Majhar Ali | Physics and Astronomy | Best Researcher Award

Dr. Majhar Ali | Physics and Astronomy | Best Researcher Award

Assistant Professor from Jamia Millia Islamia, India

Dr. Majhar Ali is an accomplished Assistant Professor in the Department of Physics at Jamia Millia Islamia, New Delhi, India. With over 17 years of academic and research experience, he has significantly contributed to the fields of nuclear and particle physics, celestial mechanics, and the application of statistical models in high-energy collisions. Dr. Ali’s research expertise spans quark-hadron phase transitions, particle production analysis at ultra-relativistic energies, and the restricted three-body problem under various perturbations. His prolific academic journey includes publishing numerous articles in reputed international journals, participating in prestigious national and international conferences, and contributing to academic administration. Dr. Ali’s recent works on mass variation, relativistic effects, and modified potentials in the restricted three-body problem highlight his dynamic engagement with evolving scientific challenges. Apart from his research, he has developed strong teaching expertise across key physics subjects, including nuclear physics, modern physics, classical dynamics, and nanoscience. His ability to combine theoretical frameworks with practical applications marks him as a significant contributor to his discipline. Dr. Ali’s dedication to his students, administrative responsibilities, and continuous participation in scientific seminars and workshops reflect his commitment to both academic excellence and community development.

Professional Profile

Education

Dr. Majhar Ali has pursued a robust academic path, beginning with a Bachelor of Science (Honors) degree in Physics from Veer Kunwar Singh University, Arrah, India, in 1997. He continued his higher studies at Patna University, where he earned a Master of Science degree in Physics in 1999. His interest in advanced particle physics and statistical mechanics led him to pursue a doctoral degree at Jamia Millia Islamia, New Delhi, where he completed his Ph.D. in Physics in 2010. His doctoral research was focused on “Nucleus-Nucleus Collisions at High and Intermediate Energy: Particle Production, Collective Flow, and De-confinement Phenomenon,” which provided him with a deep understanding of high-energy nuclear collisions and statistical particle production models. His educational background is firmly grounded in both theoretical and experimental physics, which has significantly contributed to his versatile research capabilities. Throughout his academic journey, Dr. Ali has consistently demonstrated a passion for learning and a commitment to expanding his expertise in modern physics, which has continued to guide his teaching and research work in the years that followed.

Professional Experience

Dr. Majhar Ali has amassed extensive professional experience, beginning his academic career as a Senior Research Fellow under the University Grants Commission from 2008 to 2010. He subsequently served as an Assistant Professor in the Department of Physics at Kalindi College, University of Delhi, from 2010 to 2023, where he developed a reputation for academic excellence and mentorship. In 2024, Dr. Ali joined Jamia Millia Islamia as an Assistant Professor, where he continues to teach and lead research initiatives. His teaching portfolio spans more than 17 years, covering core and advanced physics subjects, including nuclear and particle physics, nanoscience and technology, classical dynamics, and statistical mechanics. Additionally, Dr. Ali has contributed significantly to the academic administration of Kalindi College, serving in multiple key roles, such as Deputy Coordinator for the Central Evaluation Center and Convenor of Remedial and Coaching Classes. His administrative responsibilities extended to critical committees focusing on student progress, internships, and anti-ragging policies. Dr. Ali’s professional journey is a blend of dedicated teaching, influential research, and active administrative leadership, demonstrating his commitment to shaping the academic environment and advancing the frontiers of physics.

Research Interests

Dr. Majhar Ali’s research interests encompass a broad range of advanced topics within physics, with particular focus on nuclear and particle physics, celestial mechanics, and statistical methods applied to high-energy collisions. His early work centered on the quark-hadron phase transition models, exploring the behavior of matter under extreme conditions using hadronic resonance gas models. Dr. Ali has also extensively investigated particle production mechanisms across a wide energy spectrum, from intermediate to ultra-relativistic energies, contributing valuable insights to the study of quark-gluon plasma formation. In recent years, his research has pivoted towards celestial mechanics, focusing on the dynamics of the perturbed restricted three-body problem (CR3BP), incorporating relativistic effects, mass variations, and modifications to classical potentials. This interdisciplinary approach bridges nuclear physics and astrophysical dynamics, underscoring his ability to tackle complex, multi-domain scientific challenges. His recent studies also delve into the effects of quantum corrections and variable mass systems in gravitational interactions. Dr. Ali’s research is characterized by the innovative application of mathematical models to solve real-world astrophysical and nuclear physics problems, positioning him as a researcher who contributes to both theoretical advancements and practical understanding within the field of physics.

