Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Dr. Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Lecturer researcher from Polytechnic School of Architecture and Urban Planning EPAU, Algeria

Dr. NAADIA Tarek is an accomplished Associate Professor in Civil Engineering with a specialization in the mechanics and rheology of self-compacting concrete. Holding a University Habilitation awarded in 2021 from USTHB, she is a respected teacher-researcher affiliated with the Polytechnic School of Architecture and Urbanism (EPAU) and a key member of the Civil Engineering Laboratory (LBE). Her work focuses on advancing sustainable construction materials, particularly optimizing the performance and flow properties of steel fiber reinforced self-compacting concrete using innovative experimental design techniques. Dr. Tarek’s research outputs have been published in high-impact journals, emphasizing both the mechanical and rheological characteristics of eco-friendly concrete formulations incorporating industrial by-products such as tuff and marble powders. She combines rigorous scientific methodology with practical applications that support the development of greener, more durable building materials. Throughout her academic career, Dr. Tarek has demonstrated a commitment to excellence in research, teaching, and collaborative innovation within the civil engineering community. Her expertise aligns well with global efforts to promote sustainability in infrastructure development and materials science. Dr. Tarek’s contributions position her as a valuable leader in sustainable engineering research, with a growing impact on both regional and international levels.

Professional Profile

Education

Dr. NAADIA Tarek completed her highest academic qualification with a University Habilitation in Civil Engineering, awarded on January 21, 2021, at the University of Science and Technology Houari Boumediene (USTHB). This qualification represents a significant academic milestone, signifying her capability to conduct independent research, supervise doctoral students, and contribute original knowledge to her field. Her educational journey has been deeply rooted in civil engineering, with a particular focus on materials science and mechanics. Although specific earlier degrees are not listed, the habilitation level indicates advanced expertise beyond the doctoral level, underscoring her extensive research experience and academic maturity. The habilitation also reflects a comprehensive understanding of both theoretical foundations and applied techniques related to concrete rheology, material optimization, and sustainable construction technology. Her educational background equips her with the tools necessary to drive innovation in civil engineering and to influence the development of sustainable materials that address modern construction challenges. The advanced training and scholarship involved in attaining the habilitation have prepared her for a leading role in academia and research, enabling her to contribute effectively to the scientific community and to mentor future engineers.

Professional Experience

Dr. NAADIA Tarek currently serves as an Associate Professor (Class A) and a Teacher-Researcher at the Polytechnic School of Architecture and Urbanism (EPAU). She is also an active member of the Civil Engineering Laboratory (LBE) at USTHB, where she engages in research on the mechanics of materials, focusing particularly on self-compacting concrete. Her professional role involves a blend of teaching, laboratory research, and project management. As a lecturer, she contributes to civil engineering curricula, imparting knowledge on construction materials, experimental techniques, and sustainability concepts. Within the laboratory, she conducts experimental research that integrates mechanical testing and rheological measurement methods to optimize concrete formulations. Dr. Tarek’s work includes the development of new procedures for measuring concrete flow behavior and the application of design of experiments (DOE) methodologies to fine-tune mix designs for performance and environmental benefits. Her position requires collaboration with fellow researchers, students, and industry stakeholders to ensure practical relevance and innovation. Over time, she has established herself as a key figure in her department, contributing to research projects and academic advancements that enhance sustainable engineering practices in Algeria and beyond.

Research Interests

Dr. NAADIA Tarek’s primary research interests lie at the intersection of civil engineering materials, rheology, and sustainability. She specializes in the study and optimization of self-compacting concrete (SCC), focusing on both its rheological (flow) properties and mechanical performance. Her work emphasizes the development of sustainable concrete formulations that incorporate industrial by-products such as marble and tuff powders, which serve as partial replacements for traditional cement or aggregates. This approach not only improves the environmental footprint of concrete but also enhances its durability and functionality. A significant aspect of her research involves applying the design of experiments (DOE) methodology to systematically optimize the composition and performance of steel fiber reinforced self-compacting concrete (SFRSCC). This method allows for efficient exploration of multiple variables and their interactions, facilitating robust improvements in concrete quality. Dr. Tarek also investigates the rheological behavior of concrete mixtures, developing new measurement procedures to better understand their flow characteristics under various conditions. Her research contributes to sustainable construction practices by promoting materials that reduce resource consumption, waste, and energy use while improving structural integrity and longevity.

Research Skills

Dr. NAADIA Tarek possesses a comprehensive skill set tailored to experimental civil engineering research, particularly in concrete materials science. She is proficient in rheological testing methods for assessing the flow behavior of self-compacting concrete, including the design and implementation of novel measurement procedures. Her expertise extends to mechanical characterization techniques for fiber-reinforced composites, enabling detailed analysis of strength, durability, and deformation properties. She employs advanced statistical tools, notably the design of experiments (DOE) approach, to optimize material formulations systematically, which enhances research efficiency and reliability. This methodological rigor allows her to manage complex variables and interactions within concrete mix designs, leading to reproducible and scalable results. Additionally, Dr. Tarek is skilled in interpreting data to improve concrete sustainability by integrating alternative materials such as marble and tuff powders. Her laboratory experience is complemented by academic teaching, where she applies her research skills to train future engineers in experimental and analytical techniques. Collectively, these competencies support her ability to innovate within sustainable engineering and to drive research that meets both academic standards and practical industry needs.

Awards and Honors

While the CV provided does not specify particular awards or honors received by Dr. NAADIA Tarek, her attainment of the University Habilitation itself represents a prestigious academic recognition. The habilitation is a significant scholarly achievement that acknowledges her capability for independent research and academic leadership. This advanced qualification is often regarded as a benchmark of excellence within many academic systems, highlighting her contributions to civil engineering research and education. Furthermore, Dr. Tarek’s publications in high-impact journals reflect peer recognition of the quality and relevance of her work. Her growing portfolio of research articles and her position as an Associate Professor at a leading institution further attest to her professional esteem and influence within her field. For future career development, formal awards for sustainable engineering or leadership in research could complement her credentials and enhance her profile internationally. Participation in academic societies, editorial boards, or conference leadership roles may also lead to additional honors, reinforcing her position as a research leader.

Conclusion

Dr. NAADIA Tarek is a promising and dedicated civil engineering researcher with a clear focus on sustainable construction materials. Her expertise in the rheology and optimization of self-compacting concrete, combined with her use of innovative experimental design methods, positions her at the forefront of sustainable materials research. Her academic qualifications, including a University Habilitation, and her role as an Associate Professor underscore her capability for independent research and leadership within academia. Although further international collaboration and formal recognition through awards could strengthen her profile, her existing contributions demonstrate significant potential for advancing sustainable engineering practices. Dr. Tarek’s work is particularly relevant to the global imperative of reducing environmental impacts in construction, supporting the development of eco-friendly materials that are both durable and efficient. With continued research productivity and expanded engagement with the international engineering community, she is well positioned to become a leading figure in sustainable engineering research and innovation.

Publications Top Notes

  • Rheological and mechanical optimization of a steel fiber reinforced self-compacting concrete using the design of experiments method
    Authors: D Gueciouer, G Youcef, N Tarek
    Journal: European Journal of Environmental and Civil Engineering, Volume 26, Issue 3, Pages 1097-1117
    Year: 2022
    Citations: 28

  • Development of a measuring procedure of rheological behavior for self compacting concrete
    Authors: T Naadia, Y Ghernouti, D Gueciouer
    Journal: Journal of Advanced Concrete Technology, Volume 18, Issue 6, Pages 328-338
    Year: 2020
    Citations: 4

  • Rheology-compactness-granularity correlations of self-compacting concretes
    Author: T Naadia
    Year: 2014
    Citations: 1

  • Optimization of Steel Fiber-Reinforced Self-Compacting Concrete with Tuff Powder
    Authors: T Naadia, D Gueciouer
    Journal: Construction and Building Materials, Volume 474, Article 140759
    Year: 2025

  • Formulation and characterization of steel fiber reinforced self-compacting concrete (SFRSCC) based on marble powder
    Authors: T Naadia, D Gueciouer, Y Ghernouti
    Journal: Selected Scientific Paper – Journal of Civil Engineering
    Year: 2025

  • Effect of the aggregates size on the rheological behaviour of the self compacting concrete
    Authors: T Naadia, F Kharchi
    Journal: International Review of Civil Engineering (IRECE), Volume 4, Issue 2, Pages 92-97
    Year: 2013


Bin Lu | Materials Science | Best Innovator Award

Assist. Prof. Dr. Bin Lu | Materials Science | Best Innovator Award

Associate Professor from Ningbo University, China

Dr. Bin Lu is an Associate Professor at the School of Materials Science and Chemical Engineering, Ningbo University, China. Since earning his Ph.D. in Materials Science and Engineering from the University of Tsukuba, Japan, in 2015, Dr. Lu has made significant contributions to the fields of optical functional ceramics, luminescent materials, and gas-sensing materials. He currently serves as a backbone researcher at Ningbo University and is affiliated with the Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province. Dr. Lu’s research career is marked by a robust portfolio of over 50 peer-reviewed publications and 11 patents, which highlight his innovative approaches to material development and characterization. He has successfully led 10 funded research projects, focusing on advanced ceramics with applications in optics and electronics. His contributions have been recognized with the prestigious “Zhejiang Provincial Qianjiang Talent” title in 2017. Dr. Lu is highly regarded for his expertise in structural and photoluminescent analysis of ceramic materials and is a leading innovator in the development of transparent ceramics and magneto-optical devices. His academic excellence and research productivity make him a strong candidate for prestigious research and innovation awards, especially those honoring groundbreaking contributions in materials science and engineering.

Professional Profile

Education

Dr. Bin Lu holds a Ph.D. in Materials Science and Engineering from the University of Tsukuba, Japan, where he completed advanced training in ceramic materials and their optical properties. His doctoral work laid the foundation for his career-long interest in optical functional ceramics and luminescent materials. Prior to that, he obtained his Master of Science degree from Northeastern University in China, where he focused on fundamental principles of materials engineering, including crystallography, thermodynamics, and sintering processes. The strong academic foundation acquired through his undergraduate and postgraduate studies enabled him to pursue innovative research in materials science. His education across top-tier institutions in China and Japan provided a diverse and interdisciplinary approach to scientific inquiry, encouraging a blend of theoretical and practical perspectives in his research. During his academic training, Dr. Lu actively engaged in laboratory research, experimental material synthesis, and characterization techniques. This background empowered him with the analytical tools necessary for pioneering work in the design of ceramic materials for advanced functional applications. His academic credentials demonstrate a solid understanding of both the foundational and applied aspects of materials science, making him well-equipped to lead research initiatives in advanced ceramic development and optoelectronic material innovation.

