaningfully to the global pursuit of sustainable energy solutions. Beyond his scientific outputs—evident in his publications and patents—he has influenced generations of researchers through teaching, mentoring, and strategic leadership. His recognition by the National Academy of Sciences of Ukraine and global societies like the Royal Society of Chemistry affirms his standing in the international scientific community. He remains actively involved in shaping future research directions and disseminating knowledge through conferences and advisory roles. Given his comprehensive achievements, Maletin is a distinguished figure whose work continues to inspire innovation in energy, chemistry, and environmental technologies. His legacy is built not only on scientific discovery but also on his commitment to applying research for real-world impact, making him an exemplary candidate for top-level research recognition awards.

Publications Top Notes

  1. Graphene vs activated carbon in supercapacitors
    Journal: Nanosistemi, Nanomateriali, Nanotehnologii, 2020
    Authors: Zelinskyi, S.O.; Stryzhakova, N.G.; Maletin, Y.A.

  2. Supercapacitor technology: Targets and limits
    Conference: LLIBTA 2015 & ECCAP 2015, AABC Europe, 2015
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinsky, S.; Chernukhin, S.; Tretyakov, D.

  3. Electrochemical double layer capacitors and hybrid devices for green energy applications
    Journal: Green, 2014
    DOI: 10.1515/green-2014-0002
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinsky, S.; Chernukhin, S.; Tretyakov, D.; Tychina, S.; Drobny, D.

  4. On the perspectives of supercapacitor technology
    Conference: AABC 2014, 2014
    Author: Maletin, Y.

  5. Ultracapacitor technology: What it can offer to electrified vehicles
    Conference: IEEE IEVC, 2014
    DOI: 10.1109/IEVC.2014.7056227
    Authors: Maletin, Y.; Stryzhakova, N.; Zelinskyi, S.; Chernukhin, S.; Tretyakov, D.; Mosqueda, H.A.; Davydenko, N.; Drobnyi, D.

  6. The impact of aluminum electrode anodic polarization in tetraethylammonium tetrafluoborate acetonitrile solution on the process of film formation
    Journal: Corrosion Science, 2013
    DOI: 10.1016/j.corsci.2012.12.002
    Authors: Gromadskyi, D.G.; Fateev, Y.F.; Maletin, Y.A.

  7. Anodic processes on aluminum in aprotic electrolytes based on the tetraethylammonium tetrafluoroborate salt in acetonitrile
    Journal: Materials Science, 2010
    DOI: 10.1007/s11003-010-9305-1
    Authors: Hromads’kyi, D.H.; Fateev, Yu.F.; Stryzhakova, N.H.; Maletin, Yu.A.

  8. Ultracapacitors as the key to efficient power solutions
    Conference: AABC 2010, 2010
    Author: Maletin, Y.

  9. Matching the nanoporous carbon electrodes and organic electrolytes in double layer capacitors
    Journal: Applied Physics A: Materials Science and Processing, 2006
    DOI: 10.1007/s00339-005-3416-9
    Authors: Maletin, Y.; Novak, P.; Shembel, E.; Izotov, V.; Strizhakova, N.; Mironova, A.; Danilin, V.; Podmogilny, S.

  10. Complexes of some 3d-metal salts with N,N-dimethylhydrazide of 4-nitrobenzoic acid
    Journal: Russian Journal of Coordination Chemistry / Koordinatsionnaya Khimiya, 2004
    DOI: 10.1023/B:RUCO.0000043902.12955.5e
    Authors: Zub, V.Ya.; Bugaeva, P.V.; Strizhakova, N.G.; Maletin, Yu.A.

Yadawananda Neog | Environment economics | Young Researcher Award

Dr. Yadawananda Neog | Environment economics | Young Researcher Award

Assistant Professor at BITS PIlani, K.K. Birla Goa Campus, India.

Dr. Yadawananda Neog is an Assistant Professor in the Department of Economics & Finance at BITS Pilani, K.K. Birla Goa Campus. Born in April 1992, he is a dynamic scholar with a PhD in Economics from Banaras Hindu University. His research focuses on public finance, development economics, and applied econometrics. He has published extensively in Scopus and ABDC-ranked journals and has been awarded both UGC-JRF and SRF. With a strong background in fiscal policy and taxation, Dr. Neog brings empirical insight and methodological rigor to pressing economic issues. He combines academic excellence with a passion for policy-oriented research, making him a rising figure in Indian economics and an inspiring mentor to the next generation of economists.

Professional Profile

Education

Dr. Yadawananda Neog holds a PhD in Economics from Banaras Hindu University (2016–2021), where his doctoral thesis examined the nexus between taxation and economic growth in India under the supervision of Dr. Achal Kumar Gaur. He earned his Master’s degree in Economics with specialization in Econometrics from the same university (2013–2015), graduating with first division. His undergraduate studies were completed at Gauhati University, India, in Economics (Honours), also with first division (2010–2013). In addition to his formal education, Dr. Neog qualified for the University Grants Commission’s prestigious National Eligibility Test (NET), and received both Junior Research Fellowship (JRF) and Senior Research Fellowship (SRF), establishing his early promise as a researcher and educator in economic science.

Professional Experience

Currently serving as an Assistant Professor at the Department of Economics & Finance, BITS Pilani, K.K. Birla Goa Campus, Dr. Yadawananda Neog combines research, teaching, and mentorship with precision and purpose. He joined the institute after completing his doctoral studies, where he also held research fellowships supported by the University Grants Commission (UGC). His academic duties include delivering advanced courses in economics and econometrics, guiding student research projects, and contributing to curriculum development. As a young faculty member, he actively engages in research collaborations and participates in national and international conferences. His work integrates theoretical and empirical methods, addressing pressing macroeconomic issues in India and globally. His teaching and research experience position him as a promising academic leader.

Research Skills

Dr. Yadawananda Neog’s research primarily focuses on public finance, taxation, development economics, institutional economics, and applied econometrics. His doctoral work explored the intricate relationship between tax structures and economic growth in India using advanced econometric models like ARDL and simultaneous equation modeling. He applies robust quantitative techniques to assess fiscal policies and their macroeconomic implications. Recently, his interest has extended into energy economics, analyzing sustainability and public policy frameworks. His publications address issues such as fiscal efficiency across Indian states and the causal effects of government expenditure on economic growth. With a blend of empirical depth and policy relevance, Dr. Neog’s research contributes to evidence-based economic policymaking in India and other emerging economies.

Awards and Honors

Dr. Yadawananda Neog has received significant recognition for his academic excellence. He was awarded the Junior Research Fellowship (JRF) by the University Grants Commission (UGC) for the period of June 2017 to May 2019, followed by the prestigious Senior Research Fellowship (SRF) until January 2021 during his PhD at Banaras Hindu University. These competitive fellowships highlight his potential and dedication to rigorous research. Additionally, he qualified for the UGC-NET for Lectureship, affirming his eligibility and competence in higher education. His publications in internationally recognized, peer-reviewed journals further reflect his growing impact in the field of economics. These honors collectively position him as a notable early-career scholar deserving of further recognition through awards and academic opportunities.

