Aimé Peláiz Barranco | Materials Science | Best Researcher Award

Prof. Dr. Aimé Peláiz Barranco | Materials Science | Best Researcher Award

Faculty of Physics, University of Havana, Cuba

Aimé Peláiz Barranco is a distinguished Cuban physicist born on June 25, 1972, in La Habana, Cuba. She currently serves as the Dean and Full Professor at the Faculty of Physics, University of Havana, where she also leads the Ferroic Materials Group. With a prolific academic and research career, she is widely recognized for her contributions to ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials. Dr. Peláiz Barranco has played crucial roles in academic leadership, including serving as Deputy Dean and Secretary of the Scientific Council. Internationally active, she has coordinated the Latin-American Network of Ferroelectric Materials and held invited professorships in prestigious institutions across Mexico, Brazil, Spain, France, Portugal, and China. A full member of the Academy of Sciences of Cuba, she has made significant contributions to teaching, research supervision, and academic development. With over 140 international publications, multiple book chapters, and extensive participation in scientific conferences, she has profoundly impacted the field of materials science. Her outstanding research has earned her several international and national awards, including the TWAS-ROLAC Award, the Sofia Kovalieskaya Award, and the Best Researcher recognition from the University of Havana. Her multilingual proficiency further amplifies her global academic collaborations.

Professional Profile

Education

Aimé Peláiz Barranco pursued all her higher education degrees at the University of Havana, Cuba. She earned her B.Sc. in Physics in 1995, followed by a Master’s degree in Physics Sciences in 1996. She later obtained her Doctorate in Physics Sciences in 2001, cementing her academic foundation in the field of material sciences. Her education has been deeply rooted in the Cuban academic system, particularly at the Faculty of Physics, University of Havana, where she has remained an integral part of the academic community both as a student and later as a faculty leader. Her advanced training provided the essential theoretical and practical framework for her subsequent pioneering research in ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials. Throughout her educational journey, she demonstrated a strong commitment to physics education and material sciences, which laid the groundwork for her international collaborations and leadership roles. Her comprehensive education has not only equipped her with deep expertise in material characterization but also fostered her ability to lead research groups, mentor students, and contribute to scientific advancements globally.

Professional Experience

Aimé Peláiz Barranco has accumulated an extensive professional history at the University of Havana since 1995. She began as a teaching trainee and steadily advanced to become an instructor, assistant professor, auxiliary professor, and eventually a full professor in 2014. Since 2019, she has served as the Dean of the Faculty of Physics, where she also leads the Ferroic Materials Group. Her teaching portfolio includes more than 70 undergraduate and postgraduate courses, with significant involvement in thesis evaluations at the licentiate, master’s, and doctoral levels. Dr. Peláiz Barranco has also held various academic positions such as Deputy Dean, Secretary of the Scientific Council, and Member of the National Physics Commission. She actively participates in scientific organization, having served on committees for over 20 national and international conferences. Internationally, she has been invited as a professor to universities in Mexico, Brazil, Spain, France, Portugal, and China, enhancing global academic exchanges. Her coordination of the Latin-American Network of Ferroelectric Materials between 2000 and 2019 exemplifies her leadership in fostering regional research collaboration. Her broad professional journey showcases her dedication to education, research, and scientific advancement.

Research Interests

Dr. Peláiz Barranco’s research primarily focuses on the preparation and characterization of ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials in the form of ceramics, thin films, and composites. She specializes in the study of phase transitions, relaxors, dielectric relaxation, electrical conductivity, and impedance spectroscopy. Her research extends to bioimpedance, pyroelectricity, piezoelectricity, multiferroics, energy storage, and the electrocaloric effect. These areas contribute significantly to the advancement of modern material science, with applications in sensors, actuators, energy systems, and smart materials. She has led numerous national and international research projects, including three grants awarded by the Third World Academy of Science. Her deep exploration into ferroic materials has resulted in over 140 publications in international journals, four book chapters, and more than 200 presentations at scientific meetings. Dr. Peláiz Barranco’s research activities are globally recognized, positioning her as a leading expert in the field. Through her leadership in the Ferroic Materials Group and the Latin-American Network of Ferroelectric Materials, she has created substantial regional and international research synergies.

Research Skills

Aimé Peláiz Barranco possesses exceptional research skills in experimental design, material synthesis, and advanced characterization techniques. Her expertise spans ceramics, thin films, and composite materials, particularly in the domains of ferroelectric, piezoelectric, antiferroelectric, and multiferroic substances. She is adept at using impedance spectroscopy, dielectric relaxation analysis, and pyroelectric and piezoelectric measurements to explore the functional properties of advanced materials. Additionally, she is skilled in bioimpedance analysis and electrocaloric effect evaluation, essential for emerging applications in biophysics and energy storage. Dr. Peláiz Barranco’s ability to lead large, multi-institutional research projects, both nationally and internationally, underscores her project management and scientific coordination capabilities. Her involvement as an editor and contributor to scientific books further highlights her ability to synthesize complex information and contribute to scientific literature. Furthermore, her supervisory experience, mentoring over 30 undergraduate, master’s, and doctoral theses, demonstrates her leadership and instructional strengths in guiding research teams and developing new scientific talent. Her fluency in Spanish, English, and Portuguese enhances her global research communication and collaboration skills.

