Maryam Noorafshan | Materials Science | Best Researcher Award

Assist. Prof. Dr. Maryam Noorafshan | Materials Science | Best Researcher Award

Assistant Professor at University of Hormozgan, Iran

Dr. Maryam Noorafshan is an accomplished physicist specializing in computational condensed matter physics. Born on September 20, 1983, she has developed a robust academic and research career, currently serving as an Assistant Professor at the University of Hormozgan, Iran. With a passion for advancing knowledge in material sciences, Dr. Noorafshan has focused her research on investigating the electronic, magnetic, and optical properties of materials using advanced computational methods. Her prolific contributions to peer-reviewed journals underscore her commitment to impactful research. Beyond academia, her experience as a visiting researcher at Uppsala University, Sweden, reflects her ability to collaborate internationally and contribute to solving global scientific challenges. Dr. Noorafshan is a dedicated researcher with an unwavering focus on the application of physics to address modern scientific and technological needs.

Professional Profile

Education

Dr. Noorafshan’s academic journey began with a Bachelor’s degree in Theoretical Physics from Shiraz University, Iran, in 2005. She pursued a Master’s degree in the same field at Shiraz University, completing it in 2007. She then achieved a PhD in Computational Condensed Matter Physics from the University of Isfahan, Iran, in 2017. Her education reflects a steady progression toward specialization in condensed matter physics, a field requiring a deep understanding of quantum mechanics and material properties. Additionally, her time as a visiting researcher at Uppsala University in Sweden in 2016 provided her with exposure to advanced research environments and cutting-edge computational techniques. This solid academic foundation has prepared her for a successful career in research and academia.

Professional Experience

Since 2017, Dr. Noorafshan has been serving as an Assistant Professor at the University of Hormozgan, Iran. In this role, she has contributed to both teaching and research, mentoring students and advancing the university’s research agenda. Her experience includes the use of density functional theory (DFT) to explore materials’ electronic, magnetic, and optical properties. Her role as a visiting researcher at Uppsala University allowed her to work in an international research environment, enhancing her global perspective and collaborative skills. Dr. Noorafshan’s professional experience highlights her dedication to advancing scientific knowledge while fostering the next generation of physicists.

Research Interests

Dr. Noorafshan’s research interests lie in the fields of computational condensed matter physics and material science. Her primary focus is on using density functional theory (DFT) and other computational methods to study the electronic, magnetic, and optical properties of materials. She is particularly interested in materials with applications in renewable energy, such as semiconductors for solar cells. Her work on Kondo behavior, electronic structure analysis, and the effect of hydrostatic pressure on material properties underscores her commitment to addressing fundamental questions in physics while exploring practical applications. Dr. Noorafshan’s research contributes to the development of materials that are essential for future technological advancements.

Research Skills

Dr. Noorafshan possesses advanced computational skills, particularly in density functional theory (DFT), first-principles calculations, and materials modeling. Her expertise includes analyzing magnetic, electronic, and optical properties of complex materials. She has a proven ability to design and execute computational experiments, interpret results, and contribute to high-impact publications. Her experience with various software tools and programming languages used in computational physics enhances her research productivity. Additionally, her international collaboration experience has honed her ability to work in diverse research teams and tackle interdisciplinary challenges.

Awards and Honors

While specific awards are not listed in her curriculum vitae, Dr. Noorafshan’s achievements include her selection as a visiting researcher at Uppsala University, Sweden, a recognition of her research potential and capability. Her consistent publication record in reputable journals highlights her contributions to the field of condensed matter physics. Her work on renewable energy materials, particularly those relevant to solar cells, positions her as a valuable researcher addressing global scientific challenges.

Conclusion

Dr. Maryam Noorafshan is a dedicated physicist with significant expertise in computational condensed matter physics. Her strong educational background, professional experience, and focused research interests make her a valuable contributor to the field. With advanced computational skills and a growing body of impactful research, she exemplifies the qualities of a leading researcher. While further recognition through awards and interdisciplinary collaborations would strengthen her profile, Dr. Noorafshan’s current achievements and potential position her as a deserving candidate for the Best Researcher Award.

