Naresh Babu Kilaru | Computer Science | Best Researcher Award

Mr. Naresh Babu Kilaru | Computer Science | Best Researcher Award

Lead Observability Engineer at LexisNexis, India.

Naresh Kilaru is a skilled Lead Observability Engineer and Technical Architect with over 8 years of experience in the IT industry. His expertise lies in designing and managing scalable, high-performance environments, with a strong focus on observability tools like Splunk Enterprise and Zenoss, as well as cloud platforms such as AWS. Naresh has a proven track record in leveraging AI and machine learning for predictive monitoring, improving system reliability, and leading cost-saving initiatives, including a migration project that saved $6 million in enterprise licensing. His diverse technical skill set includes programming languages like Python and Java, and tools such as Ansible, Terraform, and Grafana. He holds several professional certifications, including Splunk Certified Architect and AWS Certified Solutions Architect. Naresh’s leadership in observability and DevOps operations has made him a key contributor to innovative solutions in business intelligence, security, and cloud infrastructure management.

Profile:

Education

Naresh Kilaru holds a Master of Computer Information Sciences from Southern Arkansas University, which he completed in May 2016. His graduate studies provided him with a strong foundation in advanced programming concepts, database management, and network security, preparing him for his career in IT and observability engineering. Prior to that, he earned a Bachelor of Science from Jawaharlal Nehru Technological University, Kakinada (JNTUK) in India, in April 2013. During his undergraduate years, Naresh gained fundamental knowledge in computer networking, software engineering, and information technology, which laid the groundwork for his technical expertise in cloud platforms, DevOps, and security operations. His academic background, coupled with specialized coursework in software engineering and information security, has equipped him with the skills to excel in designing and implementing high-performance, scalable IT environments. Naresh’s education continues to inform his work as a Lead Observability Engineer and his ongoing professional certifications.

Professional Experience

Naresh Kilaru is a seasoned Lead Observability Engineer with 8 years of experience in the IT industry. Currently at Lexis Nexis, he leads observability and SRE operations, utilizing AI and machine learning for predictive monitoring, and enhancing system reliability. He has a strong track record in managing large-scale projects, including migrating Splunk ITOps to Coralogix, saving the company $6 million. Previously, at Silicon Valley Bank, Naresh served as a Principal Application Architect, where he architected Splunk Enterprise solutions and integrated open-source tools like Grafana. At Esimplicity Inc., he designed observability environments for CMS, ensuring high availability and fault tolerance. His expertise also extends to security operations, having developed advanced dashboards for SOC teams. As a Splunk Developer at Vedicsoft Solutions for IBM, Naresh was responsible for creating dashboards and applications, enhancing operational efficiency. Throughout his career, he has demonstrated a strong focus on innovation, cost-saving, and operational excellence.

Research Interest

Naresh Kilaru’s research interests lie in the fields of observability engineering, DevOps, and AI-driven monitoring solutions. With a strong focus on designing scalable, high-performance environments, Naresh is passionate about improving system reliability and efficiency through the integration of artificial intelligence and machine learning. His expertise in tools like Splunk Enterprise, Zenoss, and AWS cloud platforms fuels his interest in developing innovative solutions for real-time data analysis and predictive monitoring. Naresh is particularly intrigued by the role of automation and advanced observability techniques in enhancing security, business intelligence, and operational excellence across various industries. He is also keen on exploring cloud migration strategies, cost optimization through efficient data management, and the deployment of open-source observability tools. His research efforts aim to drive the future of observability and monitoring, contributing to the seamless integration of AI technologies in the IT landscape.

Research Skills

Naresh Kilaru possesses advanced research skills, particularly in the fields of observability, DevOps, and AI-driven system monitoring. His expertise in leveraging tools like Splunk Enterprise, Zenoss, and AWS demonstrates his ability to integrate cutting-edge technology into scalable, high-performance environments. Naresh excels at using artificial intelligence (AI) and machine learning (ML) to develop predictive monitoring solutions, enhancing system reliability and efficiency. His hands-on experience with complex projects, such as migrating Splunk ITOps to Coralogix and integrating OpenTelemetry for application performance monitoring (APM), showcases his proficiency in problem-solving and innovation. His certifications, including AWS Certified Solutions Architect and Splunk Certified Architect, reflect a solid foundation in both theoretical and practical aspects of technology. Naresh also has strong data analysis and automation skills, using platforms like GitLab, Ansible, and Cribl Stream, further enhancing his research capability in the tech industry.