Conclusion

In conclusion, Dr. Yadawananda Neog demonstrates all the hallmarks of an outstanding young researcher: academic merit, research impact, and promise for future contributions. His work is particularly timely and relevant, addressing key challenges in public finance and development economics. He has successfully translated complex econometric modeling into findings that can influence fiscal policy and institutional reforms. His dedication to academic excellence and his publication record in reputed journals underscore his growing influence in the field. By encouraging interdisciplinary collaborations and international exposure, Dr. Neog’s career could further accelerate. The Young Researcher Award would not only honor his past achievements but also serve as a catalyst for continued innovation and leadership in economic research

Publications Top Notes

📊 Tax structure and economic growth: A study of selected Indian states
📅 Year: 2020 | 📚 Cited by: 124

🌍 Nexus among CO2 emissions, remittances, and financial development: a NARDL approach for India
📅 Year: 2020 | 📚 Cited by: 122

📈 Effects of the COVID-19 pandemic on stock market returns and volatilities: evidence from selected emerging economies
📅 Year: 2022 | 📚 Cited by: 105

💥 Contagion effect of COVID‐19 outbreak: Another recipe for disaster on Indian economy
📅 Year: 2020 | 📚 Cited by: 100

🕵️ Shadow economy, corruption, and tax performance: A study of BRICS
📅 Year: 2020 | 📚 Cited by: 33

 

Jinxian Feng | Materials Science | Best Researcher Award

Dr. Jinxian Feng | Materials Science | Best Researcher Award

PhD Fellow at University of Macau, Macau

Dr. Jinxian Feng is a postdoctoral fellow in Applied Physics and Materials Engineering at the University of Macau. He earned his Ph.D. in 2023 from the same institution, following a B.Sc. in Chemistry from Sun Yat-sen University. His research focuses on the design and mechanism of high-efficiency catalysts for green energy conversion, including electrocatalysis and photoelectrochemical systems for water splitting, CO₂ reduction, and nitrogen fixation. Dr. Feng has published 16 peer-reviewed articles in high-impact journals such as Applied Catalysis B, Journal of Materials Chemistry A, and Chemical Engineering Journal. He has presented his work at several international conferences and received a Copper Award in the national “CCB Cup” energy-saving competition. His interdisciplinary collaborations and contributions to sustainable energy solutions reflect a strong commitment to addressing critical environmental challenges. As a rising talent in the field, Dr. Feng continues to advance innovative approaches for clean and renewable energy technologies.

Professional Profile

Education

Dr. Jinxian Feng has a solid academic background in chemistry and materials science, which forms the foundation of his research in green energy technologies. He obtained his Bachelor of Science degree in Chemistry from Sun Yat-sen University, Guangzhou, China, in 2015. This undergraduate training provided him with a strong grounding in fundamental chemical principles and laboratory techniques. Building on this, he pursued and successfully completed his Ph.D. in Applied Physics and Materials Engineering at the University of Macau in 2023. During his doctoral studies, Dr. Feng focused on the fabrication and mechanistic understanding of advanced electrocatalysts for sustainable energy applications, including CO₂ reduction and water electrolysis. His interdisciplinary education has equipped him with expertise in both theoretical and practical aspects of chemistry, materials science, and engineering, enabling him to conduct innovative research at the intersection of these fields. His academic journey reflects a continuous progression toward solving global energy and environmental challenges.

Professional Experience

Dr. Jinxian Feng has accumulated valuable professional experience in the field of materials science and energy research through his roles at the University of Macau. Following the completion of his Ph.D. in Applied Physics and Materials Engineering in 2023, he was appointed as a Research Assistant in the same department, where he contributed to various projects involving electrocatalysis and green energy conversion. Shortly after, he advanced to the position of Postdoctoral Fellow in October 2023, continuing his work on the development of high-performance catalysts for applications such as CO₂ reduction, nitrogen fixation, and water splitting. His professional experience includes collaboration with interdisciplinary teams, leading experimental design, and publishing high-quality research in top-tier journals. Dr. Feng’s work integrates both experimental and theoretical approaches to address energy and environmental challenges. His rapid progression from doctoral researcher to postdoctoral fellow reflects his dedication, competence, and growing impact in the field of sustainable energy technologies.

Research Interest

Dr. Jinxian Feng’s research interests lie at the forefront of sustainable energy conversion and storage technologies. His work focuses on the design, synthesis, and mechanistic study of advanced electrocatalysts and photocatalysts for critical reactions such as CO₂ reduction, nitrogen (N₂) fixation, water electrolysis, and biomass conversion. He is particularly interested in understanding the surface reconstruction and electronic properties of catalysts during reaction processes, aiming to enhance their activity, selectivity, and long-term stability. In addition to catalysis, Dr. Feng explores the development of photoelectrochemical devices, batteries, and supercapacitors, integrating materials engineering with electrochemical performance optimization. His interdisciplinary approach combines experimental techniques with theoretical insights to create efficient and scalable solutions for clean energy applications. By targeting fundamental challenges in green chemistry and materials science, Dr. Feng’s research contributes to the global pursuit of low-carbon technologies and provides valuable strategies for the development of next-generation energy systems.

Awards and Honors

Dr. Jinxian Feng has been recognized for his innovative contributions to sustainable energy research through awards and honors that highlight both his academic excellence and practical ingenuity. Notably, he received the Copper Award in the prestigious “CCB Cup” — the 16th National University Student Social Practice and Science Contest on Energy Saving and Emission Reduction, representing the Hong Kong, Macao, Taiwan, and International Group. This award was granted for his co-development of a smart solar moisture collection and power generation device, designed for intelligent flower maintenance, showcasing his creative approach to real-world energy challenges. This recognition not only reflects his ability to translate scientific knowledge into impactful applications but also underscores his commitment to addressing global environmental issues through innovative solutions. In addition to formal accolades, Dr. Feng’s continued publication in high-impact journals and participation in international conferences further illustrate the growing recognition of his contributions within the academic and scientific communities.

Research Skills

Dr. Jinxian Feng possesses a comprehensive set of research skills that span the fields of chemistry, materials science, and applied physics, with a strong emphasis on green energy technologies. He is highly skilled in the design and synthesis of nanomaterials for electrocatalysis and photocatalysis, including CO₂ reduction, nitrogen fixation, and water splitting. His expertise extends to advanced material characterization techniques such as XRD, SEM, TEM, and XPS, which he uses to analyze the structural and electronic properties of catalysts. Dr. Feng is also proficient in electrochemical testing methods, including linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), enabling him to evaluate catalyst performance and reaction kinetics. Additionally, he applies computational tools and mechanistic analysis to study surface reconstruction and active sites, bridging theoretical insights with experimental results. His interdisciplinary research skills allow him to effectively tackle complex challenges in clean energy conversion and storage.

Conclusion

Jinxian Feng is a promising early-career researcher with a strong foundation in high-impact green energy research, a solid publication track record, and clear upward momentum. His current work and achievements are commendable and position him as a rising figure in materials and energy science.

However, he may be more suitable for an “Emerging Researcher” or “Young Investigator” award at this stage. For the Best Researcher Award, typically given to mid- or senior-level scientists with established independence, leadership in grants and labs, and sustained high-impact contributions, he might need a few more years to build that level of portfolio.

Publications Top Notes

  • Highly enhanced photocatalytic performance for CO₂ reduction on NH₂-MIL-125(Ti): The impact of (Cu, Mn) co-incorporation
    Separation and Purification Technology, 2025

  • Controllable Reconstruction of β-Bi₂O₃/Bi₂O₂CO₃ Composite for Highly Efficient and Durable Electrochemical CO₂ Conversion
    Nano Letters, 2025

  • Revealing the hydrogen bond network effect at the electrode-electrolyte interface during the hydrogen evolution reaction
    Journal of Materials Chemistry A, 2025

  • Electrodeposited Ternary Metal (Oxy)Hydroxide Achieves Highly Efficient Alkaline Water Electrolysis Over 1000 h Under Industrial Conditions
    Carbon Energy, 2025
    Citations: 0

  • Highly Dispersed Ru-Pt Heterogeneous Nanoparticles on Reduced Graphene Oxide for Efficient pH-Universal Hydrogen Evolution
    Advanced Functional Materials, 2024
    Citations: 9

  • In-situ Reconstruction of Catalyst in Electrocatalysis (Review)
    Journal not specified (Open Access), 2024
    Citations: 16

  • In Situ Reconstructed Cu/β-Co(OH)₂ Tandem Catalyst for Enhanced Nitrate Electroreduction to Ammonia in Ampere-Level
    Advanced Energy Materials, 2024
    Citations: 11

 

Muhammad Tanveer | Environmental Science | Best Researcher Award

Assist. Prof. Dr. Muhammad Tanveer | Environmental Science | Best Researcher Award

Assistant Professor From Imam Mohammad Ibn Saud Islamic University, Saudi Arabia

Dr. Muhammad Tanveer Nawaz is a highly accomplished academic and researcher with an extensive background in management and business education. Holding a Ph.D. in Management from Lincoln University College in Malaysia, an MBA from Binary University, and an MA from Pakistan, Dr. Nawaz is recognized for his expertise in both teaching and research. He has held prominent positions at top universities such as Imam Mohammad Ibn Saud Islamic University (IMSIU) in Riyadh, Saudi Arabia, where he currently serves as an Associate Professor. Dr. Nawaz’s achievements are underpinned by his significant contributions to the AACSB accreditation process and his consistent success in research, which is reflected in his numerous publications in high-impact journals. He has also been honored with the Excellence in Research Award at Prince Sultan University in 2021 and 2022. Dr. Nawaz is a top-tier global researcher, ranked in the top 2% of scientists worldwide according to Stanford University. His academic profile can be found across multiple platforms, including Google Scholar, Scopus, and ResearchGate.

