Jaemin Baek | Engineering | Best Researcher Award

Prof. Jaemin Baek | Engineering | Best Researcher Award

Professor at Gangneung-Wonju National University, South Korea

Prof. Jaemin Baek is a distinguished researcher and academician specializing in robotics, control theory, and mechatronics. He earned his B.S. degree in Mechanical Engineering from Korea University in 2012 and later completed his Ph.D. in IT Engineering through a joint M.S.-Ph.D. program at Pohang University of Science and Technology (POSTECH) in 2018. His doctoral research focused on time-delayed control schemes and their application to robotic systems. From 2018 to 2020, he served as a senior researcher at the Agency for Defense Development (ADD) in Daejeon, South Korea, where he worked on advanced control systems. Since 2020, he has been an Associate Professor in the Department of Mechanical Engineering at Gangneung-Wonju National University (GWNU). His expertise extends to adaptive and robust control, robot manipulator control, wearable robotics, mechatronics, and synthetic aperture radar (SAR) imaging. Prof. Baek has made significant contributions to academia through numerous high-impact journal articles and conference papers. His research is instrumental in developing advanced control methodologies for robotic and autonomous systems. With a passion for innovation and engineering excellence, he continues to drive advancements in control systems and robotics, contributing to both theoretical and applied aspects of these fields.

Professional Profile

Education

Prof. Jaemin Baek holds a Ph.D. in IT Engineering from Pohang University of Science and Technology (POSTECH), which he completed in 2018. His doctoral research focused on robotics, control theory, robot control, mechatronics, and artificial intelligence, culminating in his thesis titled “A Study on Time-delayed Control Schemes and Its Application to Robotic Systems.” His graduate studies emphasized adaptive control strategies and their real-world applications in robotic manipulation and autonomous systems. Prior to this, he earned his B.S. degree in Mechanical Engineering from Korea University in 2012, where he gained a strong foundation in advanced mechanical engineering principles. His undergraduate studies provided him with critical insights into mechanical design, system dynamics, and automation, forming the basis for his later work in robotics. His multidisciplinary academic background equips him with a comprehensive understanding of both the theoretical and practical aspects of control engineering. His rigorous training at two of South Korea’s top institutions has shaped his expertise in designing sophisticated robotic control systems. Through continuous research and academic contributions, Prof. Baek remains committed to pushing the boundaries of innovation in control theory and robotics.

Professional Experience

Prof. Jaemin Baek has an extensive professional background in academia and research. Since 2020, he has served as an Associate Professor in the Department of Mechanical Engineering at Gangneung-Wonju National University (GWNU), where he teaches and conducts research on advanced robotics, control systems, and signal processing. Prior to his current role, he was a Senior Researcher at the Agency for Defense Development (ADD) from 2018 to 2020, where he worked on defense-related control technologies and developed cutting-edge methodologies for autonomous systems. His tenure at ADD provided him with valuable experience in applying theoretical control concepts to practical defense applications. In addition to his academic and research responsibilities, Prof. Baek has contributed to numerous high-impact journal articles, furthering advancements in robotics and control engineering. His professional journey reflects his dedication to bridging the gap between theoretical research and practical implementation. He continues to mentor students, collaborate with industry experts, and contribute to the scientific community through his research in adaptive and robust control, robotic manipulation, and synthetic aperture radar (SAR) imaging. His expertise is highly regarded in both academic and industrial circles, making him a prominent figure in his field.

Research Interests

Prof. Jaemin Baek’s research interests encompass a broad range of topics in robotics and control systems. His primary focus areas include adaptive and robust control, time-delayed control schemes, robot manipulator control, wearable robotics, mechatronics, and synthetic aperture radar (SAR) imaging. He has extensively studied time-delayed control strategies and their applications in robotic systems, leading to the development of novel methodologies that enhance system stability and performance. His work on adaptive sliding-mode control has contributed to improvements in trajectory tracking and precision in robotic manipulators. Additionally, Prof. Baek is involved in research on signal processing for SAR imaging, optimizing radar-based imaging techniques for various applications. His interdisciplinary approach integrates elements of artificial intelligence and machine learning to refine control algorithms and enhance robotic functionality. Through his research, he aims to advance the efficiency and reliability of autonomous and robotic systems in diverse environments. His contributions have been widely recognized in the scientific community, with multiple publications in prestigious journals and conferences. Prof. Baek’s innovative work continues to shape the future of robotics and control engineering, making significant strides in both theoretical development and real-world applications.

