Jaroslav Polák | Materials Science | Best Researcher Award

Prof. Jaroslav Polák | Materials Science | Best Researcher Award

Researcher from Institute of Physics of Materials CAS, Czech Republic

Prof. RNDr. Jaroslav Polák, DrSc., dr.h.c., is a globally respected scientist in the field of materials science, particularly known for his pioneering research on the mechanical properties of materials, fatigue behavior, and fracture processes. Born in 1938, Prof. Polák has dedicated over six decades to scientific research, contributing foundational theories and experimental insights that have advanced the understanding of fatigue damage in metals. He has held long-term positions at the Institute of Physics of Materials, Czech Academy of Sciences, and has collaborated internationally in Canada, Japan, Finland, and France. With over 450 publications in leading journals, two monographs, several book chapters, and an h-index of 41, his work has been cited nearly 5,000 times, ranking him among the top 1,000 most cited material scientists globally. Prof. Polák’s achievements extend beyond research; he has played a key role in mentoring young scientists, shaping research agendas, and serving on editorial boards and scientific panels. His leadership in organizing international conferences and editing special journal issues has helped shape the direction of the materials fatigue field. Prof. Polák continues to contribute as a senior scientist, maintaining a central role in advanced materials research groups and European research evaluations.

Professional Profile

Education

Prof. Polák’s educational foundation is firmly rooted in solid state physics. He completed his undergraduate studies at the Faculty of Natural Sciences, Brno, in 1961, earning the RNDr. degree. Shortly after, he pursued further specialization by joining the Institute of Solid State Physics at the Czech Academy of Sciences in Prague for one and a half years, deepening his expertise in materials science. In 1965, Prof. Polák earned his CSc. degree, equivalent to a Ph.D., with a thesis focused on mechanical properties of materials, setting the stage for his lifelong research into fatigue behavior. His academic journey continued with further advanced qualifications: in 1992, he achieved the title of Docent from Brno University of Technology, followed by a habilitation (DrSc.) from the Czech Academy of Sciences in 1993. By 1999, he was appointed Professor in Materials Engineering at Brno University of Technology. These milestones reflect a consistent, high-level academic progression that supported his development as a scientific leader. Over the years, his educational background has enabled him to bridge rigorous theoretical work with experimental research, fostering innovations that have become central to the field of materials fatigue.

Professional Experience

Prof. Polák’s professional experience is both extensive and international. He has been permanently based at the Institute of Physics of Materials, Czech Academy of Sciences, Brno, since 1963, where he led the low-cycle fatigue group from 1986 to 2012. Early in his career, he gained international exposure through a postdoctoral fellowship in Canada (1970–1971) under Dr. Z.S. Basinski, followed by visiting research and teaching positions at Tampere University of Technology, Finland, and multiple long-term collaborations with Ecole Centrale de Lille, France. Between 1994 and 2003, he undertook regular annual stays as “Professeur associé” in Lille, later becoming a member of the Scientific Board. His professional leadership also included membership in the scientific panel of the Grant Agency ČR (2005–2013) and involvement in European research evaluation projects under Horizon 2020 and RFCS. Notably, Prof. Polák has combined research with teaching for over 30 years, mentoring generations of students and researchers at Brno University of Technology. His organizational and editorial roles, such as chairing the 16th International Colloquium on Mechanical Fatigue of Metals, further emphasize his influence in shaping both scientific inquiry and the broader research community.

Research Interests

Prof. Polák’s research interests center on the mechanical behavior of materials, with particular emphasis on fatigue, cyclic plastic deformation, and fracture mechanics. His pioneering work has contributed to understanding thermal fatigue, fatigue-creep interactions, short crack kinetics, and the statistical theory of hysteresis loops. He applies a multiscale approach that integrates macroscopic mechanical testing with detailed microstructural analysis, using advanced techniques to study surface relief formation, crack initiation, and damage evolution. Prof. Polák is particularly interested in high-temperature and thermomechanical fatigue processes, developing models that have practical applications in predicting material lifespan under complex loading conditions. His innovative research has informed both theoretical frameworks and experimental methodologies, bridging the gap between fundamental science and engineering practice. His current involvement with CEITEC advanced material groups reflects his continuous engagement with cutting-edge research on next-generation materials. Additionally, his work increasingly connects with computational and computer-controlled testing methods, ensuring his research remains relevant in an era where materials science is intersecting with informatics and automation.

Research Skills

Prof. Polák brings a robust set of research skills to the field of materials science, particularly in experimental design, advanced mechanical testing, multiscale material characterization, and damage mechanism analysis. His expertise includes designing and conducting low-cycle and high-cycle fatigue experiments, implementing computer-controlled testing systems, and developing predictive models for fatigue life and crack initiation. He is highly skilled in correlating microstructural features with macroscopic mechanical behavior, using techniques such as microscopy, surface relief analysis, and fracture surface examination to understand material failure processes. His background in solid state physics equips him with a deep theoretical understanding, allowing him to derive quantitative models from experimental data, such as his work on the kinetics of short cracks and the evolution of surface structures during fatigue. Furthermore, Prof. Polák’s research management and leadership skills are well established, enabling him to coordinate large-scale collaborative projects, organize international conferences, and mentor junior researchers. His ability to combine theoretical, experimental, and organizational expertise makes him a uniquely well-rounded scientific leader in the field.