Publication Top Notes

  • “Study of ab initio calculations of structural, electronic and optical properties of ternary semiconductor Ga1-xInxSb alloys”
    • Authors: Noorafshan, M., Heydari, S.
    • Year: 2024
  • “Density functional study of electronic, elastic and optical properties of GaAs1−xNx (x=0, 0.25, 0.50, 0.75, 1) alloys”
    • Authors: Noorafshan, M.
    • Year: 2022
    • Citations: 1
  • “Effect of hydrostatic pressure on electronic structure and optical properties of InAs: A first principle study”
    • Authors: Noorafshan, M.
    • Year: 2020
    • Citations: 4
  • “First principle calculations of hydrostatic pressure effect on the Kondo behavior and magnetic properties of CePdBi”
    • Authors: Noorafshan, M.
    • Year: 2019
  • “LDA + DMFT and LDA + U study of the electronic and magnetic properties of DyFeSi”
    • Authors: Noorafshan, M.
    • Year: 2018
    • Citations: 4
  • “Density functional investigation of Kondo behavior, electronic structure and magnetic properties of CeRuPO-nano-layer”
    • Authors: Noorafshan, M., Nourbakhsh, Z.
    • Year: 2018
    • Citations: 1
  • “First-Principle Study of the Electronic and Magnetic Properties of Nd1−xLaxFeSi Alloys (x = 0, 0.25, 0.50, 0.75, and 1)”
    • Authors: Noorafshan, M., Nourbakhsh, Z.
    • Year: 2018
    • Citations: 1
  • “The effect of Ce dilution on the ferromagnetic ordering and Kondo behavior of CeRuPO”
    • Authors: Noorafshan, M., Nourbakhsh, Z.
    • Year: 2017
    • Citations: 2
  • “Frequency dependency of magnetic susceptibility in SP magnetite grains”
    • Authors: Hamedpour Darabi, M., Noorafshan, M., Dearing, J.
    • Year: 2012

 

Hao Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Hao Li | Materials Science | Best Researcher Award

Professor at South China Normal University, China

Hao Li, an accomplished Associate Professor at the South China Academy of Advanced Optoelectronics, South China Normal University, is a distinguished researcher in polymeric chemistry and physics. With over a decade of experience in academia and research, Hao Li specializes in stimulus-responsive polymers, self-assembled polymeric nanosystems, and smart polymeric surfaces/interfaces. His contributions to polymer science have garnered recognition through numerous grants and high-impact publications in prestigious journals like Macromolecular Chemistry and Physics and Journal of Materials Chemistry. As a dedicated academic, he actively mentors students, serves as a reviewer for reputed journals, and contributes to cutting-edge advancements in polymer research.

Professional Profile

Education

Hao Li holds a Ph.D. in Polymeric Chemistry and Physics (2006) from Wuhan University, P. R. China. His doctoral work laid the foundation for his expertise in polymerization techniques and polymeric nanosystems. Prior to this, he earned his Bachelor’s degree in Applied Chemistry (2001) from the same institution, where he cultivated his passion for chemistry and materials science.

Professional Experience

Since 2014, Hao Li has been an Associate Professor at the South China Academy of Advanced Optoelectronics, contributing to research and education in advanced materials. He was previously a lecturer at Sun Yat-sen University (2010–2014), focusing on biomedical polymers, and a postdoctoral fellow specializing in self-assembled nanosystems (2007–2010). His career also includes lecturing at Liaoning University of Traditional Chinese Medicine, where he explored biomedical polymers.

Research Interests

Hao Li’s research centers on stimulus-responsive polymers, self-assembled polymeric micro-/nano-systems, and smart polymeric surfaces/interfaces. His innovative work explores the application of these materials in drug delivery, diagnostic tools, and functional nanomaterials, driving advancements in biomedicine and materials science.