Research Skills

Dr. Majhar Ali possesses an extensive set of research skills that span both theoretical and applied physics. His proficiency in developing and applying advanced statistical models has been instrumental in analyzing particle production across intermediate to ultra-relativistic energies. He is skilled in using the Hadronic Resonance Gas model to investigate quark-hadron phase transitions, providing valuable contributions to nuclear physics. In celestial mechanics, Dr. Ali demonstrates expertise in modeling the perturbed restricted three-body problem, incorporating relativistic corrections, mass variations, and modified gravitational potentials. He is adept at applying mathematical physics techniques to solve complex dynamical systems and has a strong command of analytical problem-solving in both classical and quantum domains. His research skills also include data interpretation from high-energy physics experiments, critical evaluation of theoretical models, and computational physics methods. Dr. Ali’s multi-disciplinary approach enables him to address a wide array of scientific questions, linking particle physics with astrophysical dynamics. Additionally, his teaching experience across diverse physics subjects has honed his ability to translate complex theoretical concepts into accessible knowledge, benefiting both his research collaborators and his students.

Awards and Honors

Dr. Majhar Ali’s academic journey is decorated with recognitions that reflect his dedication to scientific research and academic excellence. During his early research career, he was awarded the prestigious Senior Research Fellowship by the University Grants Commission, Ministry of HRD, Government of India, from 2008 to 2010, which supported his doctoral studies in nuclear and particle physics. His research presentation on the thermal model and rapidity spectra of hadrons earned him the Third Prize at the Natural Sciences Info-Fest 2007 organized by Jamia Millia Islamia, further recognizing his potential as a promising physicist. Dr. Ali has presented his research at several national and international conferences, including the Quark Matter 2008 Symposium and the DAE-BRNS High Energy Physics Symposium, where his work on multiple fireball formation and proton-antiproton flow was well received. Beyond his research accolades, Dr. Ali has actively contributed to academic seminars, workshops, and webinars, consistently participating in initiatives that foster academic growth and interdisciplinary learning. His awards and recognitions not only highlight his scientific contributions but also his role as a dedicated academic committed to advancing knowledge and nurturing the next generation of physicists.

Conclusion

Dr. Majhar Ali exemplifies the qualities of an outstanding researcher and educator, with a distinguished career that integrates rigorous research, effective teaching, and committed academic leadership. His work spans significant areas in nuclear and particle physics, particularly the study of high-energy collisions and the dynamics of celestial bodies under complex perturbations. His contributions to the understanding of quark-hadron transitions and particle flow dynamics have enriched the scientific community’s knowledge of fundamental physics. Dr. Ali’s professional journey is marked by his dedication to continuous learning, interdisciplinary research, and student mentorship. His consistent participation in conferences, seminars, and academic workshops illustrates his passion for academic engagement and scientific collaboration. Dr. Ali’s ability to balance teaching responsibilities with an active research agenda, along with his substantial administrative experience, further underscores his holistic approach to academia. While opportunities for expanding his international collaborations and research supervision remain areas for potential growth, his current accomplishments and trajectory position him as a valuable contributor to the global physics community. Dr. Majhar Ali is undoubtedly a strong and deserving candidate for recognition under the Best Researcher Award.

Publications Top Notes

1. To Study the Relativistic Effect in the Perturbed Circular Restricted Three-Body Problem

  • Authors: M. Ali, Abdullah, S. Aneja, S. N. Prasad

  • Journal: Modern Physics Letters A, 40(04), 2550027

  • Year: 2025

  • DOI: 10.1142/S0217732325500270

2. Effects of Mass Variation with Loglogistic Distribution in the Perturbed Interacting CR3BP with Heterogeneous Primary and Modified Newtonian Potential of Secondary

3. Analysis of Halo Orbits in the Elliptical R3BP with Mass Variation

  • Authors: M. Ali, et al.