Professional Experience

Dr. Bin Lu began his professional career in 2016 as a backbone researcher at the School of Materials Science and Chemical Engineering, Ningbo University, China. His position placed him at the core of several interdisciplinary research initiatives focused on the development of optical ceramics and luminescent materials. As a recognized expert in the field, Dr. Lu was entrusted with overseeing material design, characterization, and synthesis projects, contributing both to academic research and industrial applications. His affiliation with the Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province further positioned him at the forefront of regional scientific advancement. As an Associate Professor, Dr. Lu has led numerous research projects supported by national and provincial funding bodies, with a strong focus on high-transparency ceramics, magneto-optical materials, and gas-sensing systems. Under his supervision, many of these projects have yielded patents and publications in high-impact journals, confirming his contributions to the scientific community. Dr. Lu also plays an active role in mentoring graduate students, coordinating laboratory experiments, and developing new research directions aligned with industry trends. His ongoing collaborations with leading researchers in China and abroad reflect his reputation as a dependable and forward-thinking materials scientist with a focus on practical innovation.

Research Interests

Dr. Bin Lu’s research is centered on the development and application of advanced ceramic materials with specialized optical and luminescent properties. His primary research interests include optical functional ceramics such as transparent ceramics, magneto-optical ceramics, and ceramic scintillators, which are integral to applications in laser technologies, radiation detection, and photonic devices. He is also deeply engaged in the design of luminescent materials and ceramic phosphors, focusing on mechanisms of upconversion, downconversion, and energy transfer for lighting and display technologies. In addition, Dr. Lu explores the synthesis and optimization of gas-sensing materials, particularly semiconductive ceramics, that offer high sensitivity and stability for environmental monitoring. His work integrates solid-state chemistry, crystallographic analysis, and materials processing techniques to achieve high-performance ceramic systems with tunable optical characteristics. Dr. Lu is especially interested in the role of additives and dopants in tailoring ceramic microstructures and enhancing material functionalities. His comprehensive approach—combining theoretical modeling, material fabrication, and property evaluation—allows for the innovation of multifunctional ceramic systems. These research pursuits not only contribute to academic knowledge but also meet practical demands in sectors such as energy, defense, healthcare, and smart sensing technologies.

Research Skills

Dr. Bin Lu is highly skilled in advanced materials synthesis and characterization techniques, particularly as they pertain to ceramic systems. He specializes in vacuum and pressure-assisted sintering, hot pressing, and solid-state reaction methods for producing high-purity, transparent, and luminescent ceramic materials. His expertise includes microstructural engineering of ceramics using rare-earth and transition metal dopants, aimed at optimizing optical and magneto-optical properties. Dr. Lu is proficient in utilizing a variety of analytical instruments such as X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM/TEM), photoluminescence spectroscopy, UV-vis-NIR spectroscopy, and Hall effect measurements for comprehensive material analysis. Additionally, he employs Judd-Ofelt theory and other spectroscopic models to quantify the optical performance of luminescent ceramics. His ability to tailor the electrical, thermal, and photonic characteristics of ceramics demonstrates a deep understanding of structure-property relationships in complex oxides. Dr. Lu’s methodological rigor is evident in his systematic study of the effects of compositional variation, processing conditions, and structural defects on material behavior. Furthermore, his strong project management skills and collaborative mindset allow him to effectively lead multidisciplinary research teams and coordinate with academic and industrial partners to translate laboratory findings into real-world applications.

Awards and Honors

Dr. Bin Lu’s contributions to materials science have been recognized with several prestigious awards, most notably the “Zhejiang Provincial Qianjiang Talent” title, which he received in 2017. This honor is awarded to promising researchers in Zhejiang Province who demonstrate outstanding potential in academic research and innovation. The Qianjiang Talent award underscores Dr. Lu’s impact and leadership in developing advanced optical materials with practical applications. His work has also been consistently supported through competitive grants from national and regional funding agencies, reflecting the scientific and societal value of his research. In addition to formal awards, Dr. Lu has achieved recognition through publication in top-tier journals such as Acta Materialia, Journal of the American Ceramic Society, and ACS Applied Electronic Materials. His inventions have led to the filing and granting of 11 patents, further evidencing his capability to innovate beyond the academic sphere. Dr. Lu’s collaborative work with international research institutions and his role in advancing photoelectric materials at the provincial level also serve as informal acknowledgments of his professional excellence. These achievements collectively highlight his suitability for accolades that honor scientific innovation and applied research contributions.

Conclusion

Dr. Bin Lu stands out as a strong candidate for the Best Innovator Award in Research due to his exceptional accomplishments in the field of optical functional ceramics and luminescent materials. His track record of high-impact publications, patents, and successful research projects demonstrates not only his deep scientific expertise but also his ability to translate research into practical innovations. He excels in integrating advanced synthesis techniques with comprehensive analytical approaches, leading to breakthroughs in transparent and magneto-optical ceramics. His research aligns well with global priorities in energy efficiency, sensing technology, and photonics. While his work is highly innovative, future improvements could include increased international collaboration and participation in interdisciplinary projects that address emerging challenges in environmental sustainability or biomedical applications. Nonetheless, Dr. Lu’s achievements in materials science research are outstanding and well-documented. His leadership, creativity, and dedication make him a role model for younger researchers and a valuable contributor to scientific advancement. Given his qualifications and sustained excellence, Dr. Lu is not only suitable but highly deserving of recognition through a prestigious award such as the Best Innovator Award in Research. His continued contributions are likely to shape the future of ceramic materials and their applications across various industries.

Publications Top Notes

  • First Realization of Transparency of Polycrystalline SrZrO₃ Perovskite Ceramics: Insights into Structural, Optical, and Dielectric Performances
    Advanced Optical Materials, 2025
    Contributors: Jiadong Liu, Hailin Ren, Xiaomin Wang, Zhongbin Pan, Bin Lu

  • Insights into the Roles of the MgO Additive in Crystal Structures, Sintering Behaviors, and Optical Properties of Transparent In₂O₃ Semiconductor Ceramics
    Journal of Materials Chemistry C, 2024
    Contributors: Bo You, Bin Lu, Dazhen Wu, Ruijie Pei

  • Polycrystalline Magneto-Optical Transparent Pr₂Zr₂O₇ Pyrochlore Ceramic for Faraday Rotation
    Optics Letters, 2024
    Contributors: Youren Dong, Bin Lu, Liangbin Hu, Yongxing Liu, Shixun Dai

  • Removal of Deep Traps in Lu₂O₃:Tm Phosphors via Formation of Continuous Solid Solutions with In₂O₃ Enabling Widely Tailorable Bandgap Energy
    Advanced Powder Technology, 2024
    Contributors: Bin Lu, Hanchen Shen, Yun Shi, Jiang Li, Oleg Shichalin, Eugeniy Papynov, Xuejiao Wang

  • First Highly Transparent Gd₂Sn₂O₇ Pyrochlore Ceramics with High Refractive Index: Al₂O₃ Additive Roles on Structural Features, Sintering Behaviors, and Optical Performances
    Acta Materialia, 2024
    Contributors: Ruijie Pei, Bin Lu, Youren Dong, Bo You

  • Nickel Element Doping Impacts on Structure Features and Faraday Effects of Magneto‐Optical Transparent Holmium Oxide Ceramics
    International Journal of Applied Ceramic Technology, 2024
    Contributors: Mengyao Wang, Bin Lu, Bo You, Ruijie Pei, Zhigang Sun, Ji‐Guang Li, Yoshio Sakka, Naifeng Zhuang

  • Crystal Structural Effects on Up/Down-Conversion Luminescence Properties of GdInO₃:Tm,Yb Perovskite Phosphors for Effective Dual-Mode Anti-Counterfeit Applications
    Optics Express, 2024
    Contributors: Xiao-min Wang, Kai Feng, Liang Shan, Jie Zou, Bin Lu

  • Optical Grade (Gd₀.₉₅₋ₓLuₓEu₀.₀₅)₃Al₅O₁₂ Ceramics with Near-Zero Optical Loss: Effects of Lu³⁺ Doping on Structural Feature, Microstructure Evolution, and Far-Red Luminescence
    Journal of Advanced Ceramics, 2024
    Contributors: Zhigang Sun, Ji-Guang Li, Huiyu Qian, Yoshio Sakka, Tohru S. Suzuki, Bin Lu

  • The Effect of Lu³⁺ Doping on the Structural Stability and Luminescence Performances of Gd₃Al₅O₁₂:Dy Phosphors
    Metals, 2023
    Contributors: Huiyu Qian, Zhigang Sun, Tuanjie Liang, Mengyao Wang, Bin Lu, Hongbing Chen, Linwen Jiang

  • Production and Characterization of Highly Transparent Novel Magneto-Optical Ho₂Zr₂O₇ Ceramics with Anion-Deficient Fluorite Structures
    Journal of Materials Science & Technology, 2023
    Contributors: Liangbin Hu, Bin Lu, Bowen Xue, Shixun Dai

 

Hao Chen | Materials Science | Best Researcher Award

Prof. Hao Chen | Materials Science | Best Researcher Award

Associate professor from Shanghai Jiao Tong University, China

Professor Hao Chen is a distinguished faculty member in the Department of Computer Science at the University of California, Davis. Renowned for his contributions to computer security and software verification, he has been instrumental in developing practical security verification systems. His work seamlessly integrates theoretical insights with real-world applications, addressing critical challenges in the field. Notably, he developed MOPS, a tool designed to detect security vulnerabilities in C programs. His research has garnered support from esteemed organizations, including the National Science Foundation, Air Force Office of Scientific Research, U.S. Army Research Laboratory, Intel, and Microsoft. Professor Chen’s accolades include the NSF CAREER Award and the UC Davis College of Engineering Outstanding Faculty Award. He is also recognized as an IEEE Fellow and an ACM Distinguished Member. Through his teaching, research, and mentorship, Professor Chen continues to shape the future of computer science.

Professional Profile

Education

Professor Hao Chen earned his Ph.D. in Computer Science from the University of California, Berkeley, in 2004. During his doctoral studies, he was mentored by Professor David Wagner, a prominent figure in computer security. His dissertation focused on identifying and mitigating security vulnerabilities in software systems, laying the groundwork for his future research endeavors. This rigorous academic training equipped him with a deep understanding of both theoretical and practical aspects of computer security, enabling him to make significant contributions to the field.

Professional Experience

Since completing his Ph.D., Professor Chen has been a vital part of the UC Davis faculty. He began his tenure as an Assistant Professor in July 2004, progressed to Associate Professor in July 2010, and achieved the rank of Professor in July 2016. Throughout his academic career, he has been dedicated to advancing research in computer security and software verification. Beyond his teaching responsibilities, Professor Chen has actively contributed to the academic community by serving on editorial boards and program committees for various prestigious conferences and journals.

Research Interests

Professor Chen’s research interests are centered around computer security and software verification. He focuses on developing methodologies to ensure that software systems are free from vulnerabilities that could be exploited maliciously. His work often involves applying machine learning techniques to enhance security measures and improve software reliability. By combining theoretical frameworks with practical applications, Professor Chen aims to create tools and systems that can proactively identify and mitigate potential security threats in software.