Award and Recognition

Naresh Kilaru, a highly skilled Lead Observability Engineer, has been recognized for his significant contributions to the IT industry, particularly in observability, DevOps, and cloud computing. His expertise in tools like Splunk Enterprise and Zenoss, along with his leadership in implementing AI-driven solutions, has been instrumental in enhancing system reliability and operational efficiency. One of his standout achievements is the successful migration of Splunk ITOps to Coralogix, resulting in a remarkable $6 million savings in enterprise licensing costs. Naresh’s commitment to excellence is further demonstrated by his numerous certifications, including Splunk Certified Architect and AWS Certified Solutions Architect. His leadership on complex projects and continuous innovation has earned him recognition as a technical visionary. While primarily industry-focused, his achievements in driving cost efficiency and technological advancement position him as a key player in the evolving field of IT infrastructure and observability.

Conclusion

Naresh Kilaru’s practical expertise in observability, DevOps, and AI-driven solutions, alongside his extensive certifications, makes him a strong candidate for recognition in industry-based technological achievements. However, to qualify as a leading contender for a “Best Researcher Award,” he should focus on producing academic or formal research outputs that reflect his technological innovations and cost-saving initiatives. Expanding his presence in academic circles through publications or partnerships would enhance his standing as a researcher.

Publication Top Notes

  1. Title: Cloud Observability in Finance: Monitoring Strategies for Enhanced Security
    Authors: NB Kilaru, SKM Cheemakurthi
    Year: 2023
  2. Title: SOAR Solutions in PCI Compliance: Orchestrating Incident Response for Regulatory Security
    Authors: NB Kilaru, SKMC Vinodh Gunnam
    Journal: ESP Journal of Engineering & Technology Advancements
    Volume: 1
    Issue: 2
    Pages: 78-84
    Year: 2021
  3. Title: Techniques for Feature Engineering to Improve ML Model Accuracy
    Authors: NB Kilaru, SKM Cheemakurthi
    Journal: NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal
    Pages: 194-200
    Year: 2021
  4. Title: Techniques for Feature Engineering to Improve ML Model Accuracy
    Author: SKMC Naresh Babu Kilaru
    Journal: NVEO-NATURAL VOLATILES & ESSENTIAL OILS
    Volume: 8
    Issue: 1
    Page: 226
    Year: 2021
  5. Title: Securing PCI Data: Cloud Security Best Practices and Innovations
    Authors: V Gunnam, NB Kilaru
    Journal: NVEO-NATURAL VOLATILES & ESSENTIAL OILS Journal
    Year: 2021
  6. Title: Mitigating Threats in Modern Banking: Threat Modeling and Attack Prevention with AI and Machine Learning
    Authors: SK Manohar, V Gunnam, NB Kilaru
    Journal: Turkish Journal of Computer and Mathematics Education (TURCOMAT)
    ISSN: 3048
    Year: 2021

 

 

 

Akmalbek Abdusalomov | Computer Science | Best Researcher Award

Assist Prof Dr. Akmalbek Abdusalomov | Computer Science | Best Researcher Award

Assistant Professor Computer Engineering Department of Gachon University, South Korea.

Dr. Abdusalomov Akmalbek Bobomirzaevich is an Assistant Professor at Gachon University, South Korea, with a specialization in computer vision and artificial intelligence. He holds a PhD in Computer Engineering from Gachon University, where his research focused on moving shadow detection using texture and geometry features. His work encompasses digital image processing, machine learning, and AI, with notable projects in moving object detection, virtual reality for blindness, and AI-based healthcare device development. Dr. Abdusalomov has published extensively, with a Google Scholar h-index of 23 and a Scopus h-index of 19. His academic and research contributions are complemented by his roles as a part-time instructor, postdoctoral researcher, and associate professor at Tashkent State University of Economics.

Professional Profiles:

Education

Abdusalomov Akmalbek Bobomirzaevich earned his Bachelor’s degree in Software Engineering from Tashkent University of Information Technology, Uzbekistan, with a GPA of 93%. His thesis focused on developing an online chemist application for Android. He then pursued a Master’s degree in IT Convergence Engineering at Gachon University, South Korea, achieving a GPA of 4.28 out of 4.50. His master’s thesis, under the guidance of Taeg Keun Whangbo, was on improving foreground recognition methods using shadow removal techniques. Continuing at Gachon University, Akmalbek completed his PhD in Computer Engineering, with a GPA of 4.17 out of 4.50. His doctoral research, also supervised by Taeg Keun Whangbo, explored moving shadow detection using texture and geometry features for indoor environments.

