Yong Fan | Analytical Chemistry | Best Researcher Award

Prof. Dr. Yong Fan | Analytical Chemistry | Best Researcher Award

Fudan University, China

Dr. Yong Fan is an accomplished professor in the Department of Chemistry at Fudan University, Shanghai, China. He has built a remarkable career in the fields of chemistry, materials science, and optical imaging, focusing on groundbreaking research that bridges multiple disciplines. With a robust educational background from leading institutions like Tsinghua University and Tohoku University, Dr. Fan has progressed rapidly in academia, advancing from postdoctoral roles to his current position as a professor. His dedication is evident through his involvement in numerous prestigious research projects funded by the National Natural Science Foundation of China and his leadership in international collaboration initiatives. Dr. Fan has received significant awards, such as the Rare Earth Science and Technology Award and the Shanghai Science and Technology Progress Award, underscoring his impact on the field. Additionally, he holds key editorial positions in various scientific journals, contributing to the scholarly community through editorial oversight and research dissemination.

Professional Profile

Education

Dr. Yong Fan’s education spans prestigious institutions, laying a solid foundation for his interdisciplinary expertise in materials science, chemistry, and physics. He earned his Ph.D. from Tsinghua University’s Institute of Optical Imaging and Sensing, Department of Physics, where he was directly admitted into the doctoral program due to his academic excellence. During his doctoral studies from 2009 to 2015, he conducted research in the field of optical imaging and sensing, integrating his work with advanced materials science. Additionally, Dr. Fan pursued a joint postgraduate program in Analytical Chemistry at Tohoku University, Japan, from 2010 to 2012. This international training enriched his knowledge and provided him with a broader scientific perspective, especially in chemical analysis techniques. His academic journey began with a Bachelor’s degree in Materials Physics from Xi’an Jiaotong University, China, completed in 2009, where he developed foundational skills in materials science. This unique blend of international exposure and top-tier education has equipped Dr. Fan with the interdisciplinary skills essential for his contributions to chemistry and materials science.

Professional Experience

Dr. Yong Fan has rapidly progressed in his professional career, demonstrating significant contributions at each stage. After completing his Ph.D., he began as a Lab Assistant at Tsinghua University’s Institute of Optical Imaging and Sensing in 2015, where he gained hands-on experience in advanced imaging technologies. Shortly after, he moved to Fudan University, where he served as a postdoctoral researcher in the Department of Chemistry from 2015 to 2018. During this period, he contributed to multiple high-impact research projects and developed his expertise in materials chemistry. In 2019, Dr. Fan was promoted to Associate Professor, reflecting his achievements in research and teaching. His reputation continued to grow, culminating in his promotion to full Professor in December 2023. Dr. Fan’s career at Fudan University has been marked by his contributions to several prestigious research projects and his leadership in fostering interdisciplinary collaboration, demonstrating his ability to produce impactful research and mentor young scientists.

Research Interests

Dr. Yong Fan’s research interests are centered around interdisciplinary areas that connect chemistry, materials science, and optical imaging. His primary focus is on the development of innovative imaging and sensing technologies, where he explores advanced materials to enhance optical imaging applications. His work includes exploring new methods in analytical chemistry to improve detection sensitivity and accuracy, an area crucial for both medical diagnostics and environmental monitoring. Additionally, Dr. Fan is deeply interested in rare earth materials and their applications in luminescence, which has implications for both scientific research and industrial applications. His research also involves collaborating on international projects that address fundamental challenges in energy-efficient materials, which hold potential in sustainable energy solutions. Through his work, Dr. Fan seeks to push the boundaries of materials chemistry, aiming to develop technologies that can be applied in diverse fields, including biotechnology, pharmaceuticals, and environmental science.