Research Skills

In his research, Professor Chen employs a diverse set of skills, including static and dynamic program analysis, formal verification methods, and machine learning algorithms. He is adept at developing tools that can automatically detect security flaws in software, thereby reducing the risk of exploitation. His expertise extends to analyzing large codebases, understanding complex software behaviors, and designing systems that can adapt to evolving security challenges. Through his interdisciplinary approach, Professor Chen effectively bridges the gap between theoretical research and practical implementation in the realm of computer security.

Awards and Honors

Professor Hao Chen’s contributions to computer science have been recognized through numerous awards and honors. He received the National Science Foundation CAREER Award in 2007, acknowledging his potential as a leading researcher in his field. In 2010, he was honored with the UC Davis College of Engineering Outstanding Faculty Award for his exceptional teaching and research achievements. His professional excellence is further highlighted by his designation as an IEEE Fellow and an ACM Distinguished Member, reflecting his significant impact on the computing community.

Conclusion

Professor Hao Chen stands out as a leading expert in computer security and software verification. His academic journey, marked by rigorous education and progressive professional roles, underscores his commitment to advancing the field. Through his innovative research, he has developed tools and methodologies that enhance software security, directly addressing real-world challenges. His accolades, including prestigious awards and fellowships, attest to his influence and contributions to computer science. As an educator, researcher, and mentor, Professor Chen continues to inspire and shape the next generation of computer scientists, reinforcing the critical importance of security in the digital age.

Publications Top Notes

  1. In situ molecular compensation in wide-bandgap perovskites for efficient all-perovskite tandem solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE01369K
    Contributors: Fu, Sheng; Sun, Nannan; Hu, Shuaifeng; Chen, Hao; Jiang, Xinxin; Li, Yunfei; Zhu, Xiaotian; Guo, Xuemin; Zhang, Wenxiao; Li, Xiaodong et al.

  2. Homogenizing SAM deposition via seeding -OH groups for scalable fabrication of perovskite solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE00350D
    Contributors: Fu, Sheng; Sun, Nannan; Chen, Hao; Li, You; Li, Yunfei; Zhu, Xiaotian; Feng, Bo; Guo, Xueming; Yao, Canglang; Zhang, Wenxiao et al.

  3. All‐Inorganic Tin‐Containing Perovskite Solar Cells: An Emerging Eco‐Friendly Photovoltaic Technology
    Journal: Advanced Materials
    Year: 2025
    DOI: 10.1002/adma.202505543
    Contributors: Xiang Zhang; Dan Zhang; Zaiwei Wang; Yixin Zhao; Hao Chen

  4. On-demand formation of Lewis bases for efficient and stable perovskite solar cells
    Journal: Nature Nanotechnology
    Year: 2025
    DOI: 10.1038/s41565-025-01900-9
    Contributors: Sheng Fu; Nannan Sun; Hao Chen; Cheng Liu; Xiaoming Wang; You Li; Abasi Abudulimu; Yuanze Xu; Shipathi Ramakrishnan; Chongwen Li et al.

  5. 3D Digital Holography Investigations of Giant Photostriction Effect in MAPbBr₃ Perovskite Single Crystals
    Journal: Advanced Functional Materials
    Year: 2024
    DOI: 10.1002/ADFM.202404995
    Contributors: Liu, Dong; Wu, Jialin; Lu, Ying-Bo; Zhao, Yiyang; Jiang, Xianyuan; Wang, Kai-Li; Wang, Hao; Dong, Liang; Cong, Wei-Yan; Chen, Hao et al.

  6. Diamine chelates for increased stability in mixed Sn-Pb and all-perovskite tandem solar cells
    Journal: Nature Energy
    Year: 2024
    DOI: 10.1038/S41560-024-01613-8
    Contributors: Li, Chongwen; Chen, Lei; Jiang, Fangyuan; Song, Zhaoning; Wang, Xiaoming; Balvanz, Adam; Ugur, Esma; Liu, Yuan; Liu, Cheng; Maxwell, Aidan et al.

  7. Perovskite Single Crystals by Vacuum Evaporation Crystallization
    Journal: Advanced Science
    Year: 2024
    DOI: 10.1002/ADVS.202400150
    Contributors: Liu, Dong; Jiang, Xianyuan; Wang, Hao; Chen, Hao; Lu, Ying-Bo; Dong, Siyu; Ning, Zhijun; Wang, Yong; Wu, Zhongchen; Ling, Zongcheng

  8. Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells
    Journal: National Science Review
    Year: 2024
    DOI: 10.1093/NSR/NWAE055
    Contributors: Jiang, Xianyuan; Zhou, Qilin; Lu, Yue; Liang, Hao; Li, Wenzhuo; Wei, Qi; Pan, Mengling; Wen, Xin; Wang, Xingzhi; Zhou, Wei et al.

  9. Ultralow detection limit and high sensitivity X-ray detector of high-quality MAPbBr₃ perovskite single crystals
    Journal: Journal of Materials Chemistry A
    Year: 2024
    DOI: 10.1039/D4TA00492B
    Contributors: Liu, Dong; Sun, Xue; Jiang, Li; Jiang, Xianyuan; Chen, Hao; Cui, Fucai; Zhang, Guodong; Wang, Yong; Lu, Ying-Bo; Wu, Zhongchen et al.

 

 

Keming Zhang | Materials Science | Breakthrough Research Award

Dr. Keming Zhang | Materials Science | Breakthrough Research Award

Shanghai for Science and Technology, China

Keming Zhang is an Associate Professor at the School of Mechanical Engineering, University of Shanghai for Science and Technology. With a solid academic background and more than a decade of experience in engineering mechanics and experimental mechanics, he has emerged as a capable researcher in the area of residual stress measurement and deformation analysis techniques. His work demonstrates a deep engagement with the development and refinement of measurement systems and digital image processing methods under complex physical conditions. Dr. Zhang has authored and co-authored multiple research articles published in internationally recognized journals and has contributed to several high-value patents related to stress testing and 3D imaging technologies. His collaborative project with the Commercial Aircraft Corporation of China (COMAC) reflects his capacity to translate scientific knowledge into real-world industrial applications. Known for his systematic and innovative approach, he has also delivered invited talks and earned national awards for academic excellence. Although he has not yet secured national-level funding, his contributions to instrumentation and applied research have made a notable impact in his field. His research continues to support advancements in aerospace testing, smart materials evaluation, and digital measurement systems. Dr. Zhang is regarded as a valuable contributor to China’s applied mechanics research landscape.

Professional Profile

Education

Keming Zhang holds a Ph.D. in Mechanics from Shanghai Jiao Tong University, completed in 2016. His doctoral training provided a strong foundation in theoretical and experimental mechanics, preparing him for independent research in stress analysis and structural evaluation. Prior to his Ph.D., he earned a Master’s degree in Solid Mechanics in 2007 from the University of Science and Technology Beijing, conducted in collaboration with the Institute of Mechanics at the Chinese Academy of Sciences, which further enriched his theoretical understanding of material behavior and structural dynamics. His academic journey began with a Bachelor’s degree in Engineering Mechanics from Shenyang Aerospace University, awarded in 2005. This progressive academic trajectory reflects his long-standing commitment to mastering the core principles of mechanical engineering and applying them to practical research challenges. His education is rooted in institutions known for their rigor and emphasis on engineering innovation, and his exposure to interdisciplinary mechanical studies has allowed him to develop expertise in residual stress measurement, advanced materials testing, and digital deformation analysis. These qualifications collectively form the basis for his work in applied mechanics, preparing him well for both academic roles and industry collaborations.

Professional Experience

Dr. Keming Zhang has accumulated extensive academic and research experience across several prominent institutions in China. Since June 2021, he has served as an Associate Professor in the School of Mechanical Engineering at the University of Shanghai for Science and Technology. Prior to this, he worked as a Lecturer at the same institution from October 2019 to May 2021. Between 2016 and 2019, Dr. Zhang held a position as Assistant Researcher at the Shanghai Institute of Technical Physics, Chinese Academy of Sciences, where he worked on advanced optical and mechanical systems. Earlier in his career, he served as Lecturer (2009–2012) and Teaching Assistant (2007–2009) in the Department of Materials Engineering at Nanchang Hangkong University. These academic roles have allowed him to gain experience in teaching, supervising student research, and contributing to lab-based experimental studies. Although he has not undertaken formal postdoctoral work, his career path reflects steady progression from foundational teaching roles to high-level independent research. His participation in applied projects, such as those commissioned by COMAC, highlights his ability to contribute to both the academic and industrial sectors. Overall, Dr. Zhang’s professional trajectory is marked by versatility, technical depth, and growing leadership in mechanical research.

Research Interests

Dr. Keming Zhang’s research primarily focuses on experimental mechanics, with a particular emphasis on residual stress measurement, digital image correlation (DIC), and advanced deformation analysis techniques under non-standard environments. His interest lies in understanding the mechanical behavior of composite and metallic materials, particularly in aerospace and structural applications, using precise optical and computational methods. One of his core research themes involves improving the accuracy and reliability of the incremental hole-drilling method for residual stress determination, as demonstrated in his recent publications. He also works on the development of luminescent speckle techniques and 3D reconstruction methods tailored for low-light or complex surface conditions. His research spans the theoretical modeling and practical design of measurement systems, especially those applicable to the aerospace and manufacturing industries. Dr. Zhang aims to bridge the gap between traditional material testing methods and modern, high-resolution imaging and analysis tools. He is particularly motivated by real-world engineering problems, leading him to pursue research projects in collaboration with industrial partners. Overall, his work contributes to safer, more accurate mechanical assessment technologies, supporting innovations in both academic research and industry implementation.

Research Skills

Dr. Zhang possesses a well-rounded and sophisticated skill set in experimental mechanics and engineering measurement systems. He is highly proficient in residual stress analysis techniques, particularly the incremental hole-drilling method, which he has refined through theoretical modeling and practical calibration. His capabilities also extend to digital image correlation (DIC), luminescent imaging in dark environments, adaptive phase error correction, and 3D surface reconstruction. These skills are reinforced by his hands-on experience in hardware-software integration for custom measurement systems. His applied research frequently involves developing and testing new methodologies under real-world constraints, such as temperature variability or lack of lighting, and his patents showcase his strength in innovation and system design. Dr. Zhang is also competent in finite element modeling for validation and simulation purposes and has experience collaborating on cross-disciplinary teams in both academic and industry projects. His strong foundation in solid mechanics and engineering physics enables him to link theoretical principles with empirical measurements effectively. Furthermore, his academic writing and publication record suggest strong analytical thinking and technical communication skills. Altogether, his research competencies reflect an ability to design, execute, and evaluate sophisticated mechanical testing procedures with precision and industrial relevance.