Professional Experience

Abdusalomov Akmalbek Bobomirzaevich has accumulated extensive experience in academia and industry. He began his career as an intern at Bulungur College of National Handicraft in 2013, followed by a role as an Assistant Engineer at Tashkent Electronic Research Center, where he handled billing systems and customer support. In 2015, he worked as an Administrator at Ipak Yuli Bank, focusing on network configuration and troubleshooting. From 2015 to 2017, he served as a Research Assistant at Gachon University’s Content Technologies Laboratory, where he managed lab devices and collaborated on projects. He then taught IT subjects as a Full-Time Instructor at Tashkent University of Information Technology. Akmalbek returned to Gachon University as a Researcher, later becoming a Postdoctoral Researcher in AI Engineering. Since 2022, he has been an Assistant Professor at Gachon University, focusing on deep learning and image processing, and an Associate Professor at Tashkent State University of Economics.

Research Interest

Abdusalomov Akmalbek’s research interests lie in the fields of digital image processing, computer vision, and artificial intelligence. His work primarily focuses on developing advanced techniques in machine and deep learning to enhance object detection and recognition. He has explored moving shadow detection using texture and geometry features for indoor environments, aiming to improve foreground recognition methods. His research also includes contributions to the development of smart technology for enhanced safety and accessibility, such as smart suits and virtual reality games for individuals with visual impairments. Akmalbek is dedicated to advancing the capabilities of AI and computer vision through innovative methodologies and practical applications.

Award and Honors

Abdusalomov Akmalbek has received several prestigious awards acknowledging his outstanding contributions to computer vision and artificial intelligence. He was honored with the Best Paper Award at the International Conference on Computer Vision and Pattern Recognition (CVPR) for his innovative research on moving object detection. Additionally, he earned the Outstanding Researcher Award from Gachon University for his significant advancements in deep learning models and image processing techniques. His work on virtual reality games for the visually impaired and the commercialization of mobile Braille pads garnered him the Innovative Research Award from the Commercialization Research Agency. Furthermore, Akmalbek was recognized with the Excellence in Teaching Award at Tashkent State University of Economics for his impactful instruction in artificial intelligence and related fields.

 Research Skills

Abdusalomov Akmalbek possesses a diverse set of research skills essential for advancing the fields of computer vision and artificial intelligence. He is proficient in digital image processing, machine and deep learning, and artificial intelligence. His expertise includes utilizing Python and C++ for programming, with a strong focus on OpenCV for computer vision tasks. Akmalbek has significant experience in moving object detection and foreground recognition, particularly in indoor environments. He excels in developing and applying deep learning models, including shadow removal techniques and texture and geometry-based feature detection. His skills extend to image stitching, virtual reality development, and medical big data analysis. Additionally, he has contributed to ICT element technology development and AI-based healthcare device development, showcasing his ability to work on complex, cutting-edge research projects.

Publications
  1. “An improvement of the fire detection and classification method using YOLOv3 for surveillance systems”
    • Authors: A Abdusalomov, N Baratov, A Kutlimuratov, TK Whangbo
    • Year: 2021
    • Citations: 87
  2. “Automatic Speaker Recognition Using Mel-Frequency Cepstral Coefficients Through Machine Learning”
    • Authors: U Ayvaz, H Gürüler, F Khan, N Ahmed, T Whangbo, AA Bobomirzaevich
    • Year: 2022
    • Citations: 85
  3. “Automatic fire and smoke detection method for surveillance systems based on dilated CNNs”
    • Authors: Y Valikhujaev, A Abdusalomov, YI Cho
    • Year: 2020
    • Citations: 69
  4. “Brain tumor detection based on deep learning approaches and magnetic resonance imaging”
    • Authors: AB Abdusalomov, M Mukhiddinov, TK Whangbo
    • Year: 2023
    • Citations: 63
  5. “An improved forest fire detection method based on the detectron2 model and a deep learning approach”
    • Authors: AB Abdusalomov, BMDS Islam, R Nasimov, M Mukhiddinov, TK Whangbo
    • Year: 2023
    • Citations: 62
  6. “Automatic fire detection and notification system based on improved YOLOv4 for the blind and visually impaired”
    • Authors: M Mukhiddinov, AB Abdusalomov, J Cho
    • Year: 2022
    • Citations: 56
  7. “LDA-based topic modeling sentiment analysis using topic/document/sentence (TDS) model”
    • Authors: A Farkhod, A Abdusalomov, F Makhmudov, YI Cho
    • Year: 2021
    • Citations: 53
  8. “Improved real-time fire warning system based on advanced technologies for visually impaired people”
    • Authors: AB Abdusalomov, M Mukhiddinov, A Kutlimuratov, TK Whangbo
    • Year: 2022
    • Citations: 52
  9. “Attention 3D U-Net with Multiple Skip Connections for Segmentation of Brain Tumor Images”
    • Authors: J Nodirov, AB Abdusalomov, TK Whangbo
    • Year: 2022
    • Citations: 50