Research Skills

Prof. Jaemin Baek possesses a diverse set of research skills that enable him to excel in control engineering and robotics. His expertise in adaptive and robust control design allows him to develop high-precision robotic control systems that function effectively under uncertain conditions. He is proficient in time-delayed control techniques, ensuring improved stability and performance in robotic applications. His skills extend to mechatronics and signal processing, particularly in synthetic aperture radar (SAR) imaging, where he applies advanced computational methods to enhance radar-based imaging systems. Prof. Baek has substantial experience in developing sliding-mode control algorithms, which have been successfully applied to robot manipulators and autonomous systems. Additionally, he has strong analytical skills in mathematical modeling and simulation, utilizing platforms like MATLAB and Simulink for system analysis and control design. His expertise in artificial intelligence and machine learning enables him to optimize control algorithms for enhanced automation. With a strong publication record in high-impact journals, Prof. Baek demonstrates his ability to conduct cutting-edge research and contribute to advancements in his field. His diverse skill set positions him as a leading researcher in robotics and control engineering.

Awards and Honors

Throughout his career, Prof. Jaemin Baek has received several awards and honors in recognition of his contributions to control engineering and robotics. His research on adaptive control, robot manipulator systems, and SAR imaging has earned him accolades from both academic and industry circles. He has been recognized for his high-impact journal publications in IEEE Transactions, Applied Sciences, and other top-tier journals, demonstrating his excellence in research. His contributions to sliding-mode control and time-delayed control methodologies have been widely cited, highlighting their significance in the field. In addition to his academic achievements, he has been invited to present at prestigious international conferences, where he has shared insights into advanced control strategies and robotics applications. His work at the Agency for Defense Development (ADD) also earned him commendations for his contributions to national defense research projects. As an influential figure in robotics and control engineering, Prof. Baek continues to receive recognition for his innovative research, solidifying his reputation as a leading expert in the field. His awards and honors underscore his commitment to advancing technology and engineering excellence.

Conclusion

Prof. Jaemin Baek is a highly accomplished researcher and educator whose contributions to robotics, control engineering, and mechatronics have significantly impacted the field. With a solid academic foundation from Korea University and POSTECH, he has built a career dedicated to advancing adaptive control systems, time-delayed control strategies, and robotic manipulation. His professional experience spans both academia and defense research, demonstrating his ability to apply theoretical innovations to practical applications. His research interests in robotics, artificial intelligence, and SAR imaging have led to groundbreaking developments in control methodologies. His extensive publication record and numerous accolades highlight his influence and expertise. As an Associate Professor at Gangneung-Wonju National University, he continues to mentor students, conduct pioneering research, and contribute to the scientific community. His diverse skill set and interdisciplinary approach make him a driving force in robotics and automation. Prof. Baek’s ongoing work promises to shape the future of intelligent control systems and robotics, ensuring continued advancements in engineering and technology. His dedication to innovation and excellence establishes him as a leading figure in his field, inspiring the next generation of researchers and engineers.

Publications Top Notes

  1. Compressive Sensing-Based Omega-K Algorithm for SAR Focusing”

    • Authors: M. Kang (Minseok), J. Baek (Jaemin)
    • Year: 2025
  2. “Effective Denoising of InSAR Phase Images via Compressive Sensing”

    • Authors: M. Kang (Minseok), J. Baek (Jaemin)
    • Year: 2024
    • Citations: 1
  3. “Dynamic Model Learning and Control of Robot Manipulator Based on Multi-layer Perceptron Neural Network”

    • Authors: S. Shin (Seungcheon), M. Kang (Minseok), J. Baek (Jaemin)
    • Year: 2023

 

 

Konrad Waluś | Engineering | Best Researcher Award

Assist. Prof. Dr. Konrad Waluś | Engineering | Best Researcher Award

Poznan University of Technology, Poland

Dr. Konrad J. Waluś is an Assistant Professor at the Poznan University of Technology, specializing in machine design and construction. With over two decades of academic experience, he has guided more than 35 theses, including one that secured first place in the Rector’s competition. Dr. Waluś has co-organized notable conferences and collaborated with esteemed institutions worldwide. His research spans vehicle kinematics, tire safety, and slip resistance testing, focusing on real-world applications for improved traffic and pedestrian safety. A dedicated innovator, he holds three patents and has published extensively in WoS and Scopus journals, cementing his reputation in engineering research.