  • Journal: International Journal of Applied Mathematics (Accepted, 9 August 2024)

  • Year: 2024

4. Effects of Modified Potential and Quantum Correction in the Generalized Perturbed Interacting CR3BP with Variable Mass Newtonian Potential of Secondary

  • Authors: M. Ali, et al.

  • Journal: Solar System Research (Accepted, 3 August 2024)

  • Year: 2024

5. Strangeness Production – A Possible Signal of Quark Gluon Plasma Formation

  • Authors: M. Ali

  • Journal: International Journal of Engineering & Scientific Research, 6(3)

  • Year: 2018

6. Net Proton and Charged Meson Flow in Relativistic Heavy Ion Collisions at 200 GeV/A

  • Authors: M. Ali

  • Journal: International Research Journal of Natural and Applied Science, 5(1)

  • Year: 2018

7. Rapidity Distribution of Particles Produced in Ultra-relativistic Nucleus-Nucleus Collisions: A Possible Sequential Freeze-out Scenario

  • Authors: M. Ali

  • Journal: International Journal of Advance Research, 2(3)

  • Year: 2014

8. Longitudinal Hadronic Flow at RHIC in Extended Statistical Thermal Model and Resonance Decay Effects

  • Authors: M. Ali

  • Journal: Acta Physica Polonica B, 41(7)

  • Year: 2010

9. Pion Production and Collective Flow Effects in Intermediate Energy Nucleus-Nucleus Collisions

  • Authors: M. Ali

  • Journal: International Journal of Modern Physics, 21(7)

  • Year: 2006

10. Net Proton Flow and Nuclear Transparency Effects at RHIC: Multi-Fireball Model Approach

  • Authors: M. Ali

  • Repository: arXiv:0901.1376

  • Year: 2009

 

Paul Scheck | Physics | Best Researcher Award

Mr. Paul Scheck | Physics | Best Researcher Award

HTBLA Hallstatt, Austria

Paul Scheck is an emerging professional in the field of interior architecture, wood technologies, and restoration techniques. With a solid educational foundation from HTBLA Hallstatt and practical experience in both technical drawing and hands-on woodworking, Paul bridges the gap between traditional craftsmanship and modern digital design. His expertise spans across architectural drafting, BIM software, CNC fabrication, and advanced material applications. Paul’s commitment to preserving historical structures is evident through his specialized trainings in historic window restoration, lime burning, and rammed earth construction. His forthcoming publication on the hygrothermal performance of box windows with insulated inner sashes marks his entry into the research community, focusing on sustainable and historically sensitive construction practices. Additionally, Paul demonstrates a strong drive for continuous learning, evident through his diverse skill set in design software, presentation techniques, and material science tools. While still early in his research journey, Paul shows potential for making significant contributions at the intersection of architectural heritage conservation, building physics, and material innovation. His professional growth is complemented by a passion for creative design, outdoor activities, and a forward-looking attitude toward integrating traditional methods with modern technology.

Professional Profile

Education

Paul Scheck completed his secondary and technical education at HTBLA Hallstatt, focusing on interior architecture, wood technologies, and restoration techniques. The program provided him with both theoretical knowledge and hands-on skills in the areas of furniture design, building conservation, and material applications. He successfully passed his Reife- und Diplomprüfung (graduation and diploma examination), affirming his proficiency in combining design thinking with technical execution. Beyond formal schooling, Paul pursued targeted advanced trainings such as rhetoric and presentation techniques, which enhanced his communication and professional presentation abilities. His specialized courses in historical window restoration at the Kaiservilla in Bad Ischl and lime burning techniques in Gößl reflect a commitment to preserving cultural heritage. Additionally, his hands-on experience with rammed earth construction for the Sternenkinder monument, designed by Anna Herringer, further enriched his education by integrating sustainable materials and traditional craftsmanship. These educational achievements provide a solid foundation for his technical work and emerging research focus, equipping him with both broad competencies and niche expertise in the architectural and construction fields.

