Prof. Zhishuai Geng | Chemistry | Best Researcher Award
Assistant Professor from Beijing Institute of Technology, China
Zhishuai Geng is a highly accomplished researcher and Assistant Professor at the School of Materials Science and Engineering, Beijing Institute of Technology. With a strong academic background and a distinguished postdoctoral tenure at the University of California, Santa Barbara, Dr. Geng has positioned himself at the forefront of polymer materials research. His work encompasses dynamic polymer networks, self-healing materials, recyclable polymers, and flame-retardant systems, all aimed at creating sustainable, multifunctional, and high-performance materials. He has authored and co-authored numerous publications in top-tier journals such as ACS Applied Materials & Interfaces, Macromolecules, Chemical Engineering Journal, and Journal of Polymer Science. In addition to his academic contributions, Dr. Geng is also an inventor with several patents in the areas of antibacterial polyurethanes and functional polymeric materials. His engagement with the scientific community is evident through his active peer-review duties for prominent journals and participation in major scientific conferences. Dr. Geng’s innovative work reflects a balance between fundamental chemistry and real-world applications, earning him recognition as an emerging leader in the field. His commitment to solving complex challenges in materials science through interdisciplinary strategies makes him an excellent candidate for prestigious research awards and future academic leadership roles.
Professional Profile
Education
Zhishuai Geng’s academic journey began with a Bachelor of Science in Materials Chemistry from Nankai University, China, completed in 2012. This foundational education grounded him in chemical principles essential for advanced materials research. He then pursued his Ph.D. at the Georgia Institute of Technology in the School of Chemistry and Biochemistry, where he conducted innovative research from 2012 to 2018. His doctoral work focused on polymer chemistry and functional macromolecular systems, laying the groundwork for his future scientific pursuits. Following this, Dr. Geng expanded his expertise internationally through a postdoctoral fellowship at the University of California, Santa Barbara, from 2018 to 2021. There, he worked in the Materials Research Laboratory, a globally recognized hub for cutting-edge research in polymer science and materials engineering. This postdoctoral experience significantly enriched his knowledge in covalent adaptable networks, click chemistry, and flame-retardant materials. In May 2021, he began his role as an Assistant Professor at the Beijing Institute of Technology, where he continues to push the boundaries of polymer innovation. His diverse educational background, spanning elite institutions in both China and the United States, equips him with a global perspective and the technical versatility necessary for leading impactful research in materials science.
Professional Experience
Zhishuai Geng’s professional experience reflects a dynamic and progressive trajectory in academia and research. His career began with an intensive postdoctoral research appointment at the University of California, Santa Barbara, between July 2018 and April 2021. There, he collaborated with leading materials scientists on high-impact research projects, gaining deep expertise in covalent adaptable networks, polymer synthesis, and functional material systems. This period also fostered his proficiency in publishing within high-ranking journals and filing patent applications. In May 2021, Dr. Geng transitioned into a faculty role as an Assistant Professor in the School of Materials Science and Engineering at Beijing Institute of Technology. In this position, he leads a research group focused on the design and development of advanced polymeric materials, addressing key challenges in recyclability, mechanical performance, and multifunctionality. In addition to research, he actively mentors students and contributes to academic service through reviewing scholarly articles and participating in academic societies. His professional affiliations include roles in the Georgia Tech Polymer Network and the Center for the Science and Technology of Advanced Materials and Interfaces. Through these diverse experiences, Dr. Geng has established himself as a capable leader and innovator in the field of materials science and engineering.
