A. F. M. Shahen Shah | Artificial Intelligence | Best Researcher Award

Assoc. Prof. Dr A. F. M. Shahen Shah | Artificial Intelligence | Best Researcher Award

Associate Professor at Yildiz Technical University, Turkey

Assoc. Prof. Dr. A. F. M. Shahen Shah is a distinguished academic and researcher in the Department of Electronics and Communication Engineering at Yildiz Technical University, Turkey. He is recognized as one of the World’s Top 2% Scientists by Stanford University and Elsevier (2023-2024), reflecting his exceptional contributions to research and academia. With extensive experience in teaching, project management, and interdisciplinary research, Dr. Shah’s work primarily focuses on next-generation communication systems, artificial intelligence, and disaster-resilient technologies. His leadership in multiple funded projects and innovative research underscores his commitment to advancing the field of electronics and communication engineering.

Professional Profile

Education

Dr. Shah completed his Ph.D. in Electronics and Communication Engineering at Yildiz Technical University in 2020, earning a CGPA of 3.75 and receiving a prestigious Gold Medal at ITEX. He holds a Master’s degree in Information Technology from the University of Dhaka, Bangladesh, where he ranked third in his batch with a CGPA of 3.85. His academic journey began with a Bachelor’s in Electronics and Telecommunication Engineering from Daffodil International University, Bangladesh, graduating at the top of his class with a CGPA of 3.96. His academic achievements highlight his unwavering commitment to excellence in learning and research.

Professional Experience

Dr. Shah’s professional career encompasses both academia and industry. He is currently an Associate Professor at Yildiz Technical University, where he has been teaching advanced undergraduate and graduate courses since 2021. He previously served as an Assistant Professor at Istanbul Gelisim University, specializing in wireless communication and artificial neural networks. Before transitioning to academia, Dr. Shah gained valuable industry experience as an IT professional in leading banks in Bangladesh, managing critical operations and support systems. His diverse career trajectory combines academic rigor with practical expertise, enabling him to bridge theory and real-world applications effectively.

Research Interests

Dr. Shah’s research interests lie in the realms of next-generation wireless communication systems, artificial intelligence, vehicular ad hoc networks (VANETs), and UAV-based disaster communication systems. He is particularly passionate about exploring the integration of intelligent reflecting surfaces and fluid antenna systems for 6G communication. His work also includes developing deep learning models for real-time sign language recognition and designing mobility-aware cooperative MAC protocols for VANETs. Dr. Shah’s innovative approach to addressing real-world challenges through advanced communication technologies reflects his dedication to impactful and forward-thinking research.

Research Skills

Dr. Shah possesses a diverse set of research skills, including expertise in designing and analyzing wireless communication systems, MIMO antenna systems, and deep learning-based applications. He is proficient in project management, having led multiple high-impact projects funded by TÜBİTAK and YTÜ-BAP. His technical expertise extends to developing and simulating advanced communication protocols, integrating artificial intelligence into communication systems, and optimizing network performance. With a strong foundation in programming, data analysis, and mathematical modeling, Dr. Shah excels in delivering innovative solutions to complex engineering problems.

Awards and Honors

Dr. Shah’s illustrious career has earned him several accolades, including recognition among the World’s Top 2% Scientists by Stanford University and Elsevier. He was awarded a Gold Medal in the 32nd ITEX for his outstanding Ph.D. research. Additionally, his academic excellence during his undergraduate and master’s studies earned him top rankings in his class. Dr. Shah’s consistent record of achievements in both research and academics highlights his profound impact on the field of electronics and communication engineering.

Conclusion 🤝

Assoc. Prof. Dr. A. F. M. Shahen Shah is a strong contender for the Best Researcher Award due to his remarkable academic credentials, global recognition, and leadership in innovative projects. With increased emphasis on publishing in high-impact journals, pursuing patents, and engaging broader audiences, he has the potential to further solidify his reputation as a leading researcher. His interdisciplinary expertise and proven project management skills make him an outstanding candidate for this prestigious recognition.