Professional Experience

Paul Scheck has gained practical experience across both technical drafting and carpentry, contributing meaningfully to real-world projects. At Planarium GmbH in Gmunden, he worked as a technical draftsman during internships in July 2023 and July 2024, where he developed design concepts through hand sketches and digital tools, created comprehensive submission documents, and produced detailed execution plans using BIM software. His active participation in construction meetings and coordination with project stakeholders demonstrated his ability to bridge the phases of design, approval, and implementation. Prior to this, Paul completed a carpentry internship at Tischlerei Stieger in Bad Goisern, where he gained hands-on experience fabricating and assembling furniture, saunas, and structural woodwork. He demonstrated proficiency in operating machinery, using tools, and supporting on-site installations, honing his craftsmanship and technical problem-solving skills. This combination of design, drafting, and manufacturing experience allows Paul to understand projects holistically, from initial concept through to finished execution. His professional background is further strengthened by his software expertise, covering tools such as Revit, AutoCAD, Fusion360, 3ds Max, CNC programming, and various Adobe applications.

Research Interests

Paul Scheck’s research interests focus on the intersection of building physics, sustainable materials, and architectural conservation. His forthcoming publication on hygrothermal interactions in historic box windows with insulated inner sashes highlights his dedication to understanding the material and environmental performance of traditional construction elements. Paul is particularly interested in how modern interventions can be sensitively applied to heritage structures, ensuring energy efficiency and durability while preserving cultural value. Additionally, his practical exposure to lime burning, rammed earth construction, and the restoration of historic elements shapes his research focus on low-carbon, traditional building materials and their performance in contemporary applications. He is also keen on exploring the integration of digital tools like BIM and life cycle assessment software (such as openLCA) to evaluate and optimize construction methods from both an environmental and a design perspective. Through combining craft knowledge with scientific analysis, Paul aims to contribute to the advancement of sustainable architecture, adaptive reuse, and the responsible modernization of historical buildings.

Research Skills

Paul Scheck possesses a well-rounded set of research skills, combining practical material expertise with digital modeling and analytical tools. He is proficient in Autodesk software (Revit, AutoCAD, Fusion360, 3ds Max) and Adobe programs (Illustrator, InDesign, Photoshop), enabling him to create precise technical drawings, renderings, and visual analyses. His familiarity with CNC programming tools (HOPS, AlphaCAM) allows him to prototype and fabricate components accurately, integrating design concepts with manufacturing capabilities. Additionally, Paul has experience using environmental assessment software such as openLCA and Topas, which are valuable for conducting life cycle analyses and material performance evaluations. His hands-on knowledge of historic restoration techniques, gained through specialized workshops and practical internships, equips him to design research projects that combine empirical investigation with field application. With English proficiency at B2 level, Paul is able to access and engage with international literature and scientific discussions. These combined research skills position him well for multidisciplinary work in architectural conservation, sustainable construction, and material innovation.

Awards and Honors

While Paul Scheck is still early in his research career, his most notable academic recognition so far is the acceptance of his co-authored publication on box window performance, which will appear in the journal Bauphysik in 2025. This publication represents an important acknowledgment of his technical insights and contribution to research on hygrothermal performance in historical window systems. Beyond formal awards, Paul’s acceptance into specialized training programs, such as the restoration workshop at the Kaiservilla Bad Ischl and the rammed earth project led by renowned architect Anna Herringer, reflects peer recognition of his technical abilities and commitment to heritage conservation. Although he has not yet accumulated a significant record of research awards or competitive honors, his achievements in combining practical experience with emerging research contributions suggest strong future potential. As his career develops, pursuing grant opportunities, research fellowships, or competitive project funding would allow him to build a more substantial honors portfolio aligned with top researcher profiles.

Conclusion

In conclusion, Paul Scheck is a promising young professional whose strengths lie in the fusion of technical craftsmanship, digital design, and emerging research in sustainable and heritage-sensitive construction. His educational and professional experiences have provided him with a rare blend of theoretical knowledge, practical skill, and a research-oriented mindset, particularly focused on improving the performance of historical building elements. While his research profile is still developing, with only one publication currently accepted, he shows clear dedication to advancing his expertise and contributing to the field. To fully position himself as a leading researcher eligible for major research awards, Paul would benefit from expanding his research output, leading independent projects, seeking research funding, and deepening his engagement with academic and professional communities. Overall, Paul’s profile reflects a strong foundation and considerable growth potential, suggesting that with time and strategic career development, he can become a significant contributor to architectural conservation research and sustainable building innovations.