Professional Profile

Education

Dr. Waluś holds advanced degrees in mechanical and transport engineering, aligning his academic foundation with his professional interests in vehicle dynamics and safety. His education emphasized a robust combination of theoretical knowledge and practical applications, fostering his contributions to innovative designs in transportation engineering. His continuous pursuit of learning and professional growth is evident in his academic journey and contributions to the field.

Professional Experience

Since 2003, Dr. Waluś has served at Poznan University of Technology, where he excels in teaching, research, and innovation. His industry collaborations include partnerships with organizations like Wespol Construction & Metal Distributors (USA) and the Road and Bridge Research Institute (Poland). He has led numerous consultancy projects, emphasizing his ability to bridge academic research with practical industrial needs.

Research Interests

Dr. Waluś’s research focuses on vehicle kinematics, tire-pavement interaction, rapid tire decompression, and traffic safety. He investigates slip resistance of road and industrial surfaces, aiming to mitigate risks for both pedestrians and vehicles. His work addresses critical challenges in engineering, emphasizing safety and functionality in diverse environmental conditions.

Research Skills

Dr. Waluś possesses expertise in designing experimental methodologies, analyzing tire-pavement interactions, and conducting anti-skid surface testing. His technical skills extend to data analysis, collaborative research, and publishing findings in high-impact journals. He is also skilled in identifying real-world safety risks and developing innovative solutions to address them.

Awards and Honors

Dr. Waluś’s contributions have been recognized with two silver medals for his innovative wood chipper drive control systems. These accolades, coupled with his role as Secretary of the Journal of Mechanical and Transport Engineering, highlight his leadership and innovation in the field of engineering research.

Conclusion

Dr. Konrad J. Waluś exemplifies excellence in engineering research and education, with a strong commitment to innovation and societal impact. His achievements, spanning academic mentorship, impactful research, and industry collaboration, make him a deserving candidate for prestigious recognitions like the Best Researcher Award.

Publication Top Notes

  • Title: Legal regulations of restrictions of air pollution made by non-road mobile machinery—The case study for Europe: A review
    • Authors: K.J. Waluś, Ł. Warguła, P. Krawiec, J.M. Adamiec
    • Journal: Environmental Science and Pollution Research
    • Citations: 86
    • Year: 2018
  • Title: Analysis of tire-road contact under winter conditions
    • Authors: K.J. Waluś, Z. Olszewski
    • Journal: Proceedings of the World Congress on Engineering
    • Citations: 50
    • Year: 2011
  • Title: Fuel consumption test results for a self-adaptive, maintenance-free wood chipper drive control system
    • Authors: Ł. Warguła, P. Krawiec, K.J. Waluś, M. Kukla
    • Journal: Applied Sciences
    • Citations: 43
    • Year: 2020
  • Title: The application of the optical system ATOS II for rapid prototyping methods of non-classical models of cogbelt pulleys
    • Authors: P. Krawiec, G. Domek, Ł. Warguła, K. Waluś, J. Adamiec
    • Journal: MATEC Web of Conferences
    • Citations: 31
    • Year: 2018
  • Title: Experimental studies of the size contact area of a summer tire as a function of pressure and the load
    • Authors: J. Polasik, K.J. Waluś, Ł. Warguła
    • Journal: Procedia Engineering
    • Citations: 26
    • Year: 2017
  • Title: Wear evaluation of elements of V-belt transmission with the application of optical microscope
    • Authors: P. Krawiec, K. Waluś, Ł. Warguła, J. Adamiec
    • Journal: MATEC Web of Conferences
    • Citations: 24
    • Year: 2018
  • Title: Small engines spark ignited (SI) for non-road mobile machinery-review
    • Authors: Ł. Warguła, K.J. Waluś, P. Krawiec
    • Conference: Proceedings of the Transport Means
    • Citations: 22
    • Year: 2018
  • Title: Electronic control in injection-ignition systems in propulsion of non-road mobile machinery
    • Authors: Ł. Warguła, P. Krawiec, K.J. Waluś, J. Polasik
    • Journal: Journal of Mechanical and Transport Engineering
    • Citations: 15
    • Year: 2018
  • Title: Slip risk analysis on the surface of floors in public utility buildings
    • Authors: K.J. Waluś, Ł. Warguła, B. Wieczorek, P. Krawiec
    • Journal: Journal of Building Engineering
    • Citations: 14
    • Year: 2022
  • Title: The characteristics analysis of torque and rotation speed of working unit of branch grinder-introductory research
    • Authors: Ł. Warguła, J.M. Adamiec, K.J. Waluś, P. Krawiec
    • Journal: MATEC Web of Conferences
    • Citations: 14
    • Year: 2018