Professional Profile

Education

Dr. Muhammad Tanveer Nawaz’s educational background is both diverse and comprehensive. He earned a Doctor of Philosophy (Ph.D.) in Management from Lincoln University College in Malaysia. His academic journey also includes an MBA from Binary University in Malaysia, which equipped him with strong business management skills, as well as a Master’s degree in Arts (MA) from Pakistan. His specialized expertise further extends to his qualifications as an AACSB Eligibility Application Expert and a NCAAA Expert. In addition to his formal education, Dr. Nawaz is a certified Project Management Professional (PMP), holding certification ID 436902272. This diverse academic and professional training has equipped him with the theoretical and practical skills necessary for success in both academic and institutional environments. His education has enabled him to contribute significantly to academic leadership and management, particularly in the fields of business, management, and organizational behavior.

Professional Experience

Dr. Muhammad Tanveer Nawaz has a distinguished career in academia and research. He currently serves as an Associate Professor at Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia, where he has played a key role in the successful AACSB Accreditation Eligibility project, further emphasizing his expertise in accreditation processes. His professional experience includes teaching various undergraduate and postgraduate courses in business management, operations research, and leadership. He has mentored students, helping them achieve academic success and professional growth. His research contributions are significant, with over 50 publications in prestigious journals and international conferences. Prior to his current role, he was an Assistant Professor at Prince Sultan University (PSU), where he was recognized with Excellence in Research Awards in both 2021 and 2022. His career reflects a commitment to quality teaching, research excellence, and institutional development through accreditation.

Research Interest

Dr. Muhammad Tanveer Nawaz’s research interests span several key areas in management and business. His primary focus lies in organizational behavior, human resource management, and sustainability practices in business. He is particularly interested in how green human resources can drive environmental sustainability, a theme that is prominent in many of his publications. He also conducts research into the role of personality traits in shaping organizational culture and knowledge-sharing behaviors. Dr. Nawaz has delved into the impact of environmental sustainability on business operations, including the circular economy and waste recycling practices. His work often intersects with technology, exploring the influence of digitalization and innovation in achieving ecological sustainability. His interdisciplinary approach fosters an extensive understanding of contemporary challenges in business, contributing to the academic community through a range of international, peer-reviewed publications.

Research Skills

Dr. Muhammad Tanveer Nawaz possesses advanced research skills that enable him to conduct comprehensive and impactful studies in his field. His expertise includes qualitative and quantitative research methodologies, data analysis, and the use of advanced statistical tools. He has developed proficiency in writing research proposals, securing funding, and leading collaborative research projects, often working alongside both academic and industry professionals. His experience in publishing high-quality research in reputable journals such as Springer, Taylor & Francis, Elsevier, and Emerald demonstrates his ability to produce rigorous and valuable academic contributions. Dr. Nawaz also excels in navigating the accreditation process, ensuring compliance with international standards. His extensive experience in these areas is complemented by his active participation in national and international conferences, where he shares his insights with the global research community.

Awards and Honors

Throughout his academic career, Dr. Muhammad Tanveer Nawaz has received several prestigious awards and honors that underscore his contributions to education and research. Notably, he was honored with the Excellence in Research Award in both 2021 and 2022 at Prince Sultan University, where he received monetary rewards of 55,000 SR each year for his significant research contributions. His outstanding role in the AACSB Accreditation Eligibility process at Imam Mohammad Ibn Saud Islamic University (IMSIU) was another testament to his academic leadership. Dr. Nawaz’s global recognition as one of the top 2% of scientists in the world by the Stanford University rankings reflects his widespread impact on the academic community. He has also received various grants and awards for his research on sustainability and business management, further solidifying his standing as a thought leader in his field.

Conclusion

Dr. Muhammad Tanveer Nawaz is an exceptional academic, researcher, and educator, known for his dedication to advancing knowledge in management, business, and sustainability. With a robust academic background and a career marked by leadership in both teaching and accreditation, Dr. Nawaz has made substantial contributions to the higher education sector. His research, focused on green human resources, sustainability, and organizational behavior, has positioned him as a recognized scholar with significant global impact. His ability to secure funding, collaborate on interdisciplinary projects, and produce high-quality publications demonstrates his expertise and commitment to advancing his field. As a passionate advocate for student success and institutional development, Dr. Nawaz continues to inspire and mentor the next generation of business leaders. His ongoing work in accreditation processes and research makes him an invaluable asset to the academic community, and his dedication to excellence in education ensures his continued success and influence.

Publications Top Notes

  1. Unleashing the power of green HR: How embracing a green culture drives environmental sustainability

    • Authors: M.I. Tanveer, Muhammad Iftekhar, M.U. Din, Mohi Ud, M.F. Khan, Muhammad Faizan, H.M. Almurad, Hussein Mohamad, E.A. Hasnin, Eman Abdelhameed

    • Year: 2025

  2. Do innovation and renewable energy transition play their role in environmental sustainability in Western Europe?

    • Authors: H. Mahmood, Haider, A.U.R. Irshad, Ateeq Ur Rehman, M.I. Tanveer, Muhammad Iftekhar

    • Year: 2024

    • Citations: 16

  3. A thorough overview of the literature on waste recycling in the circular economy: current practices and future perspectives

    • Authors: M. Tabish, Muhammad, S.A.R. Khan, Syed Abdul Rehman, Y. Zhang, Yu, M.I. Tanveer, Muhammad Iftekhar

  4. Valorization of poultry slaughter wastes via extraction of three structural proteins (gelatin, collagen and keratin): A sustainable approach for circular economy

    • Authors: M. Talha, Muhammad, M.I. Tanveer, Muhammad Iftekhar, A. Abid, Aqsa, N. Tanveer, Nimra, A. Mustafa, Almas

    • Citations: 3

  5. Cracking the code: The influence of personality traits on knowledge management culture and sharing behavior

    • Authors: M.I. Tanveer, Muhammad Iftekhar

    • Year: 2024

  6. Examining the Role of Women’s Labor Participation in CO2 Emissions in Saudi Arabia

    • Authors: H. Mahmood, Haider, M.I. Tanveer, Muhammad Iftekhar

    • Year: 2024

    • Citations: 1

  7. Impact of Energy Intensity, R&D, Trade Openness, and Financial Market Development on Carbon Productivity in MENA: A Spatial Analysis

    • Authors: H. Mahmood, Haider, A.U.R. Irshad, Ateeq Ur Rehman, M.I. Tanveer, Muhammad Iftekhar

    • Year: 2024

    • Citations: 1

  8. Impact of client relationship on project delay: Moderating role of project governance

    • Authors: I. Ayaz, Iqra, M.F. Khan, Muhammad Faizan, M.I. Tanveer, Muhammad Iftekhar, M. Mrabet, Mansour, S.H.M. Gillani, Syed Hussain Mustafa