Awards and Honors

Aimé Peláiz Barranco has received numerous prestigious awards and recognitions at both national and international levels. Among her international accolades, she won the First Prize at the First Iberoamerican Concourse of Laboratory Classes in Materials Science (1999) and the TWAS-ROLAC Award for Young Scientists in Physics (2011). She has been honored with the Young Scientist Award by CAS-TWAS (2012) and the TWOWS Award for Young Women Scientists (2010), signifying her influence across the Latin America and Caribbean region. Nationally, she has been repeatedly awarded by the Cuban Academy of Sciences, with multiple recognitions spanning from 1999 to 2023. The University of Havana has acknowledged her as Best Researcher in several years, alongside departmental and faculty awards for scientific excellence and educational innovation. She also received the distinguished Carlos J. Finlay Medal for her significant scientific contributions. These honors highlight her sustained commitment to research, education, and academic leadership. Her continuous recognition within Cuba and abroad underscores her remarkable impact on materials science and the broader scientific community.

Conclusion

Aimé Peláiz Barranco is an accomplished physicist whose career exemplifies excellence in teaching, research, and academic leadership. Her extensive expertise in ferroic materials has contributed significantly to the advancement of materials science in Cuba and internationally. Through her roles as Dean, research group leader, and international project coordinator, she has demonstrated exceptional leadership and organizational skills. Her research is widely published, and she has been recognized with numerous prestigious awards for her scientific achievements and educational contributions. Dr. Peláiz Barranco’s commitment to fostering regional and international collaborations, along with her dedication to mentoring the next generation of scientists, highlights her as a key figure in the scientific community. Fluent in multiple languages and having held various visiting professorships, she continues to build global partnerships that enrich both her work and the institutions she serves. Her professional journey reflects a harmonious balance of research excellence, impactful teaching, and significant service to the academic and scientific ecosystem, positioning her as a highly deserving candidate for the Best Researcher Award.

Publications Top Notes

1. Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements

  • Authors: A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela

  • Year: 1998

  • Citations: 163

2. Ionized oxygen vacancy-related electrical conductivity in (Pb₁₋ₓLaₓ)(Zr₀.₉₀Ti₀.₁₀)₁₋ₓ/₄O₃ ceramics

  • Authors: A. Peláiz-Barranco, J.D.S. Guerra, R. Lopez-Noda, E.B. Araujo

  • Year: 2008

  • Citations: 141

3. Ferroelectric ceramic materials of the Aurivillius family

  • Authors: A. Peláiz-Barranco, Y. González-Abreu

  • Year: 2013

  • Citations: 69

4. Dielectric relaxation related to single-ionized oxygen vacancies in (Pb₁₋ₓLaₓ)(Zr₀.₉₀Ti₀.₁₀)₁₋ₓ/₄O₃ ceramics

  • Authors: A. Peláiz-Barranco, J.D.S. Guerra

  • Year: 2010

  • Citations: 65

5. Atomic‐scale imaging and quantification of electrical polarisation in incommensurate antiferroelectric lanthanum‐doped lead zirconate titanate

  • Authors: I. MacLaren, R. Villaurrutia, B. Schaffer, L. Houben, A. Peláiz‐Barranco

  • Year: 2012

  • Citations: 63

6. Raman spectroscopy study of the La‐modified (Bi₀.₅Na₀.₅)₀.₉₂Ba₀.₀₈TiO₃ lead‐free ceramic system

  • Authors: Y. Mendez‐González, A. Peláiz‐Barranco, A.L. Curcio, A.D. Rodrigues, et al.

  • Year: 2019

  • Citations: 57

7. AC behaviour and conductive mechanisms of 2.5 mol% La₂O₃ doped PbZr₀.₅₃Ti₀.₄₇O₃ ferroelectric ceramics

  • Authors: A.P. Barranco, F.C. Pinar, O.P. Martinez, J.D.L.S. Guerra, I.G. Carmenate

  • Year: 1999

  • Citations: 57

8. Effects of MnO₂ additive on the properties of PbZrO₃–PbTiO₃–PbCu₁/₄Nb₃/₄O₃ ferroelectric ceramic system

  • Authors: A.P. Barranco, F.C. Piñar, O.P.M.P. Martínez, E.T. García

  • Year: 2001

  • Citations: 50

9. Thermal and structural characterization of the ZrO₂₋ₓ(OH)₂ₓ to ZrO₂ transition

  • Authors: E. Torres-García, A. Peláiz-Barranco, C. Vázquez-Ramos, G.A. Fuentes

  • Year: 2001

  • Citations: 39

10. Piezo-, pyro-, ferro-, and dielectric properties of ceramic/polymer composites obtained from two modifications of lead titanate

  • Authors: A. Pelaiz-Barranco, P. Marin-Franch

  • Year: 2005

  • Citations: 38

Likun Qian | Materials Science | Best Researcher Award

Mr. Likun Qian | Materials Science | Best Researcher Award

School of Future Technology, China University of Geosciences (Wuhan), China

Qian Likun is an emerging researcher in the field of automation and control systems, currently pursuing his undergraduate degree at China University of Geosciences (Wuhan). With a solid foundation in electronic technologies, embedded systems, and automation instrumentation, Qian has displayed strong technical proficiency and innovative thinking across various academic and practical projects. He has independently designed and developed motion controllers, control platforms, and monitoring systems, showcasing his ability to integrate software and hardware seamlessly. His projects range from motion trajectory control to subsurface conductor detection and RGBD salient object detection using convolutional neural networks. In addition to his technical skills, Qian has demonstrated outstanding leadership capabilities by serving as the class monitor and contributing to his college’s new media promotion initiatives. He has actively led his classmates to achieve multiple awards at the college level, earning personal recognition as an excellent Communist Youth League cadre. His work ethic, problem-solving ability, and teamwork have set him apart as a student leader and aspiring researcher. With his growing expertise in control systems, programming, and intelligent instrumentation, Qian Likun is positioning himself as a promising researcher with the potential to make significant contributions to the field of automation and intelligent systems in the near future.

Professional Profile

Education

Qian Likun is currently enrolled at China University of Geosciences (Wuhan), where he has been studying Automation since September 2018. His undergraduate education has provided him with comprehensive knowledge of automation systems, control theory, embedded technologies, and sensor applications. Throughout his studies, he has maintained a GPA of 3.01 and successfully completed a diverse range of technical courses such as analog electronic technology, digital logic circuit design, digital signal processing, system analysis, embedded programming, and object-oriented software development. These courses have helped him build a solid theoretical foundation and practical skill set. Qian’s education has also included specialized training in big data processing technologies for manufacturing and advanced system control strategies. His participation in several project-based learning modules has further enhanced his engineering abilities and problem-solving skills. His academic journey reflects not only his dedication to learning but also his ability to apply knowledge effectively to real-world scenarios. Qian has also achieved English proficiency certifications, having passed CET-4 and CET-6, and earned a Computer Level 2 certification in C++, which complements his automation expertise with solid programming capabilities. His educational background has fully equipped him to contribute meaningfully to complex research in automation and intelligent control systems.

Professional Experience

Although Qian Likun is in the early stages of his professional journey, he has accumulated substantial project-based experience that closely mirrors industry applications. He has led and contributed to multiple innovative projects during his time at China University of Geosciences. Notably, Qian successfully designed and implemented a cascade control system for a water tank and pipeline pressure monitoring, using PID control and Ethernet communication to achieve multi-machine interaction with an impressive 85% control precision. He independently built an integrated motion control experimental platform capable of simple three-dimensional relief processing and developed a modular CNC control interface. His hands-on experience also includes controlling servo motors via 51 microcontrollers, designing circuits for microvoltage signal acquisition, and applying LABVIEW software for upper computer visualization. Additionally, he utilized C++ and QT to create a multifunctional human-machine interaction calculator capable of performing both basic arithmetic and complex trigonometric operations. His graduation project focuses on RGBD salient object detection using convolutional neural networks and bifurcation backbone strategies. Qian’s practical experience demonstrates his ability to handle multidisciplinary engineering tasks, from hardware design to embedded system development and intelligent control applications, making him a well-rounded and capable early-career researcher.

Research Interest

Qian Likun’s research interests are centered on automation systems, intelligent instrumentation, embedded control, and intelligent perception technologies. He is particularly fascinated by the integration of sensor technologies with embedded systems to achieve precise control in real-time industrial environments. His work has also ventured into the field of intelligent detection, including subsurface conductor identification and salient object detection using RGBD imaging and convolutional neural networks. Qian is deeply interested in the development of intelligent monitoring systems that leverage human-machine interfaces (HMI) and multi-device communication through Ethernet networks. His passion lies in designing practical control systems that are both accurate and efficient, particularly in complex industrial processes. Furthermore, his recent exploration of deep learning methodologies, especially in salient object detection using bottom-up feature extraction and bifurcation backbone strategies, reflects his growing interest in artificial intelligence and machine vision applications. He is motivated to pursue research that blends traditional control theories with modern computational intelligence techniques to solve real-world challenges. Qian aspires to further investigate advanced control algorithms, embedded smart devices, and data-driven decision-making systems in future academic or industry research, aiming to contribute to the advancement of intelligent automation and control engineering.

Research Skills

Qian Likun possesses a diverse and practical set of research skills that span programming, circuit design, motion control, system modeling, and embedded development. He is proficient in programming languages such as C++ and MATLAB, which he has used to design embedded software, motion control systems, and data visualization interfaces. His expertise in control systems includes practical application of PID control algorithms, system modeling, and real-time control implementations. Qian has hands-on skills in building experimental platforms for motion processing, servo motor control using 51 microcontrollers, and data acquisition through differential amplification circuits. He has also demonstrated the ability to develop multi-functional human-machine interaction interfaces using QT and C++ for embedded applications. His hardware knowledge extends to sensor integration, analog and digital circuit design, and microcontroller programming. Additionally, Qian is familiar with machine learning techniques, particularly convolutional neural networks, which he applied in his graduation project for salient object detection. His skill set is further strengthened by his capability to design networked systems that enable multi-device communication using Ethernet protocols. Qian’s combination of software development, hardware control, signal processing, and intelligent algorithm application makes him a versatile researcher capable of addressing complex automation challenges.

Awards and Honors

Throughout his academic journey, Qian Likun has received multiple recognitions for both his leadership and academic contributions. He has served as the class monitor at China University of Geosciences (Wuhan), successfully leading his class to receive the “Excellent Class” award at the college level on several occasions. His dedication and organizational skills were further acknowledged when he was honored with the title of “Outstanding Communist Youth League Cadre” at the university level. Qian also played an active role in the university’s New Media Promotion Department, where he contributed to the management and content creation for the Automation College’s official WeChat platform. These leadership roles have allowed him to develop strong communication, teamwork, and project management skills in parallel with his technical education. His certification achievements include passing the Computer Level 2 examination in C++ and successfully completing both the College English Test (CET-4 and CET-6), demonstrating his competency in programming and his readiness for international collaboration. These awards and recognitions highlight his well-rounded profile, balancing academic performance, research activities, and social engagement, which together showcase his suitability as a dedicated and promising young researcher.

Conclusion

Qian Likun is a highly motivated, technically skilled, and leadership-oriented young researcher with a growing background in automation and intelligent control systems. His solid foundation in embedded technologies, motion control, signal acquisition, and human-machine interface design, combined with his demonstrated ability to lead project teams and manage complex system integrations, positions him as a promising talent in the engineering field. While he is still at the beginning of his research journey, his proactive engagement in hands-on projects and his exploration of cutting-edge technologies like convolutional neural networks reflect his potential for impactful future research contributions. Qian has demonstrated excellent leadership skills, receiving recognition for both academic performance and community engagement. However, to elevate his research profile to the next level, he would benefit from increasing his involvement in peer-reviewed research publications, enhancing his academic output, and expanding his international collaborations. With continued dedication, academic refinement, and professional development, Qian Likun has the potential to grow into a highly capable and innovative researcher who can contribute significantly to the advancement of automation, intelligent systems, and interdisciplinary engineering solutions.

Publications Top Notes

  1. Title: Design of audio to image cross-modal learning and generation based on single-layer CoPt spin-orbit torque devices
    Authors: Likun Qian, Liu Yang, Chao Zuo, Ying Tao, Wendi Li, Fang Jin, Huihui Li, Kaifeng Dong
    Year: 2025
    Journal: Journal of Magnetism and Magnetic Materials

  2. Title: Design of spike-timing-dependent plasticity synapses based on CoPt-SOT device and its application in all-spin spiking neural network
    Authors: Liu Yang, Shuguang Zhang, Likun Qian, Ying Tao, Fang Jin, Huihui Li, Zhe Guo, Rujun Tang, Kaifeng Dong
    Year: 2025
    Journal: Applied Physics Letters

Danhui Zhang | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Danhui Zhang | Materials Science | Best Researcher Award

Linyi University, China

Zhang Danhui is an accomplished associate professor at the School of Mechanical and Vehicle Engineering, Linyi University, with a distinguished background in engineering and nanomaterials research. Since earning her Ph.D. in Engineering from Nanjing University of Science and Technology in 2012, she has developed a robust research portfolio focused on inorganic nanofunctional materials, polymer composites, and carbon-based nanostructures. With over 40 academic publications, more than 30 of which are indexed in SCI, Dr. Zhang has contributed significantly to fields including surface-enhanced Raman scattering, molecular dynamic simulations, and fluorescence sensors. Her dedication to academic excellence is evident in her active participation in national and provincial research projects, authorship of a scientific monograph, and mentorship of student-led research, resulting in SCI papers and patent grants. In addition to her research work, she is a committed educator, delivering core undergraduate and graduate courses across thermodynamics, chemistry, and physics. She has been recognized with multiple awards for academic and instructional excellence, as well as one registered utility model patent. Dr. Zhang continues to be a key figure in applied materials research and education, combining theoretical innovation with practical applications. Her scholarly contributions position her as a leading candidate for research honors at the national level.

Professional Profile

Education

Zhang Danhui completed her doctoral studies in Engineering at Nanjing University of Science and Technology in 2012. Her doctoral research focused on the synthesis, structure, and properties of functional nanomaterials, specifically targeting noble metal and carbon-based composites. The strong academic foundation laid during her Ph.D. studies has equipped her with a deep understanding of both experimental and theoretical aspects of materials engineering. Prior to her doctoral studies, she had acquired a comprehensive background in science and engineering disciplines, including chemistry, materials science, and applied physics. Her education emphasizes interdisciplinary integration, a feature that is clearly reflected in her ongoing research. The curriculum and training received at Nanjing University of Science and Technology, one of China’s top-tier technical institutions, prepared her for a career that bridges molecular science, nanotechnology, and engineering applications. Furthermore, her academic background has been instrumental in enabling her to teach advanced subjects such as Engineering Thermodynamics, University Physics, and Engineering Chemistry. Her educational path reflects a consistent trajectory of scientific rigor, analytical skill development, and innovation—all of which continue to inform and strengthen her research and academic contributions.

Professional Experience

Since July 2012, Zhang Danhui has served as an associate professor at the School of Mechanical and Vehicle Engineering, Linyi University. Over the years, she has developed an impressive teaching and research portfolio. Her professional duties include lecturing core undergraduate and postgraduate courses in Engineering Thermodynamics, Advanced Mathematics, Engineering Chemistry, and University Physics. Beyond her teaching responsibilities, she actively supervises student research and project development. Under her mentorship, students have produced multiple scientific outcomes, including the publication of an SCI-indexed paper and the authorization of a utility model patent. She has led and participated in several significant national and provincial research initiatives, including projects funded by the National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province. Dr. Zhang has also contributed as a co-investigator in studies involving nonlinear dynamics, rod pumping systems, and nanomaterial simulations. Her role at Linyi University underscores a blend of academic instruction, mentorship, and scientific investigation. Her contributions to institutional research and education have been acknowledged through various awards and recognitions, marking her as a key faculty member within her department. Her continuous commitment to science and education exemplifies the standards of academic excellence.

Research Interest

Zhang Danhui’s research interests lie at the intersection of nanotechnology, materials science, and polymer engineering. Her primary focus is on the chemical preparation and structural characterization of inorganic nanofunctional materials. She has explored complex material behaviors at the atomic level through molecular dynamic simulations, particularly focusing on polymer composites and graphene-based structures. Another central area of her work involves the design, synthesis, and application of new carbon materials, such as carbon nanotubes and graphene derivatives, which are known for their potential in electronics, sensors, and energy storage. Her research has extended into surface-enhanced Raman scattering, fluorescence sensors, and the structural formation of hybrid nanomaterials like silver and platinum-coated carbon structures. Her theoretical modeling work, especially in simulating the curling and core-shell formations of carbon nanostructures, has advanced the understanding of their functional properties in applied settings. She combines simulation studies with experimental synthesis, aiming for practical applications in catalysis, optics, and electronics. This dual approach ensures that her work remains both scientifically grounded and technologically relevant. Dr. Zhang’s research is interdisciplinary, combining chemistry, physics, and materials engineering to explore novel material functionalities and applications.

Research Skills

Dr. Zhang Danhui possesses a versatile and advanced skill set in materials research, particularly within the realms of nanomaterials and polymer simulations. Her core skills include chemical synthesis of metallic and carbon-based nanostructures, advanced molecular dynamics simulation, surface functionalization, and nanomaterial characterization. She is proficient in applying computational techniques to study molecular behavior, bonding interactions, and mechanical stability of composite structures. Her experimental capabilities span a range of modern techniques, including Raman spectroscopy, electron microscopy, XRD, and UV-Vis spectroscopy, often used to validate her simulation results. Furthermore, she has expertise in modeling structural transitions and diffusion dynamics at the nanoscale, contributing to predictive understanding in the design of new materials. Her skillset extends into academic writing, scientific reporting, and the preparation of grant proposals, as evidenced by her extensive publication record and successful project leadership. In addition, her experience in supervising research students has enabled her to develop strong mentoring, analytical problem-solving, and collaborative project management skills. She has effectively bridged theoretical and applied research, a rare and valuable competency that enhances the innovation and impact of her scientific work.

Awards and Honors

Zhang Danhui has received multiple honors that reflect her academic excellence and contributions to research and education. She has been recognized with two municipal and departmental awards for outstanding scientific achievements, which underscore the significance and quality of her research output in the field of nanomaterials and materials engineering. Additionally, she earned an Outstanding Instructor Award, highlighting her excellence in academic mentorship and student guidance. These accolades demonstrate not only her ability to conduct high-level research but also her dedication to teaching and capacity to inspire young researchers. Her efforts in guiding student-led projects have led to notable achievements, including a published SCI-indexed paper and an authorized utility model patent, further confirming her strength in nurturing academic growth and innovation. Moreover, she holds a patent titled “An energy-saving power bank”, registered in China (ZL2019 2 0847842.9), reflecting her inclination toward real-world applications of research. Her professional recognition spans both scientific innovation and educational impact, making her a well-rounded scholar. These honors affirm her status as a leading researcher and educator within her institution and beyond, contributing meaningfully to national and regional scientific progress.

Conclusion

Zhang Danhui exemplifies a rare blend of academic excellence, research innovation, and educational commitment. With a strong foundation in engineering and a focused research agenda in nanofunctional materials and polymer composites, she has consistently demonstrated high-impact scientific productivity. Her robust publication record, leadership in funded projects, and expertise in molecular simulations and material synthesis position her as a leading contributor in her field. Beyond research, her dedication to student mentorship and instruction in core engineering subjects underscores her value as an educator. Her work reflects a dynamic integration of theoretical understanding and practical innovation, bridging gaps between computation, experimentation, and application. Recognition through awards, patents, and institutional accolades further attests to her wide-ranging influence. Dr. Zhang’s contributions not only advance the frontiers of nanotechnology and materials science but also help shape the next generation of engineers and researchers. Her professional journey, characterized by dedication, innovation, and impact, makes her an outstanding candidate for prestigious research awards. Moving forward, greater international collaboration and industry engagement could further amplify her global influence and the real-world application of her discoveries. Her career serves as a model of excellence in interdisciplinary research and academic leadership.

Publications Top Notes

1. Self-assembly behaviour of heterocyclic polymers induced by multiple carbon cone molecules

  • Authors: Xiangkang Zhang, Danhui Zhang, Wenqiang Hu, Houbo Yang, Zhongkui Liu, Xiangfei Ji, Dengbo Zhang

  • Year: 2025

  • Journal: Journal of Solid State Chemistry

2. Autonomous assembly behavior of polypyrrole induced by carbon cone[2,3]

  • Authors: Mingchen Gong, Danhui Zhang, Houbo Yang, Liu Yang, Dengbo Zhang, Ruquan Liang, Anmin Liu

  • Year: 2025

  • Journal: Inorganic Chemistry Communications

3. Multiple fullerene C70s induce polyacetylene to form a fish-like structure

  • Authors: Houbo Yang, Danhui Zhang, Ruquan Liang, Chenglei Zhang, Anmin Liu

  • Year: 2021

  • Journal: Solid State Communications

4. Formation of “hemp flowers” structures from polyphenyl induced by C70

  • Authors: Danhui Zhang, Ruquan Liang, Houbo Yang, Yuanmei Song, Jianhui Shi, Dengbo Zhang, Liu Yang, Anmin Liu

  • Year: 2021

  • Journal: Surfaces and Interfaces

5. Formation of Multiple‐Helical Core‐Shell Structure from Polyphenyl and Boron Nitride Nanotube

  • Authors: Houbo Yang, Danhui Zhang, Ruquan Liang, Zhongkui Liu, Yuanmei Song, Liu Yang, Anmin Liu

  • Year: 2021

  • Journal: Advanced Theory and Simulations

6. Research on the Interfacial Interaction between Polyacetylene and Silver Nanowire

  • Authors: Danhui Zhang, Ruquan Liang, Zhongkui Liu, Houbo Yang, Jianhui Shi, Yuanmei Song, Dengbo Zhang, Anmin Liu

  • Year: 2020

  • Journal: Macromolecular Theory and Simulations

7. Molecular dynamics simulations of single-walled carbon nanotubes and polynylon66

  • Authors: Danhui Zhang, Houbo Yang, Zhongkui Liu, Anmin Liu

  • Year: 2019

  • Journal: International Journal of Modern Physics B

Hao Chen | Materials Science | Best Researcher Award

Prof. Hao Chen | Materials Science | Best Researcher Award

Associate professor from Shanghai Jiao Tong University, China

Professor Hao Chen is a distinguished faculty member in the Department of Computer Science at the University of California, Davis. Renowned for his contributions to computer security and software verification, he has been instrumental in developing practical security verification systems. His work seamlessly integrates theoretical insights with real-world applications, addressing critical challenges in the field. Notably, he developed MOPS, a tool designed to detect security vulnerabilities in C programs. His research has garnered support from esteemed organizations, including the National Science Foundation, Air Force Office of Scientific Research, U.S. Army Research Laboratory, Intel, and Microsoft. Professor Chen’s accolades include the NSF CAREER Award and the UC Davis College of Engineering Outstanding Faculty Award. He is also recognized as an IEEE Fellow and an ACM Distinguished Member. Through his teaching, research, and mentorship, Professor Chen continues to shape the future of computer science.

Professional Profile

Education

Professor Hao Chen earned his Ph.D. in Computer Science from the University of California, Berkeley, in 2004. During his doctoral studies, he was mentored by Professor David Wagner, a prominent figure in computer security. His dissertation focused on identifying and mitigating security vulnerabilities in software systems, laying the groundwork for his future research endeavors. This rigorous academic training equipped him with a deep understanding of both theoretical and practical aspects of computer security, enabling him to make significant contributions to the field.

Professional Experience

Since completing his Ph.D., Professor Chen has been a vital part of the UC Davis faculty. He began his tenure as an Assistant Professor in July 2004, progressed to Associate Professor in July 2010, and achieved the rank of Professor in July 2016. Throughout his academic career, he has been dedicated to advancing research in computer security and software verification. Beyond his teaching responsibilities, Professor Chen has actively contributed to the academic community by serving on editorial boards and program committees for various prestigious conferences and journals.

Research Interests

Professor Chen’s research interests are centered around computer security and software verification. He focuses on developing methodologies to ensure that software systems are free from vulnerabilities that could be exploited maliciously. His work often involves applying machine learning techniques to enhance security measures and improve software reliability. By combining theoretical frameworks with practical applications, Professor Chen aims to create tools and systems that can proactively identify and mitigate potential security threats in software.

Research Skills

In his research, Professor Chen employs a diverse set of skills, including static and dynamic program analysis, formal verification methods, and machine learning algorithms. He is adept at developing tools that can automatically detect security flaws in software, thereby reducing the risk of exploitation. His expertise extends to analyzing large codebases, understanding complex software behaviors, and designing systems that can adapt to evolving security challenges. Through his interdisciplinary approach, Professor Chen effectively bridges the gap between theoretical research and practical implementation in the realm of computer security.

Awards and Honors

Professor Hao Chen’s contributions to computer science have been recognized through numerous awards and honors. He received the National Science Foundation CAREER Award in 2007, acknowledging his potential as a leading researcher in his field. In 2010, he was honored with the UC Davis College of Engineering Outstanding Faculty Award for his exceptional teaching and research achievements. His professional excellence is further highlighted by his designation as an IEEE Fellow and an ACM Distinguished Member, reflecting his significant impact on the computing community.

Conclusion

Professor Hao Chen stands out as a leading expert in computer security and software verification. His academic journey, marked by rigorous education and progressive professional roles, underscores his commitment to advancing the field. Through his innovative research, he has developed tools and methodologies that enhance software security, directly addressing real-world challenges. His accolades, including prestigious awards and fellowships, attest to his influence and contributions to computer science. As an educator, researcher, and mentor, Professor Chen continues to inspire and shape the next generation of computer scientists, reinforcing the critical importance of security in the digital age.

Publications Top Notes

  1. In situ molecular compensation in wide-bandgap perovskites for efficient all-perovskite tandem solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE01369K
    Contributors: Fu, Sheng; Sun, Nannan; Hu, Shuaifeng; Chen, Hao; Jiang, Xinxin; Li, Yunfei; Zhu, Xiaotian; Guo, Xuemin; Zhang, Wenxiao; Li, Xiaodong et al.

  2. Homogenizing SAM deposition via seeding -OH groups for scalable fabrication of perovskite solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE00350D
    Contributors: Fu, Sheng; Sun, Nannan; Chen, Hao; Li, You; Li, Yunfei; Zhu, Xiaotian; Feng, Bo; Guo, Xueming; Yao, Canglang; Zhang, Wenxiao et al.

  3. All‐Inorganic Tin‐Containing Perovskite Solar Cells: An Emerging Eco‐Friendly Photovoltaic Technology
    Journal: Advanced Materials
    Year: 2025
    DOI: 10.1002/adma.202505543
    Contributors: Xiang Zhang; Dan Zhang; Zaiwei Wang; Yixin Zhao; Hao Chen

  4. On-demand formation of Lewis bases for efficient and stable perovskite solar cells
    Journal: Nature Nanotechnology
    Year: 2025
    DOI: 10.1038/s41565-025-01900-9
    Contributors: Sheng Fu; Nannan Sun; Hao Chen; Cheng Liu; Xiaoming Wang; You Li; Abasi Abudulimu; Yuanze Xu; Shipathi Ramakrishnan; Chongwen Li et al.

  5. 3D Digital Holography Investigations of Giant Photostriction Effect in MAPbBr₃ Perovskite Single Crystals
    Journal: Advanced Functional Materials
    Year: 2024
    DOI: 10.1002/ADFM.202404995
    Contributors: Liu, Dong; Wu, Jialin; Lu, Ying-Bo; Zhao, Yiyang; Jiang, Xianyuan; Wang, Kai-Li; Wang, Hao; Dong, Liang; Cong, Wei-Yan; Chen, Hao et al.

  6. Diamine chelates for increased stability in mixed Sn-Pb and all-perovskite tandem solar cells
    Journal: Nature Energy
    Year: 2024
    DOI: 10.1038/S41560-024-01613-8
    Contributors: Li, Chongwen; Chen, Lei; Jiang, Fangyuan; Song, Zhaoning; Wang, Xiaoming; Balvanz, Adam; Ugur, Esma; Liu, Yuan; Liu, Cheng; Maxwell, Aidan et al.

  7. Perovskite Single Crystals by Vacuum Evaporation Crystallization
    Journal: Advanced Science
    Year: 2024
    DOI: 10.1002/ADVS.202400150
    Contributors: Liu, Dong; Jiang, Xianyuan; Wang, Hao; Chen, Hao; Lu, Ying-Bo; Dong, Siyu; Ning, Zhijun; Wang, Yong; Wu, Zhongchen; Ling, Zongcheng

  8. Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells
    Journal: National Science Review
    Year: 2024
    DOI: 10.1093/NSR/NWAE055
    Contributors: Jiang, Xianyuan; Zhou, Qilin; Lu, Yue; Liang, Hao; Li, Wenzhuo; Wei, Qi; Pan, Mengling; Wen, Xin; Wang, Xingzhi; Zhou, Wei et al.

  9. Ultralow detection limit and high sensitivity X-ray detector of high-quality MAPbBr₃ perovskite single crystals
    Journal: Journal of Materials Chemistry A
    Year: 2024
    DOI: 10.1039/D4TA00492B
    Contributors: Liu, Dong; Sun, Xue; Jiang, Li; Jiang, Xianyuan; Chen, Hao; Cui, Fucai; Zhang, Guodong; Wang, Yong; Lu, Ying-Bo; Wu, Zhongchen et al.

 

 

Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assistant Professor at Shahrood University of technology, Iran

Assist. Prof. Dr. Meysam Jalali is a distinguished academic and professional in the field of Civil and Structural Engineering, currently serving as an Assistant Professor at Shahrood University of Technology (SUT). With a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology and an MSc in Civil/Earthquake Engineering from the University of Tehran, Dr. Jalali has developed significant expertise in construction materials, seismic behavior of structures, and advanced cementitious composites. He is also the Head of the Construction Material Lab at SUT, where he leads innovative research in experimental investigations and numerical modeling. Dr. Jalali’s work has earned him recognition in both academic and professional circles, particularly for his contributions to the development of novel fibers for reinforcing ultra-high-performance concrete and other cement-based materials. His research interests include the application of soft computing methods in civil engineering, net-zero construction, and 3D concrete printing. Dr. Jalali has published extensively in high-impact journals and has been involved in several high-profile research projects and consulting roles in Iran’s infrastructure development.

Profile

Assist. Prof. Dr. Meysam Jalali holds a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology, where he developed advanced expertise in structural analysis and design. He also earned a Master of Science (MSc) in Civil/Earthquake Engineering from the University of Tehran, focusing on the seismic behavior of structures, which has significantly influenced his research and professional work. Dr. Jalali completed his Bachelor of Science (BSc) in Civil Engineering at Shahrood University of Technology, laying the foundation for his extensive academic and professional career in civil and structural engineering.

Professional Experience

Assist. Prof. Dr. Meysam Jalali has a wealth of professional experience in the field of Civil and Structural Engineering, with a particular focus on construction materials and seismic behavior. He has been an Assistant Professor at Shahrood University of Technology (SUT) since 2010, where he also serves as the Head of the Construction Material Lab. In addition to his academic roles, Dr. Jalali is a Professional Engineer registered with the Tehran Engineering Organization and has extensive consulting experience. He has worked as a consultant engineer for Iran Water & Power Resources Development Company (IWPCO) and Tehran Engineering and Technical Consultant Organization (TETCO) for Underground Structures. Dr. Jalali has also held key positions in major infrastructure projects, including serving as Project Manager for the Hakim Twin Tunnels of Tehran and as the Head Engineer for the East-West Lot of Tehran Metro Line 7. His professional expertise extends to the design of structures, where he has contributed to various projects, bringing innovative solutions and technical acumen to the field.

Research Interest

Assist. Prof. Dr. Meysam Jalali’s research interests are centered around the experimental investigation of construction materials and structural engineering. His work focuses on cement-based materials, including Engineered Cementitious Composites (ECC), High-Performance Concrete (HPC), Fiber-Reinforced Concrete (FRC), and Slurry Infiltrated Fiber Concrete (SIFCON). Dr. Jalali is particularly interested in the development of innovative fiber types for reinforcing cementitious composites and the application of additive manufacturing techniques, such as 3D concrete printing, in construction. His research also encompasses the application of soft computing methods in civil engineering, multi-scale testing, and numerical modeling. He is dedicated to advancing net-zero construction practices and has been involved in pioneering projects related to the mechanical behavior of construction materials, the prediction of composite material performance using machine learning, and the development of new testing apparatus for fibrous composites. Dr. Jalali’s work contributes significantly to the innovation and sustainability of construction materials and methods.

Research Skills

Assist. Prof. Dr. Meysam Jalali is highly skilled in a broad range of research areas within civil and structural engineering. His expertise includes experimental investigations of construction materials, particularly cement-based composites such as ECC, HPC, FRC, and SIFCON. He has demonstrated significant proficiency in developing innovative fiber types for reinforcing these composites and is adept at conducting multi-scale testing to evaluate material performance. Dr. Jalali’s research extends to advanced numerical modeling, where he utilizes sophisticated computational techniques to predict and analyze structural behaviors. Additionally, he is well-versed in applying soft computing methods, including artificial neural networks (ANN), genetic programming (GEP), adaptive neuro-fuzzy inference systems (ANFIS), and group method of data handling (GMDH), to model and forecast the performance of construction materials. His innovative approach is further highlighted by his work in additive manufacturing, specifically 3D concrete printing, and his development of patented testing apparatus and methodologies for fibrous composites. Dr. Jalali’s research skills are complemented by his strong project management capabilities and his success in securing research funding from various academic and industry sources.

Conclusion

Given their extensive academic background, innovative research contributions, professional experience in large-scale engineering projects, and leadership in both education and research, this individual is a highly deserving candidate for the “Excellence in Research” award. Their work not only advances the field of civil and structural engineering but also addresses critical challenges in construction materials and sustainability.

Publications Top Notes

  • Shear strengthening of RC beams using innovative manually made NSM FRP bars
    • Journal: Construction and Building Materials
    • Year: 2012
    • Cited by: 81
    • Volume: 36, Pages: 990-1000
  • Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames
    • Journal: Steel and Composite Structures
    • Year: 2014
    • Cited by: 38
    • Volume: 16(1), Pages: 1-21
  • Machine learning prediction of fiber pull-out and bond-slip in fiber-reinforced cementitious composites
    • Journal: Journal of Building Engineering
    • Year: 2023
    • Cited by: 14
    • Volume: 63, Article ID: 105474
  • Tunnel Rehabilitation in Fault Zone Using Sequential Joints Method – Case Study: Karaj Water Conveyance Tunnel
    • Journal: International Journal of Mining and Geo-Engineering
    • Year: 2018
    • Cited by: 14
    • Volume: 52(1), Pages: 87-94
  • Flexural characteristics of fibre reinforced concrete with an optimised spirally deformed steel fibre
    • Journal: International Journal of Engineering, Transactions C: Aspects
    • Year: 2021
    • Cited by: 7
    • Volume: 34(6), Pages: 1390-1397
  • Experimental investigation on the performance of engineered spiral fiber: Fiber pull-out and direct tension tests
    • Journal: Construction and Building Materials
    • Year: 2022
    • Cited by: 2
    • Volume: 347, Article ID: 128569
  • Effect of seawater on micro-nano air bubbles concrete for repair of coastal structures
    • Journal: Journal of Rehabilitation in Civil Engineering
    • Year: 2020
    • Cited by: 2
    • Volume: 8(3), Pages: 34-42
  • Numerical investigation of mechanized shield tunnels cross-cut
    • Journal: Journal of Analytical and Numerical Methods in Mining Engineering
    • Year: 2018
    • Cited by: 1
    • Volume: 8(16), Pages: 29-43
  • Numerical investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP
    • Conference: 6th National Congress on Civil Engineering
    • Year: 2011
    • Cited by: 1
  • Pull-out behavior of twin-twisted steel fibers from various strength cement-based matrices
    • Journal: Construction and Building Materials
    • Year: 2024 (upcoming publication)
    • Article ID: 137855

 

Advanced Materials Engineering Award

Introduction Advanced Materials Engineering Award

Step into the future of innovation with the Advanced Materials Engineering Award. This distinguished honor recognizes pioneers and visionaries in the field of materials engineering, celebrating groundbreaking contributions that redefine possibilities and drive technological advancements.

About the Award:

The Advanced Materials Engineering Award welcomes individuals and teams dedicated to pushing the boundaries of materials science. With no age restrictions, eligibility is extended to those showcasing exceptional leadership and innovation in the development and application of advanced materials.

Qualifications and Publications:

Candidates should demonstrate a proven track record of advancing materials engineering through academic achievements, hands-on experience, or a combination of both. While there are no strict age limits, qualifications may include relevant degrees, certifications, and a portfolio showcasing impactful contributions.

Evaluation Criteria:

The evaluation process focuses on the significance, originality, and potential impact of the nominee's work in materials engineering. Judges will assess how the advanced materials contribute to technological progress and their potential applications in various industries.

Submission Guidelines:

Applicants are encouraged to submit a comprehensive biography, an abstract detailing their materials engineering initiatives, and supporting files that provide a tangible view of the practical applications and outcomes of their work. Submissions must adhere to provided guidelines for fair and thorough evaluation.

Recognition and Community Impact:

The Advanced Materials Engineering Award not only celebrates individual accomplishments but also recognizes the broader impact on the materials engineering community and industries. Winners serve as inspirations, driving the evolution of materials science and engineering.

Biography, Abstract, and Supporting Files:

Craft a compelling biography that narrates your journey in advancing materials engineering. The abstract should concisely convey the goals and impact of your work, while supporting files offer a comprehensive view of the practical applications and outcomes of your materials engineering initiatives.

Introduction of Innovation Excellence Award: Science and Technology Welcome to the forefront of scientific and technological innovation! The Innovation Excellence Award in Science and Technology is a beacon of recognition
Introduction Global Health Impact Award Embark on a journey of transformative impact in global health. The Global Health Impact Award recognizes champions committed to making a significant difference in the
Introduction Academic Achievement in Engineering Award Welcome to the pinnacle of excellence in engineering academia. The Academic Achievement in Engineering Award is a celebration of those who have demonstrated outstanding
Introduction Research Pioneer Award in Biomedical Sciences Embark on a transformative journey in the realm of Biomedical Sciences. The Research Pioneer Award honors individuals who stand as beacons of innovation,
Introduction Sustainable Engineering Solutions Award Welcome to the forefront of innovation where engineering meets sustainability. The Sustainable Engineering Solutions Award honors visionaries driving change in the engineering landscape by creating
Introduction Outstanding Contribution to Environmental Science and Technology Award Embark on a journey towards a sustainable future with the Outstanding Contribution to Environmental Science and Technology Award. This accolade celebrates
Introduction Leadership in Healthcare Innovation Award Welcome to the forefront of healthcare transformation! The Leadership in