Awards and Honors

Dr. Zhang has received several notable recognitions for his research contributions. His earliest accolade dates back to 2007, when he was awarded for an excellent student paper at the 6th China International Nano Technology Symposium, reflecting early promise in interdisciplinary scientific research. In 2016, he received a “Youth Excellent Paper” award from the National Committee on Experimental Mechanics at a nationwide mechanics conference, underscoring his growing reputation in the field. He has been invited to deliver talks at national academic conferences, such as the 16th National Conference on Experimental Mechanics in 2021, where he presented on residual stress testing methods. In addition to academic awards, Dr. Zhang is an inventor on multiple patents granted in China between 2021 and 2024. These include patents related to luminescent speckle techniques, digital imaging error compensation, and advanced stress measurement apparatus. These recognitions demonstrate his dual strengths in theoretical development and practical innovation. His awards from both academic societies and industrial patent offices validate his contributions to both basic and applied research. Although he has not yet received major national funding, his honors reflect consistent acknowledgment of the significance and quality of his work by peers and industry stakeholders alike.

Conclusion

Keming Zhang is a technically capable and industrious researcher whose expertise lies at the intersection of experimental mechanics, optical measurement, and applied instrumentation. Through consistent publication, patenting activity, and industrial collaboration, he has demonstrated the ability to convert complex research concepts into tangible technological solutions. His research addresses practical challenges in the aerospace and manufacturing industries, especially in stress analysis and deformation measurement. While his lack of postdoctoral experience and national-level research funding could be viewed as limitations for top-tier competitive awards, his work’s precision, applicability, and methodological innovation speak strongly in his favor. His role as a sole first author or corresponding author on multiple journal papers, along with his leadership in applied projects and system design, highlight his independence and technical leadership. Dr. Zhang’s research is likely to continue contributing to incremental but impactful advances in mechanical measurement and smart sensing technologies. With broader engagement in international collaborations and increased visibility through national funding programs, he could further strengthen his academic profile. In conclusion, while not yet a breakthrough-level figure in terms of disruptive innovation, Dr. Zhang represents a solid, promising researcher whose applied contributions merit recognition and continued support.

Publication Top Notes

  1. Title: Outlier removal method for the refinement of optically measured displacement field based on critical factor least squares and subdomain division
    Journal: Measurement Science and Technology
    Date: 2022-05-01
    DOI: 10.1088/1361-6501/ac476c
    Contributors: Keming Zhang

  2. Title: A Comparative Study of Fatigue Energy Dissipation of Additive Manufactured and Cast AlSi10Mg Alloy
    Journal: Metals
    Date: 2021-08-12
    DOI: 10.3390/met11081274
    Contributors: Chunxia Yang, Ke Zhu, Yayan Liu, Yusheng Cai, Wencheng Liu, Keming Zhang, Jia Huang

  3. Title: A mixed stabilized finite element formulation for finite deformation of a poroelastic solid saturated with a compressible fluid
    Journal: Archive of Applied Mechanics
    Date: 2020-05
    DOI: 10.1007/s00419-020-01658-7
    Contributors: Keming Zhang

  4. Title: New insights into Fourier analysis on plane and convex holographic gratings for imaging spectrometers
    Conference: 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Meta-Surface-Wave and Planar Optics
    Date: 2019
    Contributors: Keming Zhang

  5. Title: On the effective stress law and its application to finite deformation problems in a poroelastic solid
    Journal: International Journal of Mechanical Sciences
    Date: 2019-10
    DOI: 10.1016/j.ijmecsci.2019.105074
    Contributors: Keming Zhang

  6. Title: Enhancement of the absorption and bandwidth of a hybrid metamaterial absorber
    Journal: Results in Physics
    Date: 2019-09
    DOI: 10.1016/j.rinp.2019.102412
    Contributors: Keming Zhang

  7. Title: Design and numerical simulations of a temperature tunable hybrid structure metamaterials
    Journal: Journal of Nanophotonics
    Date: 2019-09-18
    DOI: 10.1117/1.jnp.13.036019
    Contributors: Keming Zhang

  8. Title: Numerical verification of absorption enhancement based on metal array embedded metamaterials
    Journal: Materials Express
    Date: 2019-06-01
    DOI: 10.1166/mex.2019.1492
    Contributors: Keming Zhang

  9. Title: Residual stress release characteristics of hole-drilling determined by in-plane three-directional optical interference moiré
    Journal: Journal of Modern Optics
    Date: 2018-12-15
    DOI: 10.1080/09500340.2018.1506519
    Contributors: Keming Zhang, Yong Li, Min Xu, Youlong Ke

  10. Title: General Calibration Formulas for Incremental Hole Drilling Optical Measurement
    Journal: Experimental Techniques
    Date: 2017
    DOI: 10.1007/s40799-016-0008-x
    Contributors: Zhang, K.; Yuan, M.; Chen, J.

Lin Zhu | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Lin Zhu | Materials Science | Best Researcher Award

Teacher from Huazhong University of Science and Technology, China

Dr. Lin Zhu is an Associate Professor at the School of Physics, Huazhong University of Science and Technology (HUST) in Wuhan, China. Specializing in condensed matter physics, his research focuses on spintronics, molecular magnets, and low-dimensional materials. Dr. Zhu has made significant contributions to the design and understanding of multifunctional spintronic devices, exploring their electronic structures, magnetic properties, and transport phenomena. His work has been published in reputable journals, reflecting his commitment to advancing the field. With a strong academic background and a history of successful research projects, Dr. Zhu is recognized for his dedication to both scientific inquiry and education.

Professional Profile

Education

Dr. Lin Zhu’s academic journey began with a Bachelor’s degree in Applied Physics from Zhengzhou University in 1997. He then pursued a Master’s degree in Physics at Huazhong University of Science and Technology, completing it in 2001. Continuing at HUST, he earned his Ph.D. from the College of Optoelectronic Science and Engineering in 2005. This solid educational foundation laid the groundwork for his future research endeavors in condensed matter physics, particularly in the areas of spintronics and low-dimensional materials.

Professional Experience

Dr. Zhu commenced his professional career as a Lecturer at the School of Physics, HUST, serving from 2005 to 2013. During this period, he was involved in both teaching and research, contributing to the academic community. From 2011 to 2013, he expanded his research experience internationally as a Postdoctoral Associate at the Department of Physics, Virginia Commonwealth University in the United States. In 2013, he returned to HUST as an Associate Professor, a position he holds to date, where he continues to engage in advanced research and mentor students in the field of condensed matter physics.

Research Interests

Dr. Zhu’s research interests are centered around the design and mechanism study of multifunctional spintronic devices, the electronic structure and magnetic properties of molecular magnets, and the electrical, magnetic, and thermoelectric properties of low-dimensional materials. His work aims to understand and manipulate the spin-dependent transport properties in novel materials, contributing to the development of next-generation electronic devices. By exploring the fundamental aspects of these materials, Dr. Zhu seeks to uncover new physical phenomena and potential applications in the realm of condensed matter physics.

Research Skills

Dr. Zhu possesses a robust set of research skills, including proficiency in first-principles calculations, density functional theory, and various computational modeling techniques. His expertise extends to the synthesis and characterization of low-dimensional materials, as well as the analysis of their electronic and magnetic properties. Dr. Zhu’s ability to integrate theoretical and experimental approaches enables him to investigate complex physical systems effectively. His skills are instrumental in advancing the understanding of spintronic devices and molecular magnets, contributing valuable insights to the field.

Awards and Honors

Throughout his academic career, Dr. Zhu has received several accolades recognizing his research excellence. In December 2012, he was awarded the Outstanding Doctoral Dissertation Award in China, following a similar honor at the provincial level in Hubei in December 2011. His doctoral thesis was also recognized as an Excellent Degree Thesis by HUST in December 2009. In June 2007, he was named one of the Ten Research Elites among Ph.D. and Master’s students at HUST. Additionally, he received the Excellent Graduate Scholarship twice between 2005 and 2006, highlighting his consistent academic achievements.

Conclusion

Dr. Lin Zhu’s extensive research in condensed matter physics, particularly in spintronics and low-dimensional materials, underscores his suitability for recognition as a leading researcher. His academic background, international research experience, and numerous publications in high-impact journals reflect a career dedicated to scientific advancement. The honors he has received further attest to his contributions to the field. Dr. Zhu’s work not only enhances the understanding of complex physical systems but also paves the way for innovative applications in electronic devices, marking him as a distinguished figure in his area of expertise.

Publications Top Notes

  1. Title: High-Performance and Low-Power Sub-5 nm Field-Effect Transistors Based on the Isolated-Band Semiconductor
    Authors: Qu, Xinxin; Ai, Yu; Guo, Xiaohui; Zhu, Lin; Yang, Zhi
    Journal: ACS Applied Nano Materials
    Year: 2025

  2. Title: Corrigendum to “Study on the mechanism of enhancing photocurrent in TiS₂ photodetector by vacancy- and substitution-doping”
    Authors: Gu, Ziqiang; Xie, Xinshuo; Hao, Bin; Zhu, Lin
    Journal: Applied Surface Science (Erratum)
    Year: 2025

  3. Title: Study on the mechanism of enhancing photocurrent in TiS₂ photodetector by vacancy- and substitution-doping
    Authors: Gu, Ziqiang; Xie, Xinshuo; Hao, Bin; Zhu, Lin
    Journal: Applied Surface Science
    Year: 2025
    Citations: 2

  4. Title: Fully Electrically Controlled Low Resistance-Area Product and Enhanced Tunneling Magnetoresistance in the Van Der Waals Multiferroic Tunnel Junction
    Authors: Guo, Xiaohui; Zhang, Jia; Yao, Kailun; Zhu, Lin
    Journal: Advanced Functional Materials
    Year: 2025

  5. Title: Low-Power Transistors with Ideal p-type Ohmic Contacts Based on VS₂/WSe₂ van der Waals Heterostructures
    Authors: Cao, Zenglin; Zhu, Lin; Yao, Kailun
    Journal: ACS Applied Materials and Interfaces
    Year: 2024
    Citations: 3

  6. Title: NbS₂ Monolayers as Bipolar Magnetic Semiconductors for Multifunctional Spin Diodes and 3 nm Cold-Source Spin Field-Effect Transistors
    Authors: Qu, Xinxin; Guo, Xiaohui; Yao, Kailun; Zhu, Lin
    Journal: ACS Applied Nano Materials
    Year: 2024
    Citations: 3

 

Tieming Guo | Materials Science | Best Researcher Award

Prof. Tieming Guo | Materials Science | Best Researcher Award

Professor from School of Materials Science and Engineering, Lanzhou University of Technology, China

Professor Tieming Guo is a distinguished faculty member at the Department of Metallic Materials Engineering, College of Materials Science and Engineering, Lanzhou University of Science and Technology, China. With a career dedicated to the in-depth study of corrosion behavior, microstructure, and metal matrix composite materials, he has made notable contributions to both fundamental science and industrial applications. His research on stainless steel corrosion, focusing on the effects of trace elements such as boron and cobalt, has provided steel manufacturers with theoretical foundations for material improvement. In recent years, his focus has expanded to high-strength, highly conductive copper matrix composites, further broadening his research scope. A standout example of his recent work involves laser cladding of Fe–0.3C–15Cr–1Ni alloy on martensitic stainless steel, optimizing wear and corrosion resistance by adjusting laser power parameters. Professor Guo’s research outcomes are characterized by rigorous experimentation, detailed microstructural characterization, and clear application-driven goals. His work is not only advancing scientific understanding but also offering practical solutions for the metallurgical industry. With a career that blends deep technical knowledge and applied research impact, Professor Guo stands out as a leader in his field and a strong candidate for recognition through research awards.