 

Weile Kong | Power system | Best Researcher Award

Mr. Weile Kong | Power system | Best Researcher Award

Student, Anhui University of Science and Technology, China

Weile Kong, a Master’s student at Anhui University of Science and Technology, is a promising researcher specializing in electrical engineering and automation. He has demonstrated strong academic performance, evidenced by multiple scholarships and awards, including the First Class Academic Scholarship and the Internet+ Second Prize. His research contributions are notable, with several high-impact SCI papers and patents under review. Kong’s work focuses on energy systems and optimization algorithms, supported by grants from the Energy Internet Joint Fund and the National Natural Science Foundations of China. His personal attributes—responsibility, strong communication skills, and perseverance—enhance his research potential. To further strengthen his profile, Kong could benefit from expanding his research scope, gaining international recognition, and taking on leadership roles in the academic community. Overall, his achievements reflect a strong foundation for continued success and recognition in the field of electrical engineering.

Profile

Education

Weile Kong’s educational journey showcases a robust foundation in engineering and a commitment to academic excellence. He earned his Bachelor of Engineering in Automation from Anhui University of Science and Technology in June 2022, where he developed a solid understanding of electrical engineering principles and automation technologies. Currently, he is pursuing a Master’s degree in Electrical Engineering at the same institution, having commenced his studies in September 2022. This advanced education has allowed him to delve deeper into specialized areas such as electric load analysis, integrated energy system optimization, and intelligent optimization algorithms. Throughout his academic career, Kong has been recognized for his outstanding performance, receiving both the First Class and Third Class Academic Scholarships. His ongoing research and coursework reflect a strong focus on innovative solutions within energy systems and optimization, underscoring his dedication to advancing the field of electrical engineering.

Professional Experience

Weile Kong, currently pursuing a Master’s degree in Electrical Engineering at Anhui University of Science and Technology, has accumulated significant professional experience in the field of energy systems and optimization. His academic journey began with a Bachelor’s degree in Automation, where he laid a solid foundation in electrical engineering principles. Kong’s research experience includes working on high-impact projects funded by notable grants such as the Energy Internet Joint Fund and the National Natural Science Foundations of China. His contributions to the field are evident in his publications, including influential papers on integrated energy system optimization and intelligent algorithms, with several works under peer review and patents pending. His role as both a first author and a corresponding author highlights his leadership in research. Kong’s involvement in projects funded by the Science and Technology Project of State Grid Anhui Electric Power Co., Ltd. and Anhui University of Science and Technology Innovation Fund further underscores his commitment and expertise in advancing energy solutions.

Research Interest

Weile Kong’s research interests focus on advanced energy systems and optimization techniques, specifically within the realm of electrical engineering. His work involves feature extraction and load clustering for electric load analysis, aiming to improve the efficiency of energy consumption. Kong is also deeply engaged in optimizing integrated energy systems, including microgrid power scheduling and the utilization of intelligent optimization algorithms. His recent projects explore innovative solutions for low-carbon energy integration and demand response mechanisms, incorporating advanced optimization techniques such as the redbilled blue magpie optimizer. Additionally, Kong is involved in developing new methods for high-energy-consuming plant load characterization and has secured patents for his innovative approaches. His research not only addresses theoretical aspects but also emphasizes practical applications, contributing to the development of sustainable and efficient energy systems.