Publication Top Notes

  1. Survey and performance evaluation of multiple access schemes for next-generation wireless communication systems
    Authors: AFMS Shah, AN Qasim, MA Karabulut, H Ilhan, MB Islam
    Year: 2021
    Citations: 91
    Published in: IEEE Access 9, 113428-113442
  2. A survey from 1G to 5G including the advent of 6G: Architectures, multiple access techniques, and emerging technologies
    Authors: AFMS Shah
    Year: 2022
    Citations: 65
    Published in: 2022 IEEE 12th Annual Computing and Communication Workshop and Conference
  3. Internet of things and wireless sensor networks for smart agriculture applications-a survey
    Authors: MN Mowla, N Mowla, AFMS Shah, K Rabie, T Shongwe
    Year: 2023
    Citations: 62
    Published in: IEEE Access
  4. A survey on cooperative communication in wireless networks
    Authors: AFMS Shah, MS Islam
    Year: 2014
    Citations: 60
    Published in: International Journal of Intelligent Systems and Applications 6 (7), 66-78
  5. A secured privacy-preserving multi-level blockchain framework for cluster-based VANET
    Authors: AFMS Akhter, M Ahmed, AFMS Shah, A Anwar, A Zengin
    Year: 2021
    Citations: 55
    Published in: Sustainability 13 (1), 400
  6. CB-MAC: A novel cluster-based MAC protocol for VANETs
    Authors: AFM Shahen Shah, H Ilhan, U Tureli
    Year: 2019
    Citations: 53
    Published in: IET Intelligent Transport Systems 13 (4), 587-595
  7. RECV-MAC: A novel reliable and efficient cooperative MAC protocol for VANETs
    Authors: AFM Shahen Shah, H Ilhan, U Tureli
    Year: 2019
    Citations: 43
    Published in: IET Communications 13 (16), 2541-2549
  8. Inspecting VANET with various critical aspects–a systematic review
    Authors: MA Karabulut, AFMS Shah, H Ilhan, ASK Pathan, M Atiquzzaman
    Year: 2023
    Citations: 41
    Published in: Ad Hoc Networks, 103281
  9. A blockchain-based emergency message transmission protocol for cooperative VANET
    Authors: M Ahmed, N Moustafa, AFMS Akhter, I Razzak, E Surid, A Anwar, …
    Year: 2021
    Citations: 38
    Published in: IEEE Transactions on Intelligent Transportation Systems 23 (10), 19624-19633
  10. A blockchain-based authentication protocol for cooperative vehicular ad hoc network
    Authors: AFMS Akhter, M Ahmed, AFMS Shah, A Anwar, ASM Kayes, A Zengin
    Year: 2021
    Citations: 37
    Published in: Sensors 21 (4), 1273

 

Mona Jamjoom | AI | Best Researcher Award

Assoc Prof Dr. Mona Jamjoom | AI | Best Researcher Award

Assoc Prof Dr. Mona Jamjoom, Princess Nourah bint Abdulrahman University, Saudi Arabia

Assoc Prof Dr. Mona Jamjoom is an accomplished researcher in the field of artificial intelligence, recognized for her innovative contributions and impactful studies. With a strong focus on machine learning and data analytics, she has published numerous papers in leading journals and has been awarded the Best Researcher Award for her groundbreaking work. Mona is passionate about harnessing AI to solve complex problems and improve decision-making processes across various industries. Her commitment to advancing technology while addressing ethical considerations makes her a prominent figure in the AI community.

Profile:

Scholar

Academics:

Assoc Prof Dr. Mona Jamjoom holds a PhD in Artificial Intelligence from King Saud University, awarded in May 2016. She also earned her Master’s degree in Computer Science from the same institution in 2004, following her Bachelor’s degree in Computer Science, which she completed in 1992. Her academic background provides a strong foundation for her research and contributions to the field of AI.

Professional Experiences:

Assoc Prof Dr. Mona Jamjoom has extensive professional experience in academia. Since 2021, she has served as an Associate Professor at Princess Nourah bint Abdulrahman University in Riyadh, Saudi Arabia. Prior to this, she was an Assistant Professor at the same institution from 2017 to 2021. Mona began her academic career as a Lecturer at Princess Nourah bint Abdulrahman University from 2007 to 2016, and before that, she worked as a Teaching Assistant from 1998 to 2007. Her career in the field began in 1993, when she provided technical support at the university, further solidifying her commitment to education and technology.