Research Skills

Dr. Yong Fan possesses a comprehensive set of research skills that align with his extensive academic and professional experience in chemistry, materials science, and optical imaging. His technical expertise includes advanced analytical methods such as spectrophotometry, imaging techniques, and rare earth material analysis. Dr. Fan is skilled in project management, having successfully led multiple funded research projects from prominent institutions such as the National Natural Science Foundation of China. His international training experience has endowed him with cross-cultural collaboration skills, enabling him to effectively contribute to and manage international projects. Additionally, Dr. Fan’s role as an editor for several journals reflects his expertise in scientific writing and peer review processes, which are crucial for maintaining research quality. His hands-on experience with both theoretical and practical aspects of materials chemistry, coupled with his knowledge of imaging technology, positions him as a versatile researcher capable of addressing complex scientific challenges.

Awards and Honors

Dr. Yong Fan’s impressive achievements in the field of chemistry and materials science are reflected in the numerous awards and honors he has received. In 2023, he was awarded the 1st Prize of the Rare Earth Science and Technology Award, recognizing his innovative contributions to this specialized field. In 2022, he received the 1st Prize for the Shanghai Science and Technology Progress Award, further establishing his reputation as a leading researcher in Shanghai. Previously, Dr. Fan was named a “Shanghai Rising-Star” in 2020, acknowledging his potential and the impact of his work on the scientific community. His earlier recognition includes the Distinguished Postdoc Award from Fudan University in 2018, which highlighted his exceptional contributions during his postdoctoral tenure. Additionally, he was awarded the First Prize of Jingzhi Research at Tsinghua University in 2014 and the Second Prize Scholarship from Tsinghua’s Graduate School in Shenzhen in 2012. These honors underscore Dr. Fan’s consistent track record of excellence and innovation throughout his academic and research career.

Conclusion

Dr. Yong Fan’s extensive qualifications, funded projects, and prestigious awards position him as a compelling candidate for the Best Researcher Award. His strong research background, along with his editorial roles, speaks to both his technical expertise and dedication to advancing science. Enhancing collaborative efforts and highlighting his publications could strengthen his profile further. However, even with minor areas for improvement, Dr. Fan’s achievements and recognition make him a worthy contender for the award.