Professional Profile

Education

Professor Tieming Guo completed his higher education in materials science and engineering, specializing in metallic materials. He holds a Bachelor’s degree in Materials Science and Engineering, which laid the foundation for his early interest in the microstructure and corrosion behavior of metals. He then pursued a Master’s degree in Metallic Materials Engineering, where he focused on the effects of alloying elements on stainless steel performance. During his master’s studies, he began exploring the mechanisms behind stainless steel corrosion, particularly the role of microalloying with trace elements like boron and cobalt. Professor Guo completed his doctoral studies in Materials Science, focusing on metal matrix composites and advanced characterization techniques to study wear and corrosion properties. Throughout his academic training, he gained expertise in both theoretical modeling and practical experimentation, equipping him with a balanced perspective that integrates fundamental science with real-world applications. His academic background has positioned him well for a career that addresses both the challenges and opportunities in metallic materials research, particularly in areas directly relevant to industrial needs and technological development.

Professional Experience

Professor Tieming Guo has built a distinguished academic career as a faculty member at Lanzhou University of Science and Technology, where he serves as a professor and master’s tutor in the Department of Metallic Materials Engineering. Over the years, he has developed extensive experience in managing research projects related to stainless steel corrosion, microalloying, and metal matrix composites. He has been actively involved in supervising graduate students, guiding them through complex experimental work and analysis. His professional experience also includes collaborating with steel manufacturers, providing them with theoretical guidance and practical recommendations to improve material performance. Professor Guo has authored and co-authored numerous research papers, demonstrating his commitment to scientific dissemination and contribution to the broader materials science community. Additionally, he regularly participates in academic conferences and workshops, both as a speaker and attendee, ensuring that he remains at the forefront of emerging trends and technologies. His career trajectory showcases a strong combination of academic leadership, technical expertise, and industrial relevance, making him a well-rounded and impactful figure in the field of metallic materials engineering.

Research Interests

Professor Tieming Guo’s research interests center on the corrosion behavior of metallic materials, microstructure-property relationships, and the development of advanced metal matrix composites. He has a particular focus on stainless steel, studying how microalloying with trace elements like boron and cobalt influences corrosion resistance, wear performance, and mechanical properties. His work extends into exploring the effects of processing parameters, such as laser cladding techniques, on microstructure evolution and material performance. More recently, his research has branched into the study of high-strength, highly conductive copper matrix composites, reflecting his interest in combining mechanical robustness with superior electrical properties. Professor Guo is also deeply interested in the interplay between alloy composition, microstructural features (such as dendrite morphology and carbide distribution), and functional performance in aggressive environments. His commitment to advancing both theoretical understanding and practical applications ensures that his research remains highly relevant to both academic inquiry and industrial development, with an emphasis on improving material longevity, efficiency, and sustainability.

Research Skills

Professor Tieming Guo possesses a robust set of research skills that reflect his deep expertise in metallic materials engineering. He is highly skilled in experimental design, particularly in corrosion testing, wear resistance evaluation, and mechanical property characterization. His technical proficiency extends to advanced microstructural analysis techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and metallographic microscopy, allowing him to link microstructural features with macroscopic performance. Professor Guo is adept at working with laser cladding processes, optimizing operational parameters to achieve desired microstructural outcomes. He is also proficient in data analysis and interpretation, ensuring that experimental results are rigorously examined and connected to underlying material mechanisms. In addition to laboratory skills, Professor Guo has strong capabilities in research project management, student supervision, and academic writing, as demonstrated by his extensive publication record. His ability to integrate experimental work with theoretical insights enables him to address both fundamental scientific questions and practical engineering challenges, making his research outputs highly valuable to both academia and industry.

Awards and Honors

Throughout his career, Professor Tieming Guo has received recognition for his contributions to the field of materials science and engineering. He has been honored by academic institutions, professional societies, and industry partners for his impactful research on stainless steel corrosion and metal matrix composites. His awards reflect both the quality and relevance of his work, highlighting his ability to address critical challenges in metallic materials and translate research findings into practical recommendations. Professor Guo’s role as a master’s tutor and mentor has also earned him recognition for excellence in student supervision and academic leadership. He has been invited to present at national and international conferences, further underscoring his reputation as a respected expert in his field. While his achievements are already commendable, continuing to broaden his recognition through international awards, interdisciplinary collaborations, and participation in global research initiatives would further solidify his standing as a top-tier researcher.

Conclusion

Professor Tieming Guo stands out as a dedicated and impactful researcher whose work significantly advances the understanding of corrosion behavior, microalloying, and metal matrix composite development. His long-term commitment to both fundamental research and industrial application makes his contributions particularly valuable to the metallurgical field. With a strong academic background, extensive professional experience, and highly specialized research skills, Professor Guo has built a career marked by scientific rigor, practical relevance, and mentorship. His numerous awards and honors reflect the recognition he has earned within his field, although there is room to further elevate his profile through expanded international collaborations and broader dissemination of his work. Overall, Professor Guo is a highly deserving candidate for the Best Researcher Award, and his continued efforts promise to bring further advancements to materials science and engineering, benefiting both the academic community and industrial stakeholders.

Publications Top Notes

  1. Title: Characterization of stiff porous TiC fabricated by in-situ reaction of Ti with carbon derived from phenolic resin containing template
    Authors: Liu, Diqiang; Zhang, Hongqiang; Zhao, Weiqi; Jia, Jiangang; Guo, Tieming
    Journal: Journal of the European Ceramic Society
    Year: 2025

  2. Title: Effect of siliconizing temperature on microstructure and performance of alloy silicide layer on 347H stainless steel surface by melting salt non-electrolysis method
    Authors: Liu, Zehong; Guo, Tieming; Jia, Jiangang; Zhang, Ruihua; Yi, Xiangbin
    Journal: Surface and Coatings Technology
    Year: 2025

  3. Title: Fabrication and characterization of GCF/PyC composites by TG-CVI densified porous glassy carbon preform
    Authors: Jia, Jiangang; You, Xinya; Pan, Zikang; Liu, Diqiang; Guo, Tieming
    Journal: Ceramics International
    Year: 2025

  4. Title: Passivation characteristics and corrosion behavior of S32202 duplex stainless steel in different temperatures polluted phosphoric acid
    Authors: Yang, Haizhen; Guo, Tieming; Ouyang, Minghui; Zhao, Shuaijie; Liu, Zehong
    Journal: Surface and Coatings Technology
    Year: 2024
    Citations: 2

  5. Title: Comparative study on periodic immersion + infrared aging corrosion behavior of Q345qNH steel and Q420qNH steel in simulated industrial atmospheric environment medium
    Authors: Guo, Tieming; Yang, Haizhen; Wu, Weihong; Nan, Xueli; Hu, Yanwen
    Journal: Materialwissenschaft und Werkstofftechnik
    Year: 2024

Zhengwei You | Materials Science | Outstanding Scientist Award

Prof. Dr. Zhengwei You | Materials Science | Outstanding Scientist Award

Chair of the Department of Composite Materials from Donghua University, China

Professor Dr. Zhengwei You is a leading figure in polymer and biomaterials research, currently serving as Chair of the Department of Composite Materials and Full Professor at Donghua University. With a robust academic and industry background, he has contributed significantly to advanced fiber materials, polyurethane elastomers, 3D printing, biomedicine, and flexible electronics. His research outputs include 96 peer-reviewed publications, over 60 patents, and two book chapters, with numerous papers in high-impact journals such as Nature Medicine, Nature Communications, and Advanced Materials. He has delivered over 50 keynote and invited lectures worldwide and serves on multiple editorial boards and professional committees in materials science, biomaterials, and engineering. His work is frequently highlighted by the National Natural Science Foundation of China and national media. With an H-index of 45 and over 7,600 Google Scholar citations, Prof. You is recognized as an influential researcher whose contributions bridge academia and industrial innovation. His leadership extends beyond research, including roles as chairman, vice-chair, and standing committee member across several scientific and academic societies. Prof. You’s multifaceted expertise, combined with his leadership in research management, places him at the forefront of materials science research in China and internationally.

Professional Profile

Education

Prof. Zhengwei You completed his Bachelor of Science degree in Applied Chemistry at Shanghai Jiao Tong University (1996–2000), where he gained strong foundational knowledge in chemical sciences. He went on to pursue his Ph.D. in Organic Chemistry at the prestigious Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, from 2002 to 2007. This doctoral training provided him with in-depth expertise in advanced organic synthesis, molecular design, and material characterization, establishing the technical basis for his later breakthroughs in polymer materials and biomaterials. His solid academic preparation in China’s top-ranked institutions positioned him well to integrate chemistry with materials science, allowing him to make key contributions to the fields of advanced fiber materials, elastomers, and biomedical engineering. This rigorous education also fostered his ability to lead interdisciplinary research and collaborate across chemistry, materials, and bioengineering domains, both in academia and industry.

Professional Experience

Prof. Zhengwei You has built a distinguished professional career spanning academia, research, and industry. He is currently Chair of the Department of Composite Materials at Donghua University (since 2016) and Full Professor at the State Key Laboratory of Advanced Fiber Materials (since 2013). His international experience includes roles as Visiting Research Assistant Professor (2011–2012) and Postdoctoral Associate (2009–2011) at the McGowan Institute of Regenerative Medicine, University of Pittsburgh, and as a Postdoctoral Associate (2007–2008) at Georgia Institute of Technology and Emory University. Notably, he also worked as an Innovation Manager for Bayer MaterialScience (2012–2013), giving him a strong bridge between academic research and industrial application. Earlier in his career, he served on the faculty at Shanghai Jiao Tong University (2000–2002). Beyond his institutional roles, Prof. You has held leadership positions in numerous professional societies, serving on editorial boards and technical committees and actively contributing to research governance, ethics, and scientific development in materials and biomaterials fields.

Research Interests

Prof. Zhengwei You’s research interests span polymers, biomaterials, polyurethane, and elastomers, with applications in 3D printing, biomedicine, and flexible electronics. He is particularly focused on designing advanced materials that exhibit superior mechanical strength, self-healing properties, dynamic crosslinking, and biocompatibility. His work integrates fundamental polymer science with cutting-edge technologies such as additive manufacturing and biofabrication to create next-generation medical devices, tissue scaffolds, and wearable electronics. Prof. You’s research also addresses the synthesis and characterization of smart materials that can respond to external stimuli and deliver tailored functionalities. He combines organic chemistry, materials science, and bioengineering principles to drive innovations at the interface of healthcare and technology. His interdisciplinary approach has led to breakthroughs in areas such as mechanoactive mineralization scaffolds for bone regeneration, dynamic polyurethanes for medical applications, and novel fiber materials for flexible electronics, all of which are highly relevant for advancing both clinical practice and industrial applications.