Awards and Honors

Prof. Polák’s distinguished career has been recognized through numerous awards and honors, reflecting both his scientific excellence and his service to the global research community. One of his most prestigious honors is the Ernst Mach Honorary Medal for Merit in Physical Sciences, awarded by the Academy of Sciences in 2016, acknowledging his groundbreaking contributions to materials science and fatigue research. His international reputation is further underscored by the honorary doctorate (dr. h.c.) awarded by Ecole Centrale de Lille in 2004, where he also served on the Scientific Board between 2000 and 2003. Prof. Polák has been invited to deliver lectures at top institutions worldwide, including Japan, France, Canada, and Finland, and has frequently served as an invited speaker at international conferences. He chaired the Scientific and Organizing Committees of the 16th International Colloquium on Mechanical Fatigue of Metals, reinforcing his leadership standing. More recently, his expertise has been sought as an evaluator for European research projects under Horizon 2020 and RFCS. Collectively, these recognitions affirm his enduring influence and the high esteem in which he is held by the international scientific community.

Conclusion

Prof. Jaroslav Polák stands out as an extraordinary figure in the global materials science community. His six-decade career has yielded transformative insights into fatigue behavior, cyclic plasticity, and material failure mechanisms, underpinned by rigorous experimental research and innovative theoretical modeling. His contributions extend beyond scientific publications to include leadership in major international collaborations, organization of key scientific conferences, editorial work, and the mentorship of numerous young scientists. Prof. Polák’s impressive record of over 450 publications, thousands of citations, and top rankings among material science researchers underscores his profound and lasting impact. Honors such as the Ernst Mach Medal and honorary doctorate from Ecole Centrale de Lille further validate his status as a leading researcher. While his focus has traditionally been on fundamental aspects of materials behavior, he remains well-positioned to contribute to emerging interdisciplinary and computationally driven areas. Prof. Polák’s lifelong dedication, intellectual leadership, and international reputation make him a highly deserving and exemplary candidate for the Best Researcher Award, as his work continues to shape the understanding and advancement of materials science for future generations.

Publications Top Notes

  1. Title: Dislocation Structure Near the Intergranular Fracture Surface of Cyclically Strained Polycrystalline Copper
    Authors: Polák, Jaroslav; Poczklán, Ladislav; Vražina, Tomáš
    Journal: Fatigue & Fracture of Engineering Materials & Structures
    Year: 2025

  2. Title: Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures
    Authors: Heczko, Milan; Polák, Jaroslav; Kruml, Tomáš
    Journal: Materials Science and Engineering A
    Year: 2017
    Citations: 54

  3. Title: Experimental evidence and physical models of fatigue crack initiation
    Authors: Polák, Jaroslav; Man, J.
    Journal: International Journal of Fatigue
    Year: 2016
    Citations: 53

  4. Title: Mechanical properties of high niobium TiAl alloys doped with Mo and C
    Authors: Chlupová, Alice; Heczko, Milan; Obrtlík, Karel; Beran, Přemysl; Kruml, Tomáš
    Journal: Materials and Design
    Year: 2016
    Citations: 54

  5. Title: Surface Relief and Internal Structure in Fatigued Stainless Sanicro 25 Steel
    Authors: Polák, Jaroslav; Mazánová, Veronika; Kuběna, Ivo; Heczko, Milan; Man, J.
    Journal: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
    Year: 2016
    Citations: 24

  6. Title: Surface profile evolution and fatigue crack initiation in Sanicro 25 steel at room temperature
    Authors: Polák, Jaroslav; Petráš, Roman; Chai, Guocai; Škorík, Viktor
    Journal: Materials Science and Engineering A
    Year: 2016
    Citations: 21

  7. Title: Behaviour of ODS Steels in Cyclic Loading
    Authors: Kuběna, Ivo; Kruml, Tomáš; Polák, Jaroslav
    Journal: Transactions of the Indian Institute of Metals
    Year: 2016
    Citations: 3

  8. Title: Basic Mechanisms Leading to Fatigue Failure of Structural Materials
    Authors: Polák, Jaroslav; Petráš, Roman; Mazánová, Veronika
    Journal: Transactions of the Indian Institute of Metals
    Year: 2016
    Citations: 8

  9. Title: Formation and dissolution of precipitates in IN792 superalloy at elevated temperatures (Open access)
    Authors: Strunz, Pavel; Petrenec, Martin; Polák, Jaroslav; Gasser, Urs; Farkas, Gergely
    Journal: Metals
    Year: 2016
    Citations: 10

  10. Title: Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel
    Authors: Petráš, Roman; Škorík, Viktor; Polák, Jaroslav
    Journal: Materials Science and Engineering A
    Year: 2016
    Citations: 51