Research Interest
Dr. Zhishuai Geng’s research interests lie at the intersection of polymer chemistry, materials engineering, and sustainable design. His primary focus is on dynamic polymer networks and covalent adaptable networks, often known as vitrimers, which allow for reprocessing, self-healing, and enhanced material lifespans. He is particularly interested in developing self-healing polymers that combine structural performance with autonomous repair capabilities. Another major area of his work involves flame-retardant polymer materials, where he has contributed significantly to the design of macromolecular and reactive flame retardants, especially phosphorus-based systems. These materials aim to enhance fire safety in polymers without compromising mechanical properties. Dr. Geng is also engaged in creating antimicrobial materials for biomedical applications, an area that addresses critical needs in healthcare and public safety. Furthermore, he explores surface modification techniques using covalent bonding strategies to enhance compatibility and functionality in complex systems. His interdisciplinary interests integrate organic chemistry, polymer physics, and nanotechnology, enabling the design of advanced materials with multiple, often synergistic, functions. Dr. Geng’s work not only contributes to academic knowledge but also holds strong translational potential for applications in electronics, healthcare, and environmental sustainability.
Research Skills
Zhishuai Geng has cultivated a comprehensive skill set that spans the synthesis, characterization, and application of advanced polymeric materials. His expertise in dynamic polymer networks and covalent adaptable networks has enabled him to design materials with properties such as self-healing, recyclability, and thermal responsiveness. He is proficient in advanced polymer synthesis techniques, including click chemistry, post-polymerization modification, and coordination crosslinking. These methods are used to construct multifunctional systems with tailored mechanical and thermal properties. Dr. Geng is also skilled in developing flame-retardant materials through phosphorus-based and macromolecular strategies, demonstrating an ability to balance fire resistance with mechanical integrity. His work in antimicrobial polymer design reflects his capacity for integrating biofunctional components into synthetic frameworks. Technically, he is adept at using a wide range of analytical tools, including spectroscopy (FTIR, NMR), thermal analysis (TGA, DSC), and mechanical testing. His experience also extends to surface engineering, nanoporous structure fabrication, and dielectric property testing. Additionally, Dr. Geng’s role as an active peer reviewer for journals like Macromolecules, Chemical Engineering Journal, and Biomacromolecules demonstrates his analytical rigor and recognition in the field. These research skills collectively enable him to tackle complex scientific challenges and lead high-impact projects across academia and industry.
Awards and Honors
While specific awards are not explicitly listed, Zhishuai Geng’s achievements in research and innovation reflect significant professional recognition. His selection as a postdoctoral fellow at the prestigious University of California, Santa Barbara, highlights his early potential and research promise. Moreover, his current appointment as an Assistant Professor at Beijing Institute of Technology—a top-tier university in China—demonstrates institutional trust in his expertise and leadership. Dr. Geng has filed and received multiple patents, including a Chinese patent for antibacterial polyurethane (CN 116041660 A) and a U.S. patent for polycation synthesis (US 11,589,590 B2), underscoring the novelty and applicability of his research. He has published in leading journals across the fields of chemistry and materials science and has participated in international conferences, such as the American Chemical Society (ACS) National Meeting. Additionally, his role as a frequent peer reviewer for highly regarded journals is an implicit recognition of his scholarly authority. His involvement in scientific organizations like the Georgia Tech Polymer Network and the Center for Advanced Materials and Interfaces further affirms his standing in the research community. With continued excellence, formal awards and honors are likely to follow in his advancing academic career.
Conclusion
Zhishuai Geng exemplifies the qualities of a dedicated, innovative, and impactful researcher in the field of materials science and polymer chemistry. His work demonstrates a deep commitment to solving pressing global challenges through the development of recyclable, flame-retardant, self-healing, and antimicrobial polymer materials. With a solid academic background, including training at Georgia Institute of Technology and postdoctoral research at UC Santa Barbara, Dr. Geng brings a global perspective and technical sophistication to his role as Assistant Professor at Beijing Institute of Technology. His prolific publication record, collaborative patent activity, and active involvement in peer reviewing indicate both scientific credibility and community engagement. While his professional recognition could be further elevated through formal academic awards and expanded research leadership, his contributions already mark him as a rising leader in his domain. Dr. Geng’s ability to bridge fundamental research and real-world application positions him as a valuable asset to the academic and industrial research ecosystems. He is an ideal candidate for research honors such as the Best Researcher Award, and with continued achievements, he is poised to influence the future of sustainable and multifunctional material development on a global scale.