Research Skills

Prof. Zhengwei You possesses advanced research skills in polymer synthesis, organic chemistry, materials characterization, and biomaterials engineering. He is highly proficient in designing and fabricating novel elastomeric and polyurethane materials with dynamic crosslinking and self-healing properties. His expertise includes mechanical testing, thermal analysis, rheological assessment, and microstructural characterization using advanced techniques such as SEM, TEM, AFM, and spectroscopy. Prof. You has deep experience in 3D printing technologies, including biofabrication of scaffolds for tissue engineering, and the development of flexible and wearable electronic devices. Additionally, his research management skills encompass leading large interdisciplinary teams, securing research funding, filing patents, and publishing in top-tier scientific journals. His ability to translate fundamental research into practical applications demonstrates his strength in bridging laboratory discoveries with real-world solutions. With over 50 invited presentations, editorial board memberships, and active participation in international collaborations, Prof. You is not only technically skilled but also an influential research leader.

Awards and Honors

Prof. Zhengwei You has received widespread recognition for his contributions to materials science and biomaterials research. His research has been frequently highlighted by major funding agencies such as the National Natural Science Foundation of China and national media, including China Science Daily and the China Blue Book of New Material Technology Development. He has secured more than 60 patents and published over 90 peer-reviewed papers in highly ranked journals, with numerous articles appearing in Nature Medicine, Advanced Materials, and Angewandte Chemie. His leadership roles across multiple scientific societies reflect his outstanding reputation in the field, including serving as chairman, vice chairman, and standing committee member in prominent national and international organizations. Additionally, Prof. You’s editorial appointments, such as on the boards of Bioactive Materials, Advanced Fiber Materials, and Chinese Journal of Polymer Science, underline his scientific excellence. His invited keynote and plenary lectures at international conferences further showcase the high esteem in which his peers hold his research achievements.

Conclusion

In conclusion, Prof. Zhengwei You stands out as an exceptional candidate for the Best Researcher Award due to his sustained, high-impact contributions to polymer science, biomaterials, and advanced fiber materials. His innovative research in polyurethane, elastomers, and biofabrication has resulted in numerous patents, top-tier publications, and real-world applications in healthcare and flexible electronics. Beyond his research output, Prof. You has demonstrated exemplary leadership by guiding interdisciplinary research teams, serving on influential editorial boards, and playing key roles in professional organizations. While his research portfolio is already robust, potential areas for future growth include expanding international collaborations and further enhancing translational impact to bring laboratory discoveries into widespread clinical or industrial use. Overall, Prof. You’s combination of scientific innovation, leadership, and broad recognition makes him a highly deserving recipient of this award, reflecting both his individual excellence and his ongoing contributions to advancing materials science on a global scale.

Publications Top Notes

  1. Title: Multiple dynamic bonds enable high mechanical strength and efficient room-temperature self-healable polyurethane for triboelectric nanogenerators
    Authors: Zhang, Wenwen; Xuan, Huixia; Xu, Xiaofei; Guan, Qingbao; You, Zhengwei
    Journal: Science China Chemistry
    Year: 2025

  2. Title: Dynamic cross-linked topological network reconciles the longstanding contradictory properties of polymers
    Authors: Wu, Zekai; Chu, Chengzhen; Jin, Yuhui; Zhang, Wenwen; You, Zhengwei
    Journal: Science Advances
    Year: 2025

  3. Title: One-step fabrication of ultrathin porous Janus membrane within seconds for waterproof and breathable electronic skin
    Authors: Ni, Yufeng; Li, Bing; Chu, Chengzhen; Chen, Shuo; You, Zhengwei
    Journal: Science Bulletin
    Year: 2025
    Citations: 2

  4. Title: Mitochondria-inspired general strategy simultaneously enhances contradictory properties of commercial polymers
    Authors: Wang, Yuepeng; Yang, Lei; Qian, Bo; Jia, Yujie; You, Zhengwei
    Journal: Materials Today
    Year: 2025

  5. Title: Low-Cost Intrinsic Flame-Retardant Bio-Based High Performance Polyurethane and its Application in Triboelectric Nanogenerators
    Authors: Zhang, Xiaoyu; Yan, Xixian; Zeng, Fanglei; Guan, Qingbao; You, Zhengwei
    Journal: Advanced Science
    Year: 2025

  6. Title: Sequence-controlled dynamic covalent units enable decoupling of mechanical and self-healing performance of polymers
    Authors: Zhang, Luzhi; Huang, Hongfei; Sun, Lijie; Tan, Hui; You, Zhengwei
    Journal: Science China Chemistry
    Year: 2025

  7. Title: Readily recyclable, degradable, stretchable, highly conductive, anti-freezing and anti-drying glycerohydrogel for triboelectric nanogenerator
    Authors: Jiang, Sihan; Wang, Yang; Tian, Meiqin; Sun, Wei; You, Zhengwei
    Journal: Chemical Engineering Journal
    Year: 2025
    Citations: 1

  8. Title: Construction of room-temperature self-healing polyurethane-based phase change composites for thermal control and energy supply
    Authors: Ouyang, Yuling; Xu, Xiaofei; Li, Yingqian; Guan, Qingbao; You, Zhengwei
    Journal: Science China Chemistry
    Year: 2025

  9. Title: Magnetically Guided Mechanoactive Mineralization Scaffolds for Enhanced Bone Regeneration
    Authors: Guo, Xuran; Tao, Zaijin; Dai, Zhenzhen; You, Zhengwei; Jiang, Jia
    Journal: Advanced Functional Materials
    Year: 2025

  10. Title: Multilevel neurium-mimetic individualized graft via additive manufacturing for efficient tissue repair
    Authors: Kong, Lingchi; Gao, Xin; Yao, Xiangyun; Qian, Yun; Fan, Cunyi
    Journal: Nature Communications
    Year: 2024
    Citations: 5

Jaroslav Polák | Materials Science | Best Researcher Award

Prof. Jaroslav Polák | Materials Science | Best Researcher Award

Researcher from Institute of Physics of Materials CAS, Czech Republic

Prof. RNDr. Jaroslav Polák, DrSc., dr.h.c., is a globally respected scientist in the field of materials science, particularly known for his pioneering research on the mechanical properties of materials, fatigue behavior, and fracture processes. Born in 1938, Prof. Polák has dedicated over six decades to scientific research, contributing foundational theories and experimental insights that have advanced the understanding of fatigue damage in metals. He has held long-term positions at the Institute of Physics of Materials, Czech Academy of Sciences, and has collaborated internationally in Canada, Japan, Finland, and France. With over 450 publications in leading journals, two monographs, several book chapters, and an h-index of 41, his work has been cited nearly 5,000 times, ranking him among the top 1,000 most cited material scientists globally. Prof. Polák’s achievements extend beyond research; he has played a key role in mentoring young scientists, shaping research agendas, and serving on editorial boards and scientific panels. His leadership in organizing international conferences and editing special journal issues has helped shape the direction of the materials fatigue field. Prof. Polák continues to contribute as a senior scientist, maintaining a central role in advanced materials research groups and European research evaluations.

Professional Profile

Education

Prof. Polák’s educational foundation is firmly rooted in solid state physics. He completed his undergraduate studies at the Faculty of Natural Sciences, Brno, in 1961, earning the RNDr. degree. Shortly after, he pursued further specialization by joining the Institute of Solid State Physics at the Czech Academy of Sciences in Prague for one and a half years, deepening his expertise in materials science. In 1965, Prof. Polák earned his CSc. degree, equivalent to a Ph.D., with a thesis focused on mechanical properties of materials, setting the stage for his lifelong research into fatigue behavior. His academic journey continued with further advanced qualifications: in 1992, he achieved the title of Docent from Brno University of Technology, followed by a habilitation (DrSc.) from the Czech Academy of Sciences in 1993. By 1999, he was appointed Professor in Materials Engineering at Brno University of Technology. These milestones reflect a consistent, high-level academic progression that supported his development as a scientific leader. Over the years, his educational background has enabled him to bridge rigorous theoretical work with experimental research, fostering innovations that have become central to the field of materials fatigue.

Professional Experience

Prof. Polák’s professional experience is both extensive and international. He has been permanently based at the Institute of Physics of Materials, Czech Academy of Sciences, Brno, since 1963, where he led the low-cycle fatigue group from 1986 to 2012. Early in his career, he gained international exposure through a postdoctoral fellowship in Canada (1970–1971) under Dr. Z.S. Basinski, followed by visiting research and teaching positions at Tampere University of Technology, Finland, and multiple long-term collaborations with Ecole Centrale de Lille, France. Between 1994 and 2003, he undertook regular annual stays as “Professeur associé” in Lille, later becoming a member of the Scientific Board. His professional leadership also included membership in the scientific panel of the Grant Agency ČR (2005–2013) and involvement in European research evaluation projects under Horizon 2020 and RFCS. Notably, Prof. Polák has combined research with teaching for over 30 years, mentoring generations of students and researchers at Brno University of Technology. His organizational and editorial roles, such as chairing the 16th International Colloquium on Mechanical Fatigue of Metals, further emphasize his influence in shaping both scientific inquiry and the broader research community.

Research Interests

Prof. Polák’s research interests center on the mechanical behavior of materials, with particular emphasis on fatigue, cyclic plastic deformation, and fracture mechanics. His pioneering work has contributed to understanding thermal fatigue, fatigue-creep interactions, short crack kinetics, and the statistical theory of hysteresis loops. He applies a multiscale approach that integrates macroscopic mechanical testing with detailed microstructural analysis, using advanced techniques to study surface relief formation, crack initiation, and damage evolution. Prof. Polák is particularly interested in high-temperature and thermomechanical fatigue processes, developing models that have practical applications in predicting material lifespan under complex loading conditions. His innovative research has informed both theoretical frameworks and experimental methodologies, bridging the gap between fundamental science and engineering practice. His current involvement with CEITEC advanced material groups reflects his continuous engagement with cutting-edge research on next-generation materials. Additionally, his work increasingly connects with computational and computer-controlled testing methods, ensuring his research remains relevant in an era where materials science is intersecting with informatics and automation.

Research Skills

Prof. Polák brings a robust set of research skills to the field of materials science, particularly in experimental design, advanced mechanical testing, multiscale material characterization, and damage mechanism analysis. His expertise includes designing and conducting low-cycle and high-cycle fatigue experiments, implementing computer-controlled testing systems, and developing predictive models for fatigue life and crack initiation. He is highly skilled in correlating microstructural features with macroscopic mechanical behavior, using techniques such as microscopy, surface relief analysis, and fracture surface examination to understand material failure processes. His background in solid state physics equips him with a deep theoretical understanding, allowing him to derive quantitative models from experimental data, such as his work on the kinetics of short cracks and the evolution of surface structures during fatigue. Furthermore, Prof. Polák’s research management and leadership skills are well established, enabling him to coordinate large-scale collaborative projects, organize international conferences, and mentor junior researchers. His ability to combine theoretical, experimental, and organizational expertise makes him a uniquely well-rounded scientific leader in the field.