Activities:

Assoc Prof Dr. Mona Jamjoom is actively engaged in various professional activities that enhance her contributions to the field of artificial intelligence. In 2024, she joined the work team at the Center for Advanced Studies in Artificial Intelligence at King Saud University, collaborating on the KSU AI Satellite Lab project with SDAIA. She served as an external examiner for a doctoral thesis on deep learning applications for visual pollution detection in Riyadh. Additionally, she reviewed applications for the Apple Developer Academy’s second challenge for female students and participated in consulting sessions during the Gulf Hackathon Program focused on AI in public education. Mona also acted as a consultant for the UNESCO project “AI Capacity Building in Arabic-speaking Countries,” supported by Huawei Technologies. She has reviewed numerous papers for ISI journals and attended the research day at Princess Nourah bint Abdulrahman University. Furthermore, she co-supervised a PhD student specializing in Cognitive Computing at Universiti Kuala Lumpur, Malaysia.

Publication Top Notes:

M. Adil, Z. Yinjun, M. M. Jamjoom, and Z. Ullah. “OptDevNet: An Optimized Deep Event-Based Network Framework for Credit Card Fraud Detection.” IEEE Access, vol. 12, pp. 132421-132433, 2024. doi: 10.1109/ACCESS.2024.3458944.

Rabbani, H., Shahid, M. F., Khanzada, T. J. S., Siddiqui, S., Jamjoom, M. M., Ashari, R. B., Ullah, Z., Mukati, M. U., and Nooruddin, M. “Enhancing Security in Financial Transactions: A Novel Blockchain-Based Federated Learning Framework for Detecting Counterfeit Data in Fintech.” PeerJ Computer Science, vol. 10, e2280, 2024.

Malik, M. S. I., Nawaz, A., and Jamjoom, M. M. “Hate Speech and Target Community Detection in Nastaliq Urdu Using Transfer Learning Techniques.” IEEE Access, 2024.

Kurtoğlu, A., Eken, Ö., Çiftçi, R., Çar, B., Dönmez, E., Kılıçarslan, S., Jamjoom, M. M., Abdel Samee, N., Hassan, D. S. M., and Mahmoud, N. F. “The Role of Morphometric Characteristics in Predicting 20-Meter Sprint Performance Through Machine Learning.” Scientific Reports, vol. 14, no. 1, 16593, 2024.

Shah, S. M. A. H., Khan, M. Q., Rizwan, A., Jan, S. U., Samee, N. A., and Jamjoom, M. M. “Computer-Aided Diagnosis of Alzheimer’s Disease and Neurocognitive Disorders with Multimodal Bi-Vision Transformer (BiViT).” Pattern Analysis and Applications, vol. 27, no. 3, 76, 2024.

Ishtiaq, A., Munir, K., Raza, A., Samee, N. A., Jamjoom, M. M., and Ullah, Z. “Product Helpfulness Detection with Novel Transformer Based BERT Embedding and Class Probability Features.” IEEE Access, 2024.

Abbas, M. A., Munir, K., Raza, A., Samee, N. A., Jamjoom, M. M., and Ullah, Z. “Novel Transformer Based Contextualized Embedding and Probabilistic Features for Depression Detection from Social Media.” IEEE Access, 2024.

Elhadad, A., Jamjoom, M., and Abulkasim, H. “Reduction of NIFTI Files Storage and Compression to Facilitate Telemedicine Services Based on Quantization Hiding of Downsampling Approach.” Scientific Reports, vol. 14, no. 1, 5168, 2024.

Malik, M. S. I., Younas, M. Z., Jamjoom, M. M., and Ignatov, D. I. “Categorization of Tweets for Damages: Infrastructure and Human Damage Assessment Using Fine-Tuned BERT Model.” PeerJ Computer Science, vol. 10, e1859, 2024.

Malik, M. S. I., Nawaz, A., Jamjoom, M. M., and Ignatov, D. I. “Effectiveness of ELMo Embeddings and Semantic Models in Predicting Review Helpfulness.” Intelligent Data Analysis, (Preprint), 1-21, 2023.