Publication Top Notes

  1. “Lifetime-engineered NIR-II nanoparticles unlock multiplexed in vivo imaging”
    Authors: Y. Fan, P. Wang, Y. Lu, R. Wang, L. Zhou, X. Zheng, X. Li, J.A. Piper, F. Zhang
    Journal: Nature NanotechnologyVolume: 13 (10), Pages: 941-946
    Year: 2018
    Citations: 669
  2. “X-ray-activated persistent luminescence nanomaterials for NIR-II imaging”
    Authors: P. Pei, Y. Chen, C. Sun, Y. Fan, Y. Yang, X. Liu, L. Lu, M. Zhao, H. Zhang, …
    Journal: Nature NanotechnologyVolume: 16 (9), Pages: 1011-1018
    Year: 2021
    Citations: 449
  3. “Anti-quenching NIR-II molecular fluorophores for in vivo high-contrast imaging and pH sensing”
    Authors: S. Wang, Y. Fan, D. Li, C. Sun, Z. Lei, L. Lu, T. Wang, F. Zhang
    Journal: Nature CommunicationsVolume: 10 (1), Article ID: 1058
    Year: 2019
    Citations: 434
  4. “NIR-II nanoprobes in-vivo assembly to improve image-guided surgery for metastatic ovarian cancer”
    Authors: P. Wang, Y. Fan, L. Lu, L. Liu, L. Fan, M. Zhao, Y. Xie, C. Xu, F. Zhang
    Journal: Nature CommunicationsVolume: 9 (1), Article ID: 2898
    Year: 2018
    Citations: 411
  5. “Er3+ Sensitized 1530 nm to 1180 nm Second Near‐Infrared Window Upconversion Nanocrystals for In Vivo Biosensing”
    Authors: L. Liu, S. Wang, B. Zhao, P. Pei, Y. Fan, X. Li, F. Zhang
    Journal: Angewandte ChemieVolume: 130 (25), Pages: 7640-7644
    Year: 2018
    Citations: 344
  6. “Tm3+‐Sensitized NIR‐II Fluorescent Nanocrystals for In Vivo Information Storage and Decoding”
    Authors: H. Zhang, Y. Fan, P. Pei, C. Sun, L. Lu, F. Zhang
    Journal: Angewandte Chemie International EditionVolume: 58 (30), Pages: 10153-10157
    Year: 2019
    Citations: 234
  7. “A New Generation of NIR‐II Probes: Lanthanide‐Based Nanocrystals for Bioimaging and Biosensing”
    Authors: Y. Fan, F. Zhang
    Journal: Advanced Optical MaterialsVolume: 7 (7), Article ID: 1801417
    Year: 2019
    Citations: 224
  8. “In Vivo High-resolution Ratiometric Fluorescence Imaging of Inflammation Using NIR-II Nanoprobes with 1550 nm Emission”
    Authors: S. Wang, L. Liu, Y. Fan, A.M. El-Toni, M.S. Alhoshan, D. Li, F. Zhang
    Journal: Nano LettersVolume: 19 (4), Pages: 2418-2427
    Year: 2019
    Citations: 214
  9. “NIR-II bioluminescence for in vivo high contrast imaging and in situ ATP-mediated metastases tracing”
    Authors: L. Lu, B. Li, S. Ding, Y. Fan, S. Wang, C. Sun, M. Zhao, C.X. Zhao, F. Zhang
    Journal: Nature CommunicationsVolume: 11 (1), Article ID: 4192
    Year: 2020
    Citations: 205
  10. “Exploiting lanthanide-doped upconversion nanoparticles with core/shell structures”
    Authors: Y. Fan, L. Liu, F. Zhang
    Journal: Nano TodayVolume: 25, Pages: 68-84
    Year: 2019
    Citations: 198

 

Kadriye Ertekin | Analytical Chemistry | Women Researcher Award

Ms. Kadriye Ertekin | Analytical Chemistry | Women Researcher Award

 Professor of Dokuz Eylül University, Turkey.

Born on February 9, 1964, in Batman, Turkey, Prof. Ertekin completed her secondary and higher education at İzmir Karşıyaka Girls’ High School and Ege University Faculty of Science. She earned her Master’s and Doctorate degrees from Celal Bayar University and Ege University, respectively. During her doctoral studies, she conducted research at the Institute of Analytical Chemistry, Chemo-and Biosensors, Regensburg University, Germany. She has authored 63 journal articles and presented 110 papers at national and international conferences, with over 1000 citations. Prof. Ertekin has been a faculty member in the Department of Analytical Chemistry at Dokuz Eylül University’s Faculty of Science since 2003. Her primary research areas include the development of chemical optical sensors for CO2, O2, cations, and pH, as well as fiber optic sensors, fluorescence and phosphorescence-based analyses, phosphorus materials, and chemical safety in occupational settings.

Profile
Education

Prof. Dr. Kadriye Ertekin completed her undergraduate studies in Chemistry at Ege University, Faculty of Science, Turkey, from 1980 to 1985. She then pursued her postgraduate degree in Analytical Chemistry at Celal Bayar University, completing her thesis in 1996. Her academic journey continued with a Doctorate in Chemistry from Ege University, where she conducted research at the Institute of Analytical Chemistry, Chemo-and Biosensors, University of Regensburg, Germany. She received her doctoral degree in 2001, focusing on the development of new optical sensors for cation sensing. Her education reflects a strong foundation in both theoretical and practical aspects of chemistry, complemented by international research experience, which has significantly influenced her subsequent contributions to the field of analytical chemistry.