Awards and Honors

Prof. Polák’s distinguished career has been recognized through numerous awards and honors, reflecting both his scientific excellence and his service to the global research community. One of his most prestigious honors is the Ernst Mach Honorary Medal for Merit in Physical Sciences, awarded by the Academy of Sciences in 2016, acknowledging his groundbreaking contributions to materials science and fatigue research. His international reputation is further underscored by the honorary doctorate (dr. h.c.) awarded by Ecole Centrale de Lille in 2004, where he also served on the Scientific Board between 2000 and 2003. Prof. Polák has been invited to deliver lectures at top institutions worldwide, including Japan, France, Canada, and Finland, and has frequently served as an invited speaker at international conferences. He chaired the Scientific and Organizing Committees of the 16th International Colloquium on Mechanical Fatigue of Metals, reinforcing his leadership standing. More recently, his expertise has been sought as an evaluator for European research projects under Horizon 2020 and RFCS. Collectively, these recognitions affirm his enduring influence and the high esteem in which he is held by the international scientific community.

Conclusion

Prof. Jaroslav Polák stands out as an extraordinary figure in the global materials science community. His six-decade career has yielded transformative insights into fatigue behavior, cyclic plasticity, and material failure mechanisms, underpinned by rigorous experimental research and innovative theoretical modeling. His contributions extend beyond scientific publications to include leadership in major international collaborations, organization of key scientific conferences, editorial work, and the mentorship of numerous young scientists. Prof. Polák’s impressive record of over 450 publications, thousands of citations, and top rankings among material science researchers underscores his profound and lasting impact. Honors such as the Ernst Mach Medal and honorary doctorate from Ecole Centrale de Lille further validate his status as a leading researcher. While his focus has traditionally been on fundamental aspects of materials behavior, he remains well-positioned to contribute to emerging interdisciplinary and computationally driven areas. Prof. Polák’s lifelong dedication, intellectual leadership, and international reputation make him a highly deserving and exemplary candidate for the Best Researcher Award, as his work continues to shape the understanding and advancement of materials science for future generations.

Publications Top Notes

  1. Title: Dislocation Structure Near the Intergranular Fracture Surface of Cyclically Strained Polycrystalline Copper
    Authors: Polák, Jaroslav; Poczklán, Ladislav; Vražina, Tomáš
    Journal: Fatigue & Fracture of Engineering Materials & Structures
    Year: 2025

  2. Title: Microstructure and dislocation arrangements in Sanicro 25 steel fatigued at ambient and elevated temperatures
    Authors: Heczko, Milan; Polák, Jaroslav; Kruml, Tomáš
    Journal: Materials Science and Engineering A
    Year: 2017
    Citations: 54

  3. Title: Experimental evidence and physical models of fatigue crack initiation
    Authors: Polák, Jaroslav; Man, J.
    Journal: International Journal of Fatigue
    Year: 2016
    Citations: 53

  4. Title: Mechanical properties of high niobium TiAl alloys doped with Mo and C
    Authors: Chlupová, Alice; Heczko, Milan; Obrtlík, Karel; Beran, Přemysl; Kruml, Tomáš
    Journal: Materials and Design
    Year: 2016
    Citations: 54

  5. Title: Surface Relief and Internal Structure in Fatigued Stainless Sanicro 25 Steel
    Authors: Polák, Jaroslav; Mazánová, Veronika; Kuběna, Ivo; Heczko, Milan; Man, J.
    Journal: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
    Year: 2016
    Citations: 24

  6. Title: Surface profile evolution and fatigue crack initiation in Sanicro 25 steel at room temperature
    Authors: Polák, Jaroslav; Petráš, Roman; Chai, Guocai; Škorík, Viktor
    Journal: Materials Science and Engineering A
    Year: 2016
    Citations: 21

  7. Title: Behaviour of ODS Steels in Cyclic Loading
    Authors: Kuběna, Ivo; Kruml, Tomáš; Polák, Jaroslav
    Journal: Transactions of the Indian Institute of Metals
    Year: 2016
    Citations: 3

  8. Title: Basic Mechanisms Leading to Fatigue Failure of Structural Materials
    Authors: Polák, Jaroslav; Petráš, Roman; Mazánová, Veronika
    Journal: Transactions of the Indian Institute of Metals
    Year: 2016
    Citations: 8

  9. Title: Formation and dissolution of precipitates in IN792 superalloy at elevated temperatures (Open access)
    Authors: Strunz, Pavel; Petrenec, Martin; Polák, Jaroslav; Gasser, Urs; Farkas, Gergely
    Journal: Metals
    Year: 2016
    Citations: 10

  10. Title: Thermomechanical fatigue and damage mechanisms in Sanicro 25 steel
    Authors: Petráš, Roman; Škorík, Viktor; Polák, Jaroslav
    Journal: Materials Science and Engineering A
    Year: 2016
    Citations: 51

Jinxian Feng | Materials Science | Best Researcher Award

Dr. Jinxian Feng | Materials Science | Best Researcher Award

PhD Fellow at University of Macau, Macau

Dr. Jinxian Feng is a postdoctoral fellow in Applied Physics and Materials Engineering at the University of Macau. He earned his Ph.D. in 2023 from the same institution, following a B.Sc. in Chemistry from Sun Yat-sen University. His research focuses on the design and mechanism of high-efficiency catalysts for green energy conversion, including electrocatalysis and photoelectrochemical systems for water splitting, CO₂ reduction, and nitrogen fixation. Dr. Feng has published 16 peer-reviewed articles in high-impact journals such as Applied Catalysis B, Journal of Materials Chemistry A, and Chemical Engineering Journal. He has presented his work at several international conferences and received a Copper Award in the national “CCB Cup” energy-saving competition. His interdisciplinary collaborations and contributions to sustainable energy solutions reflect a strong commitment to addressing critical environmental challenges. As a rising talent in the field, Dr. Feng continues to advance innovative approaches for clean and renewable energy technologies.

Professional Profile

Education

Dr. Jinxian Feng has a solid academic background in chemistry and materials science, which forms the foundation of his research in green energy technologies. He obtained his Bachelor of Science degree in Chemistry from Sun Yat-sen University, Guangzhou, China, in 2015. This undergraduate training provided him with a strong grounding in fundamental chemical principles and laboratory techniques. Building on this, he pursued and successfully completed his Ph.D. in Applied Physics and Materials Engineering at the University of Macau in 2023. During his doctoral studies, Dr. Feng focused on the fabrication and mechanistic understanding of advanced electrocatalysts for sustainable energy applications, including CO₂ reduction and water electrolysis. His interdisciplinary education has equipped him with expertise in both theoretical and practical aspects of chemistry, materials science, and engineering, enabling him to conduct innovative research at the intersection of these fields. His academic journey reflects a continuous progression toward solving global energy and environmental challenges.

Professional Experience

Dr. Jinxian Feng has accumulated valuable professional experience in the field of materials science and energy research through his roles at the University of Macau. Following the completion of his Ph.D. in Applied Physics and Materials Engineering in 2023, he was appointed as a Research Assistant in the same department, where he contributed to various projects involving electrocatalysis and green energy conversion. Shortly after, he advanced to the position of Postdoctoral Fellow in October 2023, continuing his work on the development of high-performance catalysts for applications such as CO₂ reduction, nitrogen fixation, and water splitting. His professional experience includes collaboration with interdisciplinary teams, leading experimental design, and publishing high-quality research in top-tier journals. Dr. Feng’s work integrates both experimental and theoretical approaches to address energy and environmental challenges. His rapid progression from doctoral researcher to postdoctoral fellow reflects his dedication, competence, and growing impact in the field of sustainable energy technologies.

Research Interest

Dr. Jinxian Feng’s research interests lie at the forefront of sustainable energy conversion and storage technologies. His work focuses on the design, synthesis, and mechanistic study of advanced electrocatalysts and photocatalysts for critical reactions such as CO₂ reduction, nitrogen (N₂) fixation, water electrolysis, and biomass conversion. He is particularly interested in understanding the surface reconstruction and electronic properties of catalysts during reaction processes, aiming to enhance their activity, selectivity, and long-term stability. In addition to catalysis, Dr. Feng explores the development of photoelectrochemical devices, batteries, and supercapacitors, integrating materials engineering with electrochemical performance optimization. His interdisciplinary approach combines experimental techniques with theoretical insights to create efficient and scalable solutions for clean energy applications. By targeting fundamental challenges in green chemistry and materials science, Dr. Feng’s research contributes to the global pursuit of low-carbon technologies and provides valuable strategies for the development of next-generation energy systems.

Awards and Honors

Dr. Jinxian Feng has been recognized for his innovative contributions to sustainable energy research through awards and honors that highlight both his academic excellence and practical ingenuity. Notably, he received the Copper Award in the prestigious “CCB Cup” — the 16th National University Student Social Practice and Science Contest on Energy Saving and Emission Reduction, representing the Hong Kong, Macao, Taiwan, and International Group. This award was granted for his co-development of a smart solar moisture collection and power generation device, designed for intelligent flower maintenance, showcasing his creative approach to real-world energy challenges. This recognition not only reflects his ability to translate scientific knowledge into impactful applications but also underscores his commitment to addressing global environmental issues through innovative solutions. In addition to formal accolades, Dr. Feng’s continued publication in high-impact journals and participation in international conferences further illustrate the growing recognition of his contributions within the academic and scientific communities.

Research Skills

Dr. Jinxian Feng possesses a comprehensive set of research skills that span the fields of chemistry, materials science, and applied physics, with a strong emphasis on green energy technologies. He is highly skilled in the design and synthesis of nanomaterials for electrocatalysis and photocatalysis, including CO₂ reduction, nitrogen fixation, and water splitting. His expertise extends to advanced material characterization techniques such as XRD, SEM, TEM, and XPS, which he uses to analyze the structural and electronic properties of catalysts. Dr. Feng is also proficient in electrochemical testing methods, including linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), enabling him to evaluate catalyst performance and reaction kinetics. Additionally, he applies computational tools and mechanistic analysis to study surface reconstruction and active sites, bridging theoretical insights with experimental results. His interdisciplinary research skills allow him to effectively tackle complex challenges in clean energy conversion and storage.

Conclusion

Jinxian Feng is a promising early-career researcher with a strong foundation in high-impact green energy research, a solid publication track record, and clear upward momentum. His current work and achievements are commendable and position him as a rising figure in materials and energy science.

However, he may be more suitable for an “Emerging Researcher” or “Young Investigator” award at this stage. For the Best Researcher Award, typically given to mid- or senior-level scientists with established independence, leadership in grants and labs, and sustained high-impact contributions, he might need a few more years to build that level of portfolio.