Research Skills

Hao Li is proficient in designing and synthesizing functional polymeric materials and self-assembled nanosystems. He has expertise in advanced polymerization techniques, polymer characterization, and nanofabrication. His skills extend to developing pH-sensitive and MRI-visible nanocarriers, highlighting his aptitude for interdisciplinary applications in chemistry and biomedical engineering.

Awards and Honors

Hao Li has been awarded several prestigious research grants, including the National Natural Science Foundation of China General Program and Youth Foundation. He has led and participated in numerous multimillion-yuan projects, such as the Key Research and Development Program of China, solidifying his reputation as a leading researcher in his field. His dedication and impactful work have positioned him as an influential figure in polymer and nanomaterial research.

Conclusion

Hao Li is a strong candidate for the Best Researcher Award due to his significant contributions to polymer science, particularly in smart polymers and biomedical applications. His extensive funding history, impactful publications, and academic leadership demonstrate excellence in research. To further enhance his candidacy, efforts to boost global collaborations, publish in broader-impact journals, and establish a stronger patent portfolio would solidify his position as an outstanding researcher. Overall, he is a worthy contender for this recognition.

Publication Top Notes

  1. Sheet-on-sheet architectural assembly of MOF/graphene for high-stability NO sensing at room temperature
    • Authors: Yanwei Chang, Jingxing Zhang, Ruofei Lu, Weiran Li, Yuchen Feng, Yixun Gao, Haihong Yang, Fengnan Wang, Hao Li, Yi-Kuen Lee, et al.
    • Year: 2024
  2. Adjusting Interface Action and Spacing for Control of Particle Potential
    • Authors: Mian Qin, Jiangsong Ren, Jiamin Cheng, Ruisi Gao, Linli Li, Yao Wang, Pengfei Bai, Hao Li, Guofu Zhou
    • Year: 2024
  3. One Stone Several Birds: Self‐Localizing Submicrocages With Dual Loading Points for Multifunctional Drug Delivery
    • Authors: Shuxuan Liu, Jifei Wang, Yong Jiang, Yao Wang, Bin Yang, Hao Li, Guofu Zhou
    • Year: 2024
  4. CO2-induced switching between MOF-based bio-mimic slow anion channel and proton pump for medical exhalation detection
    • Authors: Honghao Chen, Xiaorui Yue, Yifei Fan, Bin Zheng, Sitao Lv, Fengnan Wang, Yixun Gao, Hao Li, Yi-Kuen Lee, Patrick J. French, et al.
    • Year: 2024
  5. Si, O-Codoped Carbonized Polymer Dots with High Chemiresistive Gas Sensing Performance at Room Temperature
    • Authors: Yubo Yin, Yixun Gao, Jianqiang Wang, Quan Wang, Fengnan Wang, Hao Li, Paddy J. French, Peerasak Paoprasert, Ahmad M. Umar Siddiqui, Yao Wang, et al.
    • Year: 2024
  6. Optically Tunable Multistable Liquid Crystal Grating for Anti‐Counterfeiting through Multilayer Continuous Phase Analysis
    • Authors: Jingxing Zhang, Rundong Wu, Yancong Feng, Rongzeng Lai, Jinglun Liao, Zhijian Mai, Yao Wang, Ying Xiang, Hao Li, Guofu Zhou
    • Year: 2024
  7. Biomimicking TRPM8: A Conversely Temperature-Dependent Nonionic Retrorse Nanochannel for Ion Flow Control
    • Authors: Tao Yang, Zelin Yang, Weiwen Xin, Yuchen Feng, Xiangyu Kong, Yao Wang, Hao Li, Liping Wen, Guofu Zhou
    • Year: 2024
  8. A bio-inspired and switchable H+/OH− ion-channel for room temperature exhaled CO2 chemiresistive sensing
    • Authors: Honghao Chen, Ruofei Lu, Yixun Gao, Xiaorui Yue, Haihong Yang, Hao Li, Yi-Kuen Lee, Paddy J. French, Yao Wang, Guofu Zhou
    • Year: 2023