Publication Top Notes
1. Ultrarobust, Self-Healing Poly(urethane-urea) Elastomer with Superior Tensile Strength and Intrinsic Flame Retardancy Enabled by Coordination Cross-Linking
Authors: Yuxin Luo, Meiyan Tan, Jaeman Shin, Cheng Zhang, Shiyuan Yang, Ningning Song, Wenchao Zhang, Yunhong Jiao, Jixing Xie, Zhishuai Geng, et al.
Journal: ACS Applied Materials & Interfaces
Year: 2024
DOI: 10.1021/acsami.4c08185
2. Metformin-Mediated Fast Charge-Reversal Nanohybrid for Deep Penetration Piezocatalysis-Augmented Chemodynamic Immunotherapy of Cancer
Authors: Yuan Wang, Qingshuang Tang, Ruiqi Wu, Shiyuan Yang, Zhishuai Geng, Ping He, Xiaoda Li, Qingfeng Chen, Xiaolong Liang
Journal: ACS Nano
Year: 2024
DOI: 10.1021/acsnano.3c11174
Citations: 3
3. Dual Nucleation Sites Induced by ZIF-67 Towards Mismatch of Polyphosphazene Hollow Sub-Micron Polyhedrons and Nanospheres in Flame Retardant Epoxy Matrix
Authors: Xiaoning Song, Boyou Hou, Zhengde Han, Ye-Tang Pan, Zhishuai Geng, Laia Haurie Ibarra, Rongjie Yang
Journal: Chemical Engineering Journal
Year: 2023
DOI: 10.1016/j.cej.2023.144278
4. Neighboring Group Participation in Ionic Covalent Adaptable Networks
Authors: Lindsay L. Robinson, Eden S. Taddese, Jeffrey L. Self, Christopher M. Bates, Javier Read de Alaniz, Zhishuai Geng, Craig J. Hawker
Journal: Macromolecules
Year: 2022
DOI: 10.1021/acs.macromol.2c01618
Citations: 4
5. Gold(I)-Catalyzed Tandem Cyclization/Hydroarylation of o-Alkynylphenols with Haloalkynes
Authors: Jiawen Wu, Cunbo Wei, Fen Zhao, Wenqian Du, Zhishuai Geng, Zhonghua Xia
Journal: The Journal of Organic Chemistry
Year: 2022
DOI: 10.1021/acs.joc.2c01804
Citations: 5
6. Multielement Flame-Retardant System Constructed with Metal POSS–Organic Frameworks for Epoxy Resin
Authors: Boyou Hou, Wenyuan Zhang, Hongyu Lu, Kunpeng Song, Zhishuai Geng, Xinming Ye, Ye-Tang Pan, Wenchao Zhang, Rongjie Yang
Journal: ACS Applied Materials & Interfaces
Year: 2022
DOI: 10.1021/acsami.2c14740
7. Azide-Substituted Polylactide: A Biodegradable Substrate for Antimicrobial Materials via Click Chemistry Attachment of Quaternary Ammonium Groups
Authors: Pranav P. Kalelkar, Zhishuai Geng, M.G. Finn, David M. Collard
Journal: Biomacromolecules
Year: 2019
DOI: 10.1021/acs.biomac.9b00504
Citations: 19
8. Placing Functionality Where You Want: The Allure of Sequence Control
Authors: Zhishuai Geng, J. Lee, Craig J. Hawker
Journal: Chem
Year: 2019
DOI: 10.1016/j.chempr.2019.09.007
9. A Hierarchically Nanostructured Cellulose Fiber-Based Triboelectric Nanogenerator for Self-Powered Healthcare Products
Authors: X. He, H. Zou, Z. Geng, X. Wang, W. Ding, F. Hu, Y. Zi, C. Xu, S.L. Zhang, H. Yu, et al.
Journal: Advanced Functional Materials
Year: 2018
DOI: 10.1002/adfm.201805540