Research Skills

Weile Kong exhibits robust research skills characterized by a deep understanding of electrical engineering and automation. His expertise spans several critical areas, including electric load feature extraction, load clustering, and integrated energy system optimization. Kong’s proficiency with intelligent optimization algorithms, coupled with his ability to apply these techniques in real-world scenarios, highlights his technical acumen. His research contributions, including first-author publications in high-impact SCI journals and innovative patents, reflect a high level of analytical and problem-solving capabilities. Kong demonstrates exceptional research skills in data analysis and algorithm development, essential for advancing energy systems and optimization methodologies. Additionally, his success in securing competitive grants and awards showcases his ability to effectively communicate research significance and potential impact. His dedication to continuous learning and improvement, combined with strong organizational and teamwork skills, further underscores his commitment to excellence in research.

Award and Recognition

Weile Kong has demonstrated exceptional academic and research prowess, earning notable recognition in his field. As a dedicated student at Anhui University of Science and Technology, he has been awarded the First Class Academic Scholarship in 2022 and the Third Class Academic Scholarship in 2023, reflecting his academic excellence. Kong’s innovative research has been acknowledged with the Internet+ Second Prize at the school level in 2024. His significant contributions include first-author papers in high-impact SCI journals and patents under review, highlighting his impact on integrated energy systems and optimization algorithms. His research has garnered support from prestigious grants, including the National Natural Science Foundations of China and the Energy Internet Joint Fund of Anhui Province. These achievements underscore his commitment to advancing his field and his potential for further recognition as a leading researcher.

 Conclusion

Weile Kong demonstrates strong academic performance, innovative research contributions, and potential for significant impact in his field. His achievements, including high-quality publications, patents, and research funding, underscore his dedication and capability. However, to strengthen his candidacy for the Research for Best Researcher Award, he could focus on broadening the impact of his research, enhancing leadership experience, and increasing international visibility. By addressing these areas, Weile Kong could further solidify his position as a leading researcher in his field.

Publication Top Notes

  1. Optimal schedule for virtual power plants based on price forecasting and secant line search aided sparrow searching algorithm”
    • Authors: Wu, H., Feng, B., Yang, P., Kong, W., Peng, X.
    • Year: 2024
    • Journal: Frontiers in Energy Research
    • DOI: Not available
  2. “Robust Price-based EV Load Management Considering Human-choice Uncertainty”
    • Authors: Kong, W., Ye, H., Ge, Y.
    • Year: 2024
    • Journal: IEEE Transactions on Transportation Electrification
    • DOI: Not available
  3. “Corrigendum to ‘Dynamic pricing based EV load management in distribution network'”
  4. “Optimization of Inter-Regional Flexible Resources for Renewable Accommodation”
    • Authors: Kong, W., Ye, H., Wei, N., Liu, S., Chen, W.
    • Year: 2023
    • Conference: 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES 2023)
    • DOI: Not available
    • Citations: 1
  5. “Dynamic pricing based EV load management in distribution network”
    • Authors: Kong, W., Ye, H., Wei, N., Xing, D., Chen, W.
    • Year: 2022
    • Journal: Energy Reports
    • DOI: 10.1016/j.egyr.2022.02.187
    • Citations: 6

Wenliang Zhao | Electrical Engineering | Best Researcher Award

Prof. Wenliang Zhao | Electrical Engineering | Best Researcher Award

Professor of Shandong University, China .

Dr. Wenliang Zhao is a distinguished professor at the School of Electrical Engineering, Shandong University. He holds a Ph.D. in Electronic Systems Engineering from Hanyang University and a B.S. from Harbin Institute of Technology. His research interests encompass the design, analysis, and control of electric machines and drive systems, including permanent magnet synchronous machines and power transformers. Dr. Zhao has held various academic and editorial roles, including Deputy Director at the Institute of Electrical Machinery and Appliances. He is an IEEE and IET member, with editorial experience in prestigious journals. Dr. Zhao has received multiple best paper awards and has contributed significantly to international conferences. His extensive research skills and innovative contributions make him a leading expert in electrical engineering. 📚🔬⚡

Professional Profiles:

Education

Dr. Wenliang Zhao holds a Ph.D. in Electronic Systems Engineering from Hanyang University (HYU), Korea, completed in July 2015. He earned his Bachelor of Science degree in Information Science and Engineering from the Harbin Institute of Technology (HIT), China, in July 2011. 🎓📚

Professional Experience

Dr. Wenliang Zhao is a Professor at the School of Electrical Engineering, Shandong University, China, a position he has held since September 2020. He also serves as the Deputy Director of the Institute of Electrical Machinery and Appliances at Shandong University since October 2020. Prior to his current roles, he was a Research Professor at the same institution from September 2016 to August 2020. Dr. Zhao has also been a Visiting Scholar at Hanyang University, Korea, in July-August 2017, and a Postdoctoral Fellow at Hanyang University from September 2015 to August 2016. 🌟

Research Interest

Dr. Wenliang Zhao’s research interests focus on the design, analysis, and control of electric machines and drive systems, including permanent magnet synchronous machines, linear machines, permanent magnet synchronous reluctance machines, and high-speed machines. He is also deeply involved in the study of power transformers and power generation systems. His work aims to advance the efficiency and performance of these electrical systems, contributing significantly to the field of electrical engineering. ⚡🔍

Award and Honors

Dr. Wenliang Zhao has received several prestigious awards and honors throughout his career. He won the Best Paper Award at the 24th International Conference on Electrical Machines and Systems (ICEMS) in October-November 2021. He also received the Best Paper Award at the 13th International Symposium on Linear Drives for Industry Application (LDIA) in July 2021. Additionally, Dr. Zhao was honored with the Best Paper Award at the 39th Annual Conference of the IEEE Industrial Electronics Society (IECON) in November 2013. These accolades reflect his significant contributions and excellence in the field of electrical engineering. 🏆📜

 Research Skills

Dr. Wenliang Zhao possesses extensive research skills in the field of electrical engineering. His expertise includes the design, analysis, and control of electric machines and drive systems, with a focus on permanent magnet synchronous machines, linear machines, permanent magnet synchronous reluctance machines, and high-speed machines. He is also skilled in the study of power transformers and power generation systems. Dr. Zhao is proficient in advanced modeling and simulation techniques, which he employs to optimize the performance and efficiency of electrical systems. His research contributions are well-documented through numerous publications and conference presentations, showcasing his ability to conduct rigorous scientific investigations and develop innovative solutions in his field. 📊🔧📘

Publications

  1. Fault-tolerant control of current residual vector three-phase four-switch motor drive system based on MLD model
    • Authors: Chen, D., Zhao, W., Sun, Y., …, Zhang, Z., Xin, Z.
    • Year: 2024
    • Journal: IET Power Electronics
  2. Analysis of Fine Fault Electrothermal Characteristics of Converter Transformer Reduced-Scale Model
    • Authors: Zhou, X., Luo, Y., Zhu, L., …, Xu, Y., Zhao, W.
    • Year: 2024
    • Journal: Energies
  3. Optimization Design of Interior Permanent Magnet Synchronous Motor With U-Shaped Rotor for Low-Level Torque Ripple and Electromagnetic Vibration
    • Authors: Xing, Z., Wang, X., Zhao, W., …, Xiong, L., Zhang, X.
    • Year: 2024
    • Journal: IEEE Transactions on Transportation Electrification
  4. Modelling and optimisation of the surface-mounted permanent magnet machine with multi-level array magnets
    • Authors: Li, L., Chen, Z., Zhao, W., Diao, C., Kwon, B.-I.
    • Year: 2024
    • Journal: IET Electric Power Applications
  5. Improved Synchronous Space Vector Pulse Width Modulation Strategy for Three-Level With Common-Mode Voltage Suppression
    • Authors: Chen, D., Sun, Y., Zhao, G., Zhao, W.
    • Year: 2024
    • Journal: IEEE Access
  6. Prediction of Post-demagnetization Electromagnetic Performance for SPMSM Considering Rotor Eccentricity
    • Authors: Li, X., Wang, X., Zhao, W., …, Xiong, L., Zhang, X.
    • Year: 2024
    • Journal: IEEE Transactions on Transportation Electrification
  7. Magnetic Field Calculation of the U-Shaped Interior Permanent-Magnet Synchronous Machine Considering the Parallel Magnetization and Bridge Saturation
    • Authors: Zhou, H., Wang, X., Zhao, W., Xing, Z., Li, X.
    • Year: 2024
    • Journal: IEEE Transactions on Industrial Electronics
  8. Fast Calculation of Electromagnetic Vibration of Surface-Mounted PMSM Considering Teeth Saturation and Tangential Electromagnetic Force
    • Authors: Xing, Z., Wang, X., Zhao, W.
    • Year: 2024
    • Journal: IEEE Transactions on Industrial Electronics
  9. Study of the Protection and Energy Transmission Modes of One Phase Short Circuit to Ground in Inverters
    • Authors: Chen, D., Zhang, Z., Zhang, S., …, Zhao, W., Zhao, W.
    • Year: 2023
    • Journal: Sensors
  10. Design and Analysis of Basic Model of High-speed Surface-mounted Permanent Magnet Synchronous Motors Based on Subdomain Method
    • Authors: Xing, Z., Wang, X., Zhao, W.
    • Year: 2023
    • Journal: Journal of Electrical Engineering and Technology