    • Year: 2024

Saman Solaimanian | Environmental Engineering | Best Researcher Award

Mr. Saman Solaimanian | Environmental Engineering | Best Researcher Award

Researcher from K. N. Toosi University of Technology, Iran

Saman Solaimanian is a dedicated researcher and Ph.D. candidate in Civil and Environmental Engineering, specializing in sustainable development, renewable energy, and environmental impact assessments. With a strong academic background and hands-on research experience, he has contributed significantly to environmental sustainability, waste management, and water treatment technologies. His expertise extends to environmental modeling, ESG framework development, and risk assessment for construction projects. Proficient in engineering software (AutoCAD, ArcGIS, ETABS, SimaPro) and programming languages (MATLAB, Python), he integrates computational tools with engineering solutions to address environmental challenges. He has published extensively in peer-reviewed journals and international conferences, with research focusing on renewable energy prioritization, AI in water management, and circular economy approaches in urban infrastructure. He has worked in both academic and industry settings, contributing to governmental and private sector projects. His research has been recognized through awards, including a Certificate of Excellence in Reviewing from the International Journal of Environment and Climate Change. Committed to advancing sustainable engineering practices, Saman aims to bridge the gap between academic research and real-world environmental challenges, ensuring that his work contributes to a more sustainable future through scientific innovation and practical application.

Professional Profile

Education

Saman Solaimanian holds a Master of Science in Civil and Environmental Engineering from Khajeh Nasir University of Technology (KNTU), completed in 2022 with an 88% GPA. His master’s thesis, titled “Prioritizing Renewable Energy Use with Neutrosophic AHP: A Tehran Case Study,” reflects his deep commitment to sustainable energy research and decision-making frameworks in urban environments. His coursework included Water & Wastewater Treatment, Air Pollution Control, Environmental Modeling, and Waste Management, providing him with a solid foundation in environmental engineering principles. He earned his Bachelor of Science in Civil Engineering from Islamic Azad University Tehran North Branch (IAUTNB) in 2020, with a 75% GPA. His undergraduate studies focused on structural analysis, geotechnical engineering, building technology, and transportation engineering, equipping him with a well-rounded understanding of civil engineering fundamentals. Throughout his academic career, he has been involved in applied research projects, laboratory analysis, and environmental impact assessments, further strengthening his technical expertise. His academic excellence and interdisciplinary approach to civil and environmental engineering set him apart as a promising researcher in sustainability and infrastructure development.

Professional Experience

Saman Solaimanian has diverse research and professional experience in environmental engineering, sustainability, and civil infrastructure projects. From 2023 to 2025, he worked as a Researcher at the Iranian Army Education Center, where he conducted studies on sustainable development, ESG framework implementation, HSE integration, and environmental mitigation strategies. His work involved waste management, environmental impact assessments, and renewable energy applications. In 2021–2022, he served as a Part-Time Civil Engineering Support at NPHO Builders Engineering Company, where he assisted in technical documentation, quantity take-offs, and site data collection. His role provided him with hands-on exposure to engineering software such as AutoCAD, ArcGIS, and ETABS, allowing him to refine his technical and analytical skills. In 2019, he conducted 300 hours of applied research at Tehran Province Water and Wastewater Company, focusing on water quality analysis, treatment optimization, and process enhancement techniques. This experience solidified his expertise in water management and environmental sustainability. Through these roles, he has developed a strong ability to apply research methodologies to real-world environmental challenges, bridging the gap between academic research and practical engineering solutions.

Research Interests

Saman Solaimanian’s research interests lie at the intersection of civil and environmental engineering, sustainability, and technological innovation. His primary focus areas include renewable energy prioritization, environmental risk assessment, sustainable construction materials, and circular economy models. He is particularly interested in leveraging AI and computational modeling for optimizing environmental engineering processes, including wastewater treatment, water resource management, and urban sustainability planning. His recent research explores the environmental risk assessment of construction projects in developing countries using analytical hierarchy processes (AHP). Additionally, he investigates air pollution dynamics, particularly the impact of urban heat islands and air inversion on public health. His interest in AI-driven environmental solutions has led to studies on constructed wetland optimization, drought forecasting, and decentralized water storage techniques. Saman is passionate about integrating sustainability into urban infrastructure and developing decision-support frameworks for policymakers to enhance environmental resilience. His research extends to climate change adaptation strategies, green building materials, and sustainable water management approaches, all of which align with global environmental goals and sustainable development initiatives.

Research Skills

Saman Solaimanian possesses a strong set of research skills that support his work in environmental engineering and sustainability. He is proficient in quantitative and qualitative research methodologies, including statistical analysis, environmental impact assessment, and risk evaluation techniques. His expertise in neutrosophic AHP and multi-criteria decision-making models allows him to analyze and prioritize sustainable development strategies effectively. He is skilled in engineering software, including AutoCAD, ArcGIS, ETABS, and SimaPro, which he uses for geospatial analysis, structural design, and environmental modeling. Additionally, his programming experience in MATLAB and Python enables him to develop computational models for environmental simulations, AI-driven decision-making, and predictive analytics. His laboratory experience includes water quality analysis, waste management strategies, and pollutant modeling, which he has applied in both academic and industry settings. He is also experienced in technical writing, grant proposal development, and peer-reviewed journal reviewing, making significant contributions to scientific discourse in environmental engineering.

Awards and Honors

Saman Solaimanian has received recognition for his academic and research contributions in the field of environmental and civil engineering. In 2025, he was awarded a Certificate of Excellence in Reviewing by the International Journal of Environment and Climate Change, highlighting his commitment to academic integrity and peer review contributions. His research has been published in high-impact journals and presented at international conferences, including the International Congress on Civil Engineering, Architecture, and Building Materials (Finland), the International Conference on Recent Advances in Engineering, Innovation, and Technology (Belgium), and the International Congress of Developing Agriculture, Natural Resources, and Environment (Iran). He has collaborated on multiple research projects related to sustainability, renewable energy, and water management, earning recognition from the academic community and environmental organizations. His contributions to urban sustainability planning, climate change adaptation, and AI-driven environmental solutions continue to enhance his professional standing in sustainable infrastructure development.

Conclusion

Saman Solaimanian is an emerging leader in environmental and civil engineering research, with a strong academic foundation, hands-on experience, and a passion for sustainability. His research contributions in renewable energy, waste management, and AI-driven environmental solutions demonstrate his commitment to addressing global sustainability challenges. His technical expertise, publication record, and international collaborations position him as a valuable contributor to the scientific community. While he has made significant strides in environmental research, increasing his peer-reviewed journal publications, securing research grants, and expanding international collaborations would further elevate his profile. With continued professional growth, interdisciplinary collaborations, and technological advancements, he is poised to make substantial contributions to global environmental sustainability and infrastructure resilience.

Publications Top Notes

  1. Title: Environmental risk assessment of concrete construction projects in developing countries based on Analytical Hierarchy Process method
    Author: Saman Solaimanian
    Year: 2025

  2. Title: Prioritizing The Sustainable Development Of Strategic Infrastructures Using The Analytic Hierarchy Process: A Case Study Of Iran
    Author: Saman Solaimanian
    Year: 2023

  3. Title: Prioritizing the possibility of using Renewable Energies through the application of Neutrosophic AHP (NAHP): A case study of Tehran
    Author: Saman Solaimanian
    Year: 2023

 

Xi Lu | Energy | Best Scholar Award

Prof. Xi Lu | Energy | Best Scholar Award

Director at Tsinghua University, China

Professor Xi Lu is a distinguished scholar specializing in renewable energy systems, carbon neutrality, and environmental systems modeling. With an academic foundation from Harvard University, he has established himself as a leading figure in the field of sustainable energy. His research combines engineering principles with advanced computational modeling to address pressing global challenges such as energy transition, climate change mitigation, and renewable energy optimization. Professor Lu’s work has had a profound impact on shaping energy policies and advancing innovative solutions for clean energy deployment. His interdisciplinary approach integrates technological, environmental, and economic dimensions, making his research invaluable for policy-makers and industry leaders. With a prolific publication record in prestigious journals and multiple national awards, Professor Lu continues to push the boundaries of knowledge and influence global energy strategies.