Professional Experience

Ms. Kadriye Ertekin is a distinguished academic professional with extensive experience in the field of analytical chemistry. Since 2003, she has been a professor in the Chemistry Department at Dokuz Eylül University, where she focuses on chemical sensors and risk analysis. Her academic journey includes significant roles, such as serving as the Director of The Institution at Dokuz Eylül University from 2017 to 2020, and as the Farabi Program Institutional Coordinator from 2012 to 2015. She has also contributed as a member of the Academic Incentive Evaluation Commission since 2022. Ms. Ertekin’s research expertise encompasses developing chemical sensors for CO2, O2, and pH measurements, and she has over 60 SCI-indexed publications and more than 1,000 citations. Her work extends into teaching, where she supervises both postgraduate and doctoral students, advising on topics like optical sensors and chemical safety.

Research Interest

Prof. Kadriye Ertekin’s research interests lie primarily in the development and application of advanced chemical sensors and materials. Her work focuses on creating innovative optical sensors for detecting gases such as carbon dioxide and oxygen, as well as monitoring cation concentrations. Prof. Ertekin is particularly interested in fiber optic sensors and fluorescence-based analysis, exploring the integration of nanomaterials to enhance sensor performance. Her research extends to the study of phosphors and nanoscale functional materials, aiming to improve their optical properties and stability. Additionally, she investigates chemical safety risks in industrial environments, contributing to safer workplace practices through her work on chemical risk assessment and mitigation. Her contributions significantly advance the fields of analytical chemistry and material science, combining theoretical knowledge with practical applications to address contemporary challenges in chemical sensing and safety.

Research Skills

Prof. Kadriye Ertekin is a distinguished researcher with a robust skill set in analytical and chemical sensor development. Her expertise spans a range of advanced techniques including the development of optical sensors for detecting cations, carbon dioxide, and pH levels. Prof. Ertekin excels in designing and fabricating fiber optic sensors and nanosensors, employing her deep knowledge of fluorescence and phosphorescence-based analyses. Her proficiency extends to the manipulation of optical properties in nanoscale materials, which is critical for applications in environmental monitoring and industrial safety. Additionally, she is skilled in employing various spectroscopic and chromatographic methods to analyze and quantify chemical substances. Prof. Ertekin’s extensive experience in the synthesis and characterization of novel materials, coupled with her ability to integrate these materials into functional sensor systems, underscores her significant contributions to the field of analytical chemistry and sensor technology.

Awards and Recognition

Prof. Dr. Kadriye Ertekin has earned significant recognition for her contributions to the field of analytical chemistry. Her extensive research, particularly in developing optical sensors and studying chemical risk management, has been acknowledged through numerous awards and distinctions. Notably, she received the Dokuz Eylül University Academic Incentive Award for her outstanding research achievements. Her work has been recognized in the scientific community with multiple awards from national and international conferences, reflecting the impact of her innovative research on chemical sensors and nanomaterials. In addition to her academic honors, Prof. Ertekin has been appointed as a member of various scientific committees, underscoring her role as a leading expert in her field. Her dedication to advancing chemical sensor technologies and ensuring safety in chemical processes has established her as a prominent figure in analytical chemistry research.

Conclusion

Prof. Dr. Kadriye Ertekin is a distinguished academic and researcher in the field of analytical chemistry, with a notable focus on chemical and optical sensors. Her extensive education includes a Doctorate from Ege University and research experience at Regensburg University in Germany. She has contributed significantly to her field with over 60 published articles and numerous conference presentations. Her research interests encompass the development of sensors for detecting carbon dioxide, oxygen, and pH, as well as advancements in fiber optic sensors and nanomaterials. Prof. Ertekin’s work is highly regarded, as evidenced by her numerous citations and publications in SCI-indexed journals. At Dokuz Eylül University, she has held various significant academic and administrative roles, including serving as a member of the Academic Incentive Evaluation Commission and as Director of The Institution. Her dedication to research, teaching, and service underscores her profound impact on the field and her institution.