 

Sertan Kemal Akay | Optoelectronics | Best Researcher Award

Prof. Sertan Kemal Akay | Optoelectronics | Best Researcher Award

Professor Doctorate of Bursa Uludağ University, Turkey.

Prof. Sertan Kemal Akay is a distinguished academic and researcher at Uludag University in Bursa, Turkey. With a strong foundation in physics, he completed his B.Sc., M.Sc., and Ph.D. at Uludag University, specializing in General Physics. Throughout his career, Prof. Akay has held various academic positions, progressing from Research Assistant to Professor Doctor. His research interests are diverse, encompassing Material Physics, Semiconductor Physics and Technology, Thin Films, Surface Physics, and Optoelectronics. Prof. Akay’s contributions to these fields are marked by numerous awards and honors, reflecting his commitment to advancing scientific knowledge and education. His extensive research skills and innovative approach make him a prominent figure in the academic community, dedicated to both research and mentoring the next generation of scientists.

Professional Profiles:

Education

Prof. Sertan Kemal Akay pursued his academic studies at Uludag University in Turkey. He completed his Bachelor of Science in Physics from 1993 to 1997. Continuing his education at the same institution, he earned a Master of Science in General Physics from 1998 to 2000, under the supervision of Prof. Dr. Ahmet Avinç. Prof. Akay further advanced his expertise by obtaining a Ph.D. in General Physics from 2000 to 2005, also under the guidance of Prof. Dr. Ahmet Avinç.

💼 Professional Experience

Prof. Sertan Kemal Akay has built a distinguished academic career at Uludag University in Bursa, Turkey. He started as a Research Assistant from 1998 to 2005, demonstrating his dedication and potential early on. Following this, he served as a Research Assistant Doctor from 2005 to 2006. His academic journey continued as a Lecturer Doctor from 2006 to 2009. Prof. Akay then progressed to the role of Assistant Professor Doctor, serving from 2009 to 2012. His expertise and contributions were further recognized when he was appointed Associate Professor Doctor from 2012 to 2018. Since 2018, Prof. Akay has been serving as a Professor Doctor at Bursa Uludag University, where he continues to contribute significantly to the field of physics.

Research Interest

Prof. Sertan Kemal Akay’s research interests encompass a broad spectrum of topics within the field of physics. He is particularly focused on Material Physics, exploring the properties and applications of various materials. His work in Semiconductor Physics and Semiconductor Technology delves into the development and optimization of semiconductor devices. Prof. Akay is also deeply engaged in the study of Thin Films, investigating their fabrication and characteristics. Additionally, his expertise extends to Surface Physics, examining the interactions at the surfaces of materials. Lastly, his research in Optoelectronics aims to advance the understanding and application of electronic devices that source, detect, and control light.

Award and Honors

Prof. Sertan Kemal Akay has been recognized for his exceptional contributions to the field of physics and academia. Throughout his illustrious career, he has received numerous accolades and honors that highlight his dedication and expertise. His achievements have been celebrated through various awards, reflecting his significant impact on research, teaching, and innovation. These honors not only underscore his academic excellence but also his commitment to advancing scientific knowledge and mentoring the next generation of physicists.