Professional Profile

Education

Professor Xi Lu holds a Doctor of Philosophy (PhD) in Engineering Science from Harvard University, awarded in 2010. His doctoral research focused on the integration of renewable energy sources and the development of large-scale energy systems models. He also earned a Master of Science in Applied Mathematics from Harvard University, which provided him with a robust analytical foundation to address complex energy and environmental challenges. Prior to his graduate studies, Professor Lu completed his Bachelor of Science degree in Environmental Science at Tsinghua University. His interdisciplinary academic background, combining engineering, mathematics, and environmental science, has equipped him with a unique skill set to tackle multifaceted problems in energy systems and sustainability.

Professional Experience

Professor Xi Lu currently serves as a full professor at Tsinghua University, where he leads advanced research in renewable energy systems, carbon mitigation strategies, and environmental policy modeling. Prior to this role, he held a research fellowship at Harvard University, where he contributed to groundbreaking studies on renewable energy integration and grid stability. Professor Lu has also collaborated with international organizations and government agencies, providing data-driven insights for shaping renewable energy policies. His professional career spans over two decades, during which he has led interdisciplinary research projects, supervised doctoral candidates, and facilitated industry-academic partnerships. His expertise is sought after globally, and he frequently participates in high-level discussions on energy policy and sustainable development.

Research Interests

Professor Xi Lu’s research interests revolve around renewable energy systems, carbon neutrality, and environmental systems modeling. He is particularly focused on developing advanced computational models to evaluate and optimize the performance of large-scale renewable energy infrastructures. His work addresses key issues such as integrating renewable energy into national grids, enhancing energy efficiency, and reducing greenhouse gas emissions. Additionally, Professor Lu is interested in policy-oriented research that provides practical solutions to achieve sustainable energy transitions. He explores the intersection of technology, economics, and policy to inform and guide global energy strategies. His interdisciplinary approach allows him to tackle complex problems and develop innovative methodologies to assess environmental and economic trade-offs in energy systems.

Research Skills

Professor Xi Lu possesses a diverse set of research skills that encompass advanced computational modeling, quantitative analysis, and large-scale energy system simulations. He is proficient in developing and applying optimization algorithms to assess renewable energy integration and grid stability. His expertise extends to geospatial analysis, which he uses to evaluate the spatial distribution and potential of renewable energy resources. Additionally, Professor Lu is skilled in policy modeling and the use of statistical methods to analyze the economic and environmental impacts of energy systems. His ability to integrate engineering techniques with environmental science and applied mathematics allows him to develop comprehensive models that inform both academic research and practical policy decisions.

Awards and Honors

Throughout his career, Professor Xi Lu has received numerous prestigious awards and honors recognizing his contributions to renewable energy research and environmental sustainability. In 2020, he was awarded the National Science Fund for Distinguished Young Scholars, a testament to his innovative research and academic excellence. He also received the Youth Scientist Gold Award from the Chinese Society for Environmental Sciences. His achievements have been further recognized through the 15th China Youth Science and Technology Award. These accolades highlight Professor Lu’s significant impact on advancing renewable energy technologies and shaping energy policies. His research has also earned international acclaim, with several of his publications featured as cover articles in top-tier journals like Nature Energy and Science.

Conclusion

Professor Xi Lu stands out as a leading expert in renewable energy systems and environmental policy modeling. His groundbreaking research has advanced the understanding of renewable energy integration and informed sustainable energy policies worldwide. With a strong academic foundation, extensive professional experience, and an impressive track record of high-impact publications, Professor Lu continues to drive innovation and provide actionable solutions for global energy challenges. His work not only addresses current issues in energy sustainability but also paves the way for future advancements in carbon neutrality and renewable technology. Professor Lu’s interdisciplinary expertise, combined with his commitment to scientific excellence, makes him a deserving candidate for the Best Scholar Award in Research. His contributions are instrumental in shaping a sustainable and energy-secure future on a global scale.

Publication Top Notes

  1. The risk-based environmental footprints and sustainability deficits of nations

    • Authors: J. He, Jianjian; P. Zhang, Pengyan; X. Lu, Xi
    • Year: 2025
  2. High-resolution gridded dataset of China’s offshore wind potential and costs under technical change

    • Authors: K. An, Kangxin; W. Cai, Wenjia; X. Lu, Xi; C. Wang, Can
    • Year: 2025
  3. Unraveling climate change-induced compound low-solar-low-wind extremes in China

    • Authors: L. Wang, Licheng; Y. Liu, Yawen; L. Zhao, Lei; T. Zhu, Tong; Y. Qin, Yue
    • Year: 2025
  4. Global disparity in synergy of solar power and vegetation growth

    • Authors: S. Chen, Shi; Y. Wang, Yuhan; X. Lu, Xi; K. He, Kebin; J. Hao, Jiming
    • Year: 2025
  5. Evaluating global progress towards Sustainable Development Goal 7 over space and time by a more comprehensive energy sustainability index

    • Authors: Q. Zhao, Qi; X. Lu, Xi; R. Marie Fleming, Rachael
    • Year: 2025
  6. The 2023 report of the synergetic roadmap on carbon neutrality and clean air for China: Carbon reduction, pollution mitigation, greening, and growth

    • Authors: J. Gong, Jicheng; Z. Yin, Zhicong; Y. Lei, Yu; J. Wang, Jinnan; K. He, Kebin
    • Year: 2025
  7. The future of coal-fired power plants in China to retrofit with biomass and CCS: A plant-centered assessment framework considering land competition

    • Authors: Y. Sun, Yunqi; A. Deng, An; Q. Yang, Qing; H. Yang, Haiping; H. Chen, Hanping
    • Year: 2025
    • Citations: 1
  8. Assessing the synergies of flexibly-operated carbon capture power plants with variable renewable energy in large-scale power systems

    • Authors: J. Li, Jiacong; C. Zhang, Chongyu; M.R. Davidson, Michael R.; X. Lu, Xi
    • Year: 2025
    • Citations: 1
  9. Synergies of variable renewable energy and electric vehicle battery swapping stations: Case study for Beijing

    • Authors: C. Zhang, Chongyu; X. Lu, Xi; S. Chen, Shi; A.M. Foley, Aoife M.; K. He, Kebin
    • Year: 2024
    • Citations: 1
  10. Correction to: Assessing global drinking water potential from electricity-free solar water evaporation device

  • Authors: W. Zhang, Wei; Y. Chen, Yongzhe; Q. Ji, Qinghua; H. Liu, Huijuan; J. Qu, Jiuhui
  • Year: 2024

Gantuya Batdelger | Environmental Science | Best Researcher Award

Ms. Gantuya Batdelger | Environmental Science | Best Researcher Award

PhD candidate at Eötvös Loránd University, Hungary

Gantuya Batdelger is a PhD candidate at the Doctoral School of Biology at Eötvös Loránd University (ELTE) in Budapest, Hungary, specializing in plant taxonomy and traditional ecological knowledge. With extensive research experience in botany and ecology, she has worked at prominent institutions like the Mongolian Academy of Sciences and the HUNREN Centre for Ecological Research. Batdelger’s research primarily focuses on the sustainable use of natural resources, landscape changes, and the ecological knowledge of Mongolian herders. Through her work, she aims to contribute to the understanding of biodiversity conservation and the interplay between humans and nature. She has been involved in numerous projects related to plant ecology, traditional ecological knowledge, and the preservation of Mongolian flora. Batdelger has published extensively in peer-reviewed journals, emphasizing her academic proficiency and the significant impact of her research.