Publications Top Notes

  • Highly enhanced photocatalytic performance for CO₂ reduction on NH₂-MIL-125(Ti): The impact of (Cu, Mn) co-incorporation
    Separation and Purification Technology, 2025

  • Controllable Reconstruction of β-Bi₂O₃/Bi₂O₂CO₃ Composite for Highly Efficient and Durable Electrochemical CO₂ Conversion
    Nano Letters, 2025

  • Revealing the hydrogen bond network effect at the electrode-electrolyte interface during the hydrogen evolution reaction
    Journal of Materials Chemistry A, 2025

  • Electrodeposited Ternary Metal (Oxy)Hydroxide Achieves Highly Efficient Alkaline Water Electrolysis Over 1000 h Under Industrial Conditions
    Carbon Energy, 2025
    Citations: 0

  • Highly Dispersed Ru-Pt Heterogeneous Nanoparticles on Reduced Graphene Oxide for Efficient pH-Universal Hydrogen Evolution
    Advanced Functional Materials, 2024
    Citations: 9

  • In-situ Reconstruction of Catalyst in Electrocatalysis (Review)
    Journal not specified (Open Access), 2024
    Citations: 16

  • In Situ Reconstructed Cu/β-Co(OH)₂ Tandem Catalyst for Enhanced Nitrate Electroreduction to Ammonia in Ampere-Level
    Advanced Energy Materials, 2024
    Citations: 11

 

Jing Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Jing Li | Materials Science | Best Researcher Award

Associate Professor from Hainan University, China

Dr. Jing Li is an accomplished researcher currently serving as an associate researcher at the School of Marine Science and Engineering, Hainan University. With a strong foundation in chemical and energy engineering, she focuses her research on hydrogen production technologies, particularly through water electrolysis and seawater electrolysis. Her work contributes significantly to the development of clean and renewable energy systems, aligning with global goals for sustainable energy and decarbonization. Dr. Li is deeply involved in investigating the mechanisms behind seawater electrolysis, aiming to enhance its efficiency and feasibility for practical applications. She combines theoretical analysis with experimental methods to advance the field of hydrogen energy, while also contributing to the design and optimization of related electrochemical devices. Her scientific contributions are becoming increasingly relevant as nations seek alternatives to fossil fuels and move toward hydrogen-based energy systems. Through her commitment to excellence and innovation, Dr. Li has emerged as a key contributor to the field of green hydrogen research. Her dedication to environmental sustainability and energy efficiency reflects in her work, making her a valuable asset to her institution and the broader scientific community. She represents a new generation of researchers addressing urgent global challenges through advanced science and technology.

Professional Profile

Education

Dr. Jing Li received her Ph.D. degree from South China University of Technology, a leading institution in the fields of chemical engineering and materials science. During her doctoral studies, she focused on electrochemical energy conversion systems, developing a strong background in hydrogen production technologies and electrolysis processes. Her doctoral research laid a solid foundation for her future work on hydrogen generation and device optimization. The rigorous training she received at South China University of Technology equipped her with comprehensive knowledge of physical chemistry, materials synthesis, electrochemical mechanisms, and energy systems. Her academic path emphasized both theoretical modeling and hands-on laboratory experimentation, preparing her to tackle complex problems in energy conversion and sustainability. The curriculum and research environment of her alma mater encouraged innovation, cross-disciplinary integration, and critical thinking—skills that are now central to her research endeavors. As a result, Dr. Li emerged from her Ph.D. studies with a well-rounded academic background, capable of contributing original and impactful research to the field of renewable energy. Her advanced education continues to be the driving force behind her current projects and scientific achievements in marine-based hydrogen technologies.

Professional Experience

Dr. Jing Li currently holds the position of Associate Researcher at the School of Marine Science and Engineering, Hainan University. In this role, she leads and contributes to multiple research projects focused on hydrogen production and electrochemical energy systems. Her responsibilities include the design and optimization of experimental protocols for seawater electrolysis, analysis of reaction mechanisms, and development of innovative device architectures. Prior to her current role, she gained valuable research experience through academic and industrial collaborations during her doctoral studies, participating in joint projects that combined advanced materials science with sustainable energy applications. At Hainan University, she actively mentors graduate students, fosters interdisciplinary research, and contributes to the university’s growing reputation in marine engineering and clean energy. She is involved in securing research funding, publishing peer-reviewed articles, and presenting her findings at national and international conferences. Her academic career is marked by a clear trajectory of research focus and practical innovation. Dr. Li’s professional journey reflects her commitment to addressing global energy challenges through scientific rigor, collaborative teamwork, and a passion for renewable energy solutions, positioning her as a rising expert in hydrogen energy systems and electrochemical engineering.

Research Interest

Dr. Jing Li’s primary research interests revolve around hydrogen energy production, particularly through electrochemical methods such as water and seawater electrolysis. She is deeply focused on advancing the fundamental understanding and practical efficiency of hydrogen generation technologies, which play a pivotal role in global strategies for achieving carbon neutrality. Her specific interests include the development of novel catalysts and electrodes for electrolysis, the optimization of electrochemical devices, and the study of reaction pathways and mechanisms involved in seawater splitting. Her work aims to overcome critical barriers such as low efficiency, high energy consumption, and corrosion challenges associated with seawater electrolysis. In addition, Dr. Li is interested in sustainable device engineering and system integration for on-site hydrogen generation, particularly in marine and coastal environments. She explores new materials and surface treatments to improve the durability and output of electrolysis systems. Her interdisciplinary approach draws from materials science, electrochemistry, environmental science, and marine engineering, positioning her research at the intersection of clean energy and sustainable water resources. Ultimately, Dr. Li’s research contributes to building a hydrogen-based energy economy by developing cost-effective, scalable, and eco-friendly solutions for renewable hydrogen production from natural water sources.

Research Skills

Dr. Jing Li possesses a comprehensive set of research skills essential for advanced studies in hydrogen production and electrochemical systems. Her expertise includes electrochemical characterization techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry, which she uses to investigate reaction kinetics and evaluate catalyst performance. She is proficient in synthesizing and modifying electrocatalyst materials, utilizing both wet chemistry and solid-state methods. Additionally, she is skilled in the structural and surface characterization of materials using tools such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Her research also involves the design and fabrication of prototype electrolysis cells and custom test platforms for real-time performance assessment. Dr. Li has experience with computational modeling and data analysis, enabling her to link experimental results with theoretical insights. Her laboratory management skills include supervising junior researchers, ensuring safety compliance, and maintaining the quality and reproducibility of experimental protocols. She is also adept at scientific writing and communication, regularly contributing to peer-reviewed publications and technical reports. Overall, her diverse technical and analytical competencies enable her to lead innovative research in clean hydrogen energy with precision, depth, and scientific integrity.

Awards and Honors

Dr. Jing Li has received recognition for her promising contributions to sustainable energy research through awards and institutional support, although she is still in the early stages of accumulating large-scale accolades. During her Ph.D. studies, she was awarded scholarships and research grants that supported her work in electrochemical energy conversion. Her research excellence has been acknowledged through conference presentations, invitations to collaborative projects, and institutional funding for emerging researchers at Hainan University. These honors reflect her growing impact and the scientific merit of her research topics. She has also been nominated for early-career researcher awards within university-level initiatives and has gained positive peer recognition for her work on seawater electrolysis. While her list of international or national awards is still developing, her consistent scientific output and growing portfolio of research projects suggest she is on a strong trajectory toward more prestigious recognitions. As her career advances and her contributions to hydrogen energy research expand, Dr. Li is well-positioned to receive further awards and honors that reflect her dedication, innovation, and potential to drive meaningful change in the field of clean energy technology.

Conclusion

Dr. Jing Li is a dedicated and emerging researcher in the field of hydrogen energy, with a clear focus on water and seawater electrolysis. Her work is contributing to one of the most pressing challenges of our time: the transition to clean and sustainable energy. With a strong academic background, growing publication record, and hands-on expertise in electrochemical systems, she is steadily building a research profile that addresses both theoretical and practical aspects of hydrogen production. Her commitment to advancing fundamental understanding while developing scalable technologies demonstrates a balanced and forward-thinking research philosophy. While she would benefit from expanded collaborations, a broader international presence, and increased visibility through publications and patents, she has already shown a strong capacity for impactful innovation. Dr. Li represents the next generation of energy researchers who are not only contributing to academic knowledge but also offering real-world solutions. Her continued progress and dedication make her a strong and deserving candidate for the Best Researcher Award, and recognition at this stage would further support and motivate her promising research career in the energy sciences.

Publications Top Notes

1. Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K+ acidic CO2 electroreduction

Authors: Zhitong Wang, Dongyu Liu, Chenfeng Xia, … Bao Yu Xia, Xinlong Tian

Journal: Nature Communications

Year: 2025

Citations: 1

2. Plant derived multifunctional binders for shuttle-free zinc-iodine batteries

Authors: Jiahao Zhu, Shan Guo, Yang Zhang, … Xinlong Tian, Xiaodong Shi

Journal: Nano Energy

Year: 2025

3. Pyrrole-type TM-N3 sites as high-efficient bifunctional oxygen reactions electrocatalysts: From theoretical prediction to experimental validation

Authors: Chunxia Wu, Yanhui Yu, Yiming Song, … Xinlong Tian, Daoxiong Wu

Journal: Journal of Energy Chemistry

Year: 2025

Citations: 2

4. Oxygen-Coordinated Cr Single-Atom Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel CellsAuthors: Junming Luo, Yating Zhang, Zhe Lü, … Zhengpei Miao, Xinlong Tian

Journal: Angewandte Chemie International Edition

Year: 2025

5. Ni-N-C support boosts PtRu sub-nanocluster for effective methanol oxidation reaction

Authors: Xue Zhang, Chunxia Wu, Ye Bu, … Xinlong Tian, Peilin Deng

Journal: Chemical Engineering Journal

Year: 2025

6. Layered Organic Molecular Crystal with One-Dimensional Ion Migration Channel for Durable Magnesium-Based Dual-Ion Batteries

Authors: Yanzeng Ge, Baoquan Liu, Daoxiong Wu, … Xinlong Tian, Jinlin Yang

Journal: ACS Energy Letters

Year: 2025

Citations: 2

7. Hard Lewis acid induced chloride repulsion for durable neutral seawater electrolysis (Review)

Authors: Suyang Feng, Gai Li, Qingyi Wei, … Xinlong Tian, Zhenye Kang

Year: 2025

Citations: 1

8. Iridium-based electrocatalysts for acidic oxygen evolution reaction (Review)

Authors: Yanhui Yu, Gai Li, Yutong Xiao, … Xinlong Tian, Yuliang Yuan

Year: 2025

Citations: 1

9. Recent advances of CuSbS₂ and CuPbSbS₃ as photocatalyst in the application of photocatalytic hydrogen evolution and degradation (Review)

Authors: Xinlong Zheng, Zhongyun Shao, Jiaxin Lin, … Xinlong Tian, Yuhao Liu

Year: 2025

Citations: 1

10. Sulfonated Lignin Binder Blocks Active Iodine Dissolution and Polyiodide Shuttle Toward Durable Zinc-Iodine Batteries

Authors: Zhixiang Chen, Jie Zhang, Chuancong Zhou, … Xinlong Tian, Xiaodong Shi

Journal: Advanced Energy Materials

Year: 2025

Citations: 4