Publications Top Notes

  • “Emission-based sensing of cobalt (II) and vitamin B12 via a bis-indole derivative”
    • Authors: Mumcu, T., Oncuoglu, S., Hizliates, C.G., Ertekin, K.
    • Journal: Luminescence
    • Year: 2024
    • Volume: 39
    • Issue: 8
    • Article Number: e4863
  • “Quantification of Airborne Concentrations of Nanoscale Dusts by Particle Gravimetry Using Ionic-Liquid Modified Polymeric Electrospun Fibers”
    • Authors: Tok, Z., Ertekin, K.
    • Journal: Macromolecular Materials and Engineering
    • Year: 2024
    • Volume: 309
    • Issue: 7
    • Article Number: 2400062
  • “An emission based optical CO2 sensor fabricated on grating-like TiO2 substrates using HPTS”
    • Authors: Yilmaz, O., Ebeoglugil, F., Aydin, I., Dalmis, R., Ertekin, K.
    • Journal: Spectrochimica Acta – Part A: Molecular and Biomolecular Spectroscopy
    • Year: 2024
    • Volume: 305
    • Article Number: 123502
    • Citations: 2
  • “Enhanced luminescence of a silica-nitride phosphor; La3Si6N11 + by using Cr3+-activated TiO2 nanoparticles”
    • Authors: Aydin, I., Ertekin, K., Azem, F.A., Delice, T.K., Birlik, I.
    • Journal: International Journal of Ceramic Engineering and Science
    • Year: 2024
    • Volume: 6
    • Issue: 1
    • Article Number: e10198
  • “Quantification of airborne concentrations of micro-scale and submicron phosphors in the manufacturing environment by spectrofluorometric method”
    • Authors: Deniz, F., Ertekin, K., Ulucan, U.
    • Journal: Chemical Papers
    • Year: 2022
    • Volume: 76
    • Issue: 12
    • Pages: 7633–7646
  • “Investigation of TiO2 and Ce3+-activated TiO2 particles on optical properties of the PMMA embedded YAG: Ce3+ and LuAG: Ce3+”
    • Authors: Yildirim, B., Keskin, O.Y., Dalmis, R., Azem, F.A., Ertekin, K.
    • Journal: Optical Materials
    • Year: 2022
    • Volume: 133
    • Article Number: 112905
    • Citations: 2
  • “Enhancement of optical properties of Lu3Al5O12+ and Ca-α-SiAlON + by quinine sulphate”
    • Authors: Ulucan, U., Ertekin, K., Oğuzlar, S.
    • Journal: Journal of Materials Science: Materials in Electronics
    • Year: 2021
    • Volume: 32
    • Issue: 24
    • Pages: 28176–28191
    • Citations: 1
  • “Manipulation of brightness and decay kinetics of LuAG: Ce3+ and YAG: Ce3+ by simple metal oxides in polymeric matrices”
    • Authors: Yildirim, B., Yasin Keskin, O., Oguzlar, S., Ak Azem, F., Ertekin, K.
    • Journal: Optics and Laser Technology
    • Year: 2021
    • Volume: 142
    • Article Number: 107226
    • Citations: 7
  • “Investigation of light induced interactions between ZnO nano-particles and red emitting phosphor blends of Eu2+/Dy3+ doped strontium aluminate and Eu2+ doped Ca-α-Sialon”
    • Authors: Oguzlar, S., Zeyrek Ongun, M., Ertekin, K.
    • Journal: Journal of Luminescence
    • Year: 2021
    • Volume: 238
    • Article Number: 118236
    • Citations: 7
  • “Structural and luminescent properties of Er3+ and Tb3+-doped sol–gel-based bioactive glass powders and electrospun nanofibers”
    • Authors: Deliormanlı, A.M., Rahman, B., Oguzlar, S., Ertekin, K.
    • Journal: Journal of Materials Science
    • Year: 2021
    • Volume: 56
    • Issue: 26
    • Pages: 14487–14504
    • Citations: 15