Professional Profile

Education

Gantuya Batdelger’s educational journey reflects a strong foundation in biology and ecology. She earned a Bachelor’s degree in Biology from the Mongolian National University of Education in 2013. She then pursued a Master’s degree in Biology at Ulaanbaatar State University, where she specialized in flora and plant taxonomy, completing her thesis on the family Gentianaceae. Batdelger’s academic excellence led her to further studies at the Eötvös Loránd University (ELTE) in Budapest, where she is currently a PhD candidate. Her focus is on plant taxonomy and the traditional ecological knowledge of Mongolian herders, examining the sustainable management of plant resources. Throughout her education, Batdelger has consistently demonstrated a commitment to research and academic growth, positioning herself as a prominent figure in her field.

Professional Experience

Gantuya Batdelger has extensive professional experience in ecological research, particularly in botany and plant taxonomy. From 2014 to 2021, she worked at the Botanic Garden and Research Institute of the Mongolian Academy of Sciences, where she contributed to numerous ecological and plant research projects. Additionally, she worked with the Traditional Ecological Research Group at the HUNREN Centre for Ecological Research. In 2013, she participated in the Mongolian-Korean joint project on “Bioprospecting on Mongolian plant resources,” which deepened her expertise in plant resource management. Batdelger has also held teaching and research roles at Ulaanbaatar State University. Her interdisciplinary approach, combining traditional knowledge and modern scientific methods, has made her an influential figure in the field of ecological research. Throughout her career, Batdelger has collaborated with a range of international research teams and institutions, demonstrating her ability to work across cultural and academic boundaries.

Research Interest

Gantuya Batdelger’s primary research interests lie in plant taxonomy, traditional ecological knowledge, and the sustainable use of natural resources. Her research investigates the ecological changes that have occurred in the Mongolian landscape, particularly focusing on how local herders perceive these changes and manage their natural environment. Batdelger is deeply interested in the intersection of human culture and ecology, exploring how traditional ecological knowledge can inform modern environmental management practices. Her work with Mongolian herders has led to important insights into landscape partitioning, folk habitats, and resource use. Furthermore, she has explored the role of plants in ecosystems and their relevance to local communities, particularly in the context of climate change and habitat loss. Her commitment to understanding the relationships between people, plants, and landscapes has resulted in research that bridges the gap between ecological science and cultural heritage.

Research Skills

Gantuya Batdelger possesses a wide range of research skills that are central to her work in ecology and plant taxonomy. Her expertise in field research allows her to collect valuable data on plant species, their distribution, and ecological interactions in diverse environments. Batdelger is skilled in botanical identification, landscape analysis, and ecological surveys, which are essential for her work in traditional ecological research. Additionally, she has proficiency in data analysis, utilizing both qualitative and quantitative methods to analyze ecological patterns and human-environment interactions. Batdelger’s ability to integrate traditional ecological knowledge with scientific methods is a key strength of her research approach, allowing her to explore ecological issues from a multi-dimensional perspective. Furthermore, her communication skills enable her to effectively share her findings with both the scientific community and local stakeholders, fostering collaboration and promoting sustainable resource use.

Awards and Honors

Gantuya Batdelger has received recognition for her academic and research achievements. Her work has been published in reputable journals with high impact factors, showcasing her contributions to the field of ecological research. Batdelger’s research has been widely cited and praised for its interdisciplinary approach, blending traditional ecological knowledge with modern scientific methods. While specific awards and honors are not listed in her CV, her extensive publication record and involvement in significant international research projects highlight her scholarly excellence. Her contributions to understanding plant biodiversity and traditional ecological practices have made her a respected figure in her field, further establishing her as a promising researcher.

Conclusion

Gantuya Batdelger is a highly dedicated and skilled researcher whose work on plant taxonomy and traditional ecological knowledge has made significant contributions to the field of botany and ecological research. Her academic background, extensive professional experience, and interdisciplinary approach to understanding the relationship between humans and their natural environment position her as an influential figure in ecological science. Batdelger’s research is particularly impactful for the sustainable management of natural resources, offering valuable insights for biodiversity conservation and land-use practices. As she continues her PhD studies at Eötvös Loránd University, Batdelger is poised to make even greater contributions to the field. With her ability to combine scientific inquiry with traditional knowledge, she is well on her way to becoming a leading researcher in the study of plant ecosystems and human-environment interactions.

Publication Top Notes

  1. Forest vegetation structure of the Bogd Khan Mountain: A strictly protected area in Mongolia
    • Authors: Bazarragchaa, B., Kim, H.S., Batdelger, G., Peak, W.K., Lee, J.
    • Year: 2022
    • Citations: 2
    • Journal: Journal of Asia-Pacific Biodiversity, 15(2), pp. 267–279.
  2. Vegetation community classification of the Sanzai area in Mongolia
    • Authors: Kim, H.S., Bazarragchaa, B., Lee, S.M., Park, G.S., Lee, J.
    • Year: 2021
    • Journal: Journal of Asia-Pacific Biodiversity, 14(2), pp. 228–235.
  3. Plastome analysis unveils Inverted Repeat (IR) expansion and positive selection in Sea Lavenders (Limonium, Plumbaginaceae, Limonioideae, Limonieae)
    • Authors: Darshetkar, A.M., Maurya, S., Lee, C., Choudhary, R.K., Kim, S.-Y.
    • Year: 2021
    • Citations: 10
    • Journal: PhytoKeys, 175, pp. 89–107.
  4. Scutellaria krasevii kom. & i. schischk. ex juz. (Lamiaceae): A new record species from Mongolia
    • Authors: Bazarragchaa, B., Batdelger, G., Shagdar, D., Paek, W.K., Lee, J.
    • Year: 2019
    • Citations: 3
    • Journal: Korean Journal of Plant Taxonomy, 49(2), pp. 198–201.
  5. Extract of Oxytropis pseudoglandulosa inhibits vascular smooth muscle cell proliferation and migration via suppression of ERK1/2 and Akt signaling pathways
    • Authors: Lee, J., Lee, C.Y., Seo, H.-H., Lee, S., Lim, S.
    • Year: 2018
    • Citations: 5
    • Journal: Clinical Hemorheology and Microcirculation, 69(1-2), pp. 277–287.

 

Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Prof. Dr. Anatoliy Michael Pavlenko | Energy Efficiency | Best Researcher Award

Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland

Anatoliy Pavlenko is a highly accomplished academic and researcher in the field of technical thermophysics and industrial heat and power systems. He earned his Doctor of Technical Sciences degree in 2003 and was granted the title of Professor in 2004, showcasing his extensive expertise and academic recognition. Currently serving as a full professor in the Department of Building Physics and Renewable Energy at Kielce University of Technology, Poland, he has a rich history of leadership roles at esteemed institutions in Ukraine and Poland. With research interests spanning heat and mass transfer, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures, his contributions significantly advance knowledge in energy efficiency and renewable systems. His interdisciplinary approach combines advanced thermodynamics with practical applications, making him a global authority in his field.

Professional Profile

Education

Anatoliy Pavlenko completed his academic journey with a Doctor of Technical Sciences degree in 2003, specializing in Technical Thermophysics and Industrial Combined Heat and Power. This advanced degree signifies his mastery of thermodynamic principles and complex energy systems. His academic excellence paved the way for him to earn the prestigious title of Professor in 2004. Throughout his education, he developed a solid foundation in thermodynamics, energy systems, and heat transfer, equipping him to address both theoretical and applied challenges in his field.

Professional Experience

Anatoliy Pavlenko has over two decades of experience in academia and research. He served as a professor in the Department of Gas Dynamics and Heat Transfer at Dnipropetrovsk National University (2002–2012) and later as Head of the Department of Heat and Gas Supply, Ventilation, and Heat Power Engineering at Poltava National Technical University (2012–2016). Since 2016, he has been a full professor and previously Head of the Department of Building Physics and Renewable Energy at Kielce University of Technology in Poland. His leadership roles reflect his expertise in heat power systems, renewable energy, and sustainable technologies, contributing to the global advancement of thermophysics and energy research.

Research Interests

Anatoliy Pavlenko’s research focuses on cutting-edge topics in thermophysics and energy systems. His key areas of interest include heat and mass transfer in disperse systems, non-equilibrium thermodynamics, and heat transfer in boiling liquid mixtures. He is particularly interested in complex flows, metastable thermodynamic equilibria, and quasi-stationary thermodynamic states. His work addresses critical challenges in energy efficiency, renewable energy integration, and advanced heat transfer mechanisms, with applications in both industrial processes and sustainable energy systems. His interdisciplinary approach bridges theoretical thermodynamics and practical applications.

Research Skills

Anatoliy Pavlenko possesses advanced research skills in thermodynamic analysis, heat transfer modeling, and experimental studies of boiling liquid systems. He is adept at studying non-equilibrium processes, metastable states, and quasi-stationary thermodynamic systems. His expertise extends to analyzing complex flows and their thermodynamic equilibria. With a strong foundation in energy systems, he applies innovative methodologies to study heat and mass transfer phenomena. His skills in designing experiments, data analysis, and numerical modeling have enabled him to contribute groundbreaking insights to thermophysics and renewable energy research.

Awards and Honors

Anatoliy Pavlenko’s academic achievements have earned him significant recognition. He was awarded the title of Professor in 2004, highlighting his expertise and impact in technical thermophysics and energy systems. While specific awards are not detailed, his leadership roles at prestigious universities and departments underscore his respected status in the field. His contributions to advanced heat transfer research and renewable energy applications have positioned him as a thought leader in global thermophysics, earning him a distinguished place in academia and research.

Conclusion

Anatoliy Pavlenko’s extensive academic and professional experience, coupled with his expertise in thermodynamics and renewable energy, make him a strong candidate for the Best Researcher Award. His work on complex heat and mass transfer phenomena and thermodynamic processes has significant implications for industrial and sustainable energy systems. However, the application would benefit from additional details about his publication record, research funding, awards, and recent innovations. Addressing these areas would further solidify his position as a deserving recipient of this prestigious award.

Publication Top Notes

  1. A new trend in combustion engine’s deep waste heat recovery by application of condensing economizers in exhaust boilers
    • Authors: Kornienko, V., Radchenko, M., Radchenko, R., Pavlenko, A., Radchenko, A.
    • Year: 2025
  2. Adaptable management for cooling cyclic air in ship power plants by heat conversion – Part 1: Downsizing strategy for cogeneration plants
    • Authors: Radchenko, R., Radchenko, A., Mikielewicz, D., Pavlenko, A., Andreev, A.
    • Year: 2024
  3. Experimental and Numerical Studies of Heat Transfer Through a Double-Glazed Window with Electric Heating of the Glass Surface
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Davydenko, B., Piotrowski, J.
    • Year: 2024
  4. Studies on Improving Seals for Enhancing the Vibration and Environmental Safety of Rotary Machines
    • Authors: Yuan, Z., Shevchenko, S., Radchenko, M., Radchenko, A., Radchenko, R.
    • Year: 2024
    • Citations: 1
  5. Comprehensive Investigation of the Thermal Performance of an Electrically Heated Double-Glazed Window: A Theoretical and Experimental Approach
    • Authors: Basok, B., Pavlenko, A., Novikov, V., Ciosek, A., Moroz, M.
    • Year: 2024
    • Citations: 1
  6. Study of the Dynamics of a Single Bubble
    • Authors: Pavlenko, A., Koshlak, H.
    • Year: 2024
  7. The Thermophysical Aspects of the Transformation of Porous Structures in Versatile Nanostructured Materials
    • Authors: Koshlak, H., Basok, B., Pavlenko, A., Hrabova, T., Opryshko, V.
    • Year: 2024
  8. Numerical Modeling of the Behavior of Bubble Clusters in Cavitation Processes
    • Authors: Pavlenko, A.
    • Year: 2024
    • Citations: 2
  9. Study of the Influence of Temperature and Pressure on the Intensity of Gas Hydrate Formation
    • Authors: Pavlenko, A.
    • Year: 2024
  10. Prospects for the Use of Synthesized Gas Hydrates in the National Economy
    • Authors: Pavlenko, A., Koshlak, H., Basok, B.
    • Year: 2024

 

Hao Gu | Ecological Engineering | Best Researcher Award

Dr. Hao Gu | Ecological Engineering | Best Researcher Award

Hohai University, China

Hao Gu is a dedicated researcher and Ph.D. candidate in Hydraulic Structure Engineering at Hohai University, Nanjing, China. With a robust academic foundation and research expertise, he has actively contributed to advancing water conservancy engineering. Hao’s research focuses on the interaction between plant roots and soil, aiming to develop innovative strategies for embankment stabilization and ecological restoration. He has been involved in prestigious projects funded by the National Natural Science Foundation of China and Huaian Water Conservancy Project Construction Management Center, showcasing his ability to address real-world challenges. His publications in reputed journals highlight his commitment to impactful research. With strong technical skills in programming and advanced engineering software, Hao is well-equipped to tackle complex problems in his field. He has also been recognized with multiple scholarships and awards for academic excellence, underscoring his potential as an emerging leader in hydraulic engineering research.

Professional Profile

Education

Hao Gu’s educational journey is rooted in Hohai University, where he has consistently demonstrated academic excellence. He is currently pursuing a Ph.D. in Hydraulic Structure Engineering under the supervision of Yuan Wang. Prior to this, he completed his M.Eng in the same field in 2021, guided by Xiao Sun, where he further honed his research skills. Hao earned his B.Eng in Water Conservancy and Hydropower Engineering in 2020, laying a strong foundation in the principles of water management and hydraulic systems. His academic progression at one of China’s top institutions highlights his dedication and capability in the field. Throughout his education, Hao has not only excelled in coursework but has also actively participated in innovative research projects, reflecting his passion for solving real-world engineering challenges.

Professional Experience

Hao Gu’s professional experience is anchored in his participation in impactful research projects. As part of a National Natural Science Foundation of China-funded initiative, he contributed to identifying and predicting dike piping hazards and devising preventive measures. His role involved designing field experiments, installing monitoring equipment, and analyzing the influence of plant roots on embankment seepage fields. Additionally, Hao worked on a project focused on impervious reinforcement and ecological slope protection of the Hongze Lake embankment, supported by the Huaian Water Conservancy Project Construction Management Center. His responsibilities included conducting experimental and numerical studies on root-soil hydro-mechanical interactions and investigating water flow mechanisms in root-soil composites. These experiences have equipped Hao with practical expertise in addressing critical issues in hydraulic structure engineering.

Research Interests

Hao Gu’s research interests lie at the intersection of engineering and environmental sustainability. In the short term, he focuses on understanding water flow through root networks and the dynamic interactions between plants and soil. This work has significant implications for improving embankment stability and enhancing ecological restoration strategies. His long-term research vision involves developing vegetation selection strategies that integrate root hydraulic architecture and mechanical reinforcement. By exploring the interplay between biological and physical factors, Hao aims to contribute to the sustainable management of water conservancy structures and the protection of vulnerable ecosystems. His innovative approach reflects a commitment to bridging the gap between engineering practices and environmental stewardship.

Research Skills

Hao Gu possesses a versatile skill set that underpins his research excellence. He is proficient in programming languages such as Matlab, Python, and VB, enabling him to perform advanced data analysis and modeling. His expertise extends to using engineering software like Abaqus, Ansys, Comsol, Hypermesh, and Flac3D for numerical simulations and structural analysis. Hao is also skilled in designing and conducting field experiments, particularly in installing and utilizing monitoring equipment to gather critical data. His analytical skills are complemented by his ability to interpret complex interactions in plant-soil systems, supported by a strong foundation in hydraulics and mechanics. These competencies make him a valuable contributor to research in hydraulic engineering.

Awards and Honors

Hao Gu has been recognized with several prestigious awards and scholarships, reflecting his academic excellence and research potential. In 2020, he received the Excellent New Student Scholarship from Hohai University. He was subsequently awarded a scholarship for his Master’s and Ph.D. programs, further endorsing his academic achievements. In 2021, Hao earned a First-Grade Scholarship, demonstrating his consistent performance at the highest level. These accolades highlight his dedication to his studies and his capability to excel in a competitive academic environment. Hao’s awards not only validate his past achievements but also serve as a testament to his potential to make significant contributions to the field of hydraulic engineering.

Conclusion

Hao Gu is an emerging researcher with significant potential in the field of Hydraulic Structure Engineering. His involvement in high-impact projects, technical expertise, and publication record make him a strong candidate for the Best Researcher Award. However, further steps toward international collaboration, research diversification, and leadership roles would solidify his standing as a well-rounded researcher. Overall, he is a promising candidate, and recognizing his achievements could encourage his continued contributions to the field.

Publications Top Notes

  • Enhanced Soil Stabilisation and Growth of Lolium perenne Through Combined Seeding With Cynodon dactylon
    • Journal: Rhizosphere
    • Year: 2024 (December)
    • DOI: 10.1016/j.rhisph.2024.100977
    • Authors: Hao Gu, Yuan Wang, Sheng Liu, Haikuan Chen, Lu Jia, Zhongyuan Chen
  • Mixed Grass Species Enhances Root Production and Plant–Soil Reinforcement
    • Journal: Land Degradation & Development
    • Year: 2024 (November 16)
    • DOI: 10.1002/ldr.5390
    • Authors: Yuan Wang, Hao Gu, Sheng Liu

 

 

Parveen Saini | Materials Science | Best Researcher Award

Dr. Parveen Saini | Materials Science | Best Researcher Award 

Sr. Principal Scientist and Professor AcSIR, at CSIR National Physical Laboratory New Delhi, India.

Dr. Parveen Saini is a Sr. Principal Scientist at the CSIR-National Physical Laboratory in New Delhi, India. He leads the Conjugated Polymers, Graphene Technology, and Waste Management Lab within the Photovoltaic Metrology Section, Advanced Materials and Devices Metrology Division. With a strong academic background in polymer science and material science, Dr. Saini has developed innovative research in areas including conductive polymers, graphene technology, and sustainable waste management solutions ♻️. His contributions have earned him recognition in engineering sciences, particularly for developing advanced materials with applications in EMI shielding, sustainable coatings, and nanotechnology. His work reflects a commitment to both industrial innovation and environmental sustainability 🌍, and he continues to guide research at CSIR-NPL, with his findings being highly influential in both scientific and industrial domains.

Profile

Education 🎓

Dr. Saini began his academic journey at Delhi College of Engineering, University of Delhi, where he earned his B.Tech. in Polymer Science and Chemical Technology in 2002. Driven by his interest in materials science, he went on to complete his Ph.D. at the Indian Institute of Technology (IIT), Delhi, in 2012, specializing in conducting polymers. His Ph.D. research provided critical insights into material properties that have since informed his subsequent work in advanced polymeric and graphene-based technologies. This robust educational foundation equipped Dr. Saini with the knowledge and skills to lead cutting-edge research in material science, establishing him as a prominent figure in both the academic and industrial fields of polymer and nanotechnology.

Experience 💼

Dr. Saini’s professional journey began as a Graduate Engineer Trainee at Shriram Institute for Industrial Research, where he worked in the Rubber, Plastics, and Textile Lab. In 2004, he joined the CSIR-National Physical Laboratory, where he quickly advanced through various roles, starting as a Junior Scientist in the Polymeric & Soft Materials Section, then progressing to Scientist and Senior Scientist in the Materials Physics and Engineering Division. Since 2021, he has served as Sr. Principal Scientist, overseeing the Advanced Materials and Devices Metrology Division. Over his extensive career, Dr. Saini has been at the forefront of research in materials science, pioneering techniques in polymer development, waste management, and graphene technology for enhanced industrial applications.

Research Interests 🔍

Dr. Saini’s research is centered on the development of advanced materials, particularly in the realms of conjugated polymers, graphene technology, and waste management. His interests span the synthesis and application of conductive polymers for electromagnetic interference (EMI) shielding, sustainable coatings for corrosion resistance, and recycling methods for waste solar modules. Dr. Saini also explores innovative uses of graphene for energy storage and environmental sustainability, aiming to create materials that address industrial needs while promoting eco-friendly practices. His work on nanocomposites and sustainable materials highlights a commitment to improving material resilience and reducing environmental impact, making significant contributions to both industrial technology and green innovation 🌱.

Awards 🏆

In 2013, Dr. Parveen Saini received the prestigious CSIR Young Scientist Award in the area of Engineering Sciences, recognizing his pioneering contributions to material sciences. This honor reflects his influential work in developing novel conductive polymers and graphene-based materials with applications in EMI shielding and sustainable coatings. Dr. Saini’s award-winning research is known for its practical industrial applications, particularly in enhancing material durability and eco-friendliness. His accomplishments in the field have positioned him as a leading figure in advanced materials science, with his innovative approaches influencing the direction of polymer research and development in India and globally.

Publications 📚

Dr. Saini has authored numerous influential papers in high-impact scientific journals. Here are some of his notable publications:

    • Enhanced Anticorrosive Behavior of Waste Tea Bags Derived Nanocrystalline Cellulose Incorporated Polyaniline for Protection of Mild Steel Under Aggressive Saline Environment
      • Journal: Transactions of the Indian Institute of Metals
      • Year: 2024
      • Citations: 0
      • Summary: This study investigates the anticorrosive properties of polyaniline (PANI) composites incorporating nanocrystalline cellulose (NCC) derived from waste tea bags. The material demonstrates significant potential for protecting mild steel in saline conditions.
    • Extraction and Analysis of Back-Sheet Layer from Waste Silicon Solar Modules
      • Journal: Chemical Reports
      • Year: 2022
      • Citations: 1
      • Summary: This paper focuses on the extraction and analysis of back-sheet layers from waste silicon solar modules, addressing waste management and material recovery in photovoltaic industries.
    • Fe3O4/Graphene-Oxide/Chitosan Hybrid Aerogel Based High-Performance Supercapacitor: Effect of Aqueous Electrolytes on Storage Capacity & Cell Stability
      • Journal: Journal of Energy Storage
      • Year: 2022
      • Citations: 28
      • Summary: This research explores a Fe3O4/graphene oxide/chitosan hybrid aerogel for use in supercapacitors, emphasizing how aqueous electrolytes impact storage capacity and cell stability.
    • Historical Review of Advanced Materials for Electromagnetic Interference (EMI) Shielding: Conjugated Polymers, Carbon Nanotubes, Graphene-Based Composites
      • Journal: Indian Journal of Pure and Applied Physics
      • Year: 2019
      • Citations: 19
      • Summary: A comprehensive review of materials used in electromagnetic interference (EMI) shielding, particularly focusing on conjugated polymers, carbon nanotubes, and graphene composites.
    • Excellent Electromagnetic Interference Shielding and Mechanical Properties of High-Loading Carbon-Nanotubes/Polymer Composites Designed Using Melt Recirculation Equipped Twin-Screw Extruder
      • Journal: Carbon
      • Year: 2015
      • Citations: 192
      • Summary: This study presents a high-performance EMI shielding material developed using carbon nanotube/polymer composites. The twin-screw extruder technique enhances both mechanical properties and shielding effectiveness.

Conclusion

Dr. Parveen Saini is a highly accomplished scientist with substantial contributions in materials science and engineering, particularly in the fields of conjugated polymers, graphene, and waste management technologies. His portfolio of publications, patents, and professional achievements makes him an excellent candidate for the Best Researcher Award. His innovative work and societal impact through SSR initiatives reflect his commitment not only to scientific excellence but also to addressing critical societal needs. Expanding international collaborations and exploring further sustainable materials applications could enhance his already impressive career trajectory.