Research Skills

Prof. Sertan Kemal Akay possesses a comprehensive set of research skills developed through years of dedicated study and professional experience. His expertise in Material Physics includes advanced techniques for analyzing and characterizing various materials. In Semiconductor Physics and Semiconductor Technology, Prof. Akay demonstrates proficiency in developing and optimizing semiconductor devices. He is skilled in the fabrication and analysis of Thin Films, utilizing cutting-edge methodologies to explore their properties. His knowledge extends to Surface Physics, where he investigates the intricate interactions at material surfaces. Additionally, Prof. Akay’s capabilities in Optoelectronics enable him to work with devices that manage light, contributing to advancements in this dynamic field. His robust analytical skills, innovative approach, and meticulous attention to detail make him a distinguished researcher in his domain.

Publications

  1. Title: Transparent and conducting p-type (CuS)x:(ZnS)1-x thin films produced by thermal evaporation: An efficient broadband Si heterojunction photodiode
    • Authors: Kaplan, H.K., Akay, S.K.
    • Journal: Applied Surface Science, 2024, 652, 159330
    • Citations: 0
  2. Title: A novel self-powered filterless narrow-band near-infrared photodiode of Cu2S/Si p+-p isotype heterojunction device with very low visible light noise
    • Authors: Kaplan, H.K., Akay, S.K., Ahmetoğlu, M.
    • Journal: Applied Surface Science, 2022, 601, 154217
    • Citations: 10
  3. Title: Production of AgCu:NiO/Ni foam electrode with high charge accumulation and long cycling stability
    • Authors: Peksoz, A., Mohammadigharehbagh, R., Erturk, K., Akay, S.K., Sarsici, S.
    • Journal: Journal of Materials Science: Materials in Electronics, 2022, 33(26), pp. 20756–20768
    • Citations: 0
  4. Title: Si-based photodiode and material characterization of TiO2 thin film
    • Authors: Kaplan, H.K., Olkun, A., Akay, S.K., Pat, S.
    • Journal: Optical and Quantum Electronics, 2021, 53(5), 248
    • Citations: 6
  5. Title: Investigation of the structural, magnetic, and cooling performance of AlFe thin film and AlFeGd nanometric giant magnetocaloric thin films
    • Authors: Pat, S., Bayer, Ö., Akay, S.K., Mohammadigharehbagh, R., Kaya, M.
    • Journal: Journal of Materials Science: Materials in Electronics, 2021, 32(5), pp. 5635–5644
    • Citations: 4
  6. Title: p-Type transparent Cu2S thin film grown by Thermionic Vacuum Arc for optoelectronic applications
    • Authors: Kaplan, H.K., Akay, S.K., Pat, S., Henini, M.
    • Journal: Materials Science and Engineering: B, 2021, 263, 114872
    • Citations: 14
  7. Title: Determination of electrical parameters of ZnO/Si heterojunction device fabricated by RF magnetron sputtering
    • Authors: Akay, S.K., Sarsıcı, S., Kaplan, H.K.
    • Journal: Optical and Quantum Electronics, 2018, 50(10), 362
    • Citations: 16
  8. Title: Photoelectrical properties of fabricated ZnS/Si heterojunction device using thermionic vacuum arc method
    • Authors: Kaplan, H.K., Akay, S.K., Ahmetoglu, M.
    • Journal: Superlattices and Microstructures, 2018, 120, pp. 402–409
    • Citations: 9
  9. Title: Magnetic responses of divinylbenzene-Fe3O4 composite film deposited by free radical polymerization method
    • Authors: Akay, S.K., Peksoz, A., Kara, A.
    • Journal: Journal of Superconductivity and Novel Magnetism, 2018, 31(3), pp. 849–854
    • Citations: 7
  10. Title: The characteristics of ZnS/Si heterojunction diode fabricated by thermionic vacuum arc
    • Authors: Kaplan, H.K., Sarsıcı, S., Akay, S.K., Ahmetoglu, M.
    • Journal: Journal of Alloys and Compounds, 2017, 724, pp. 543–548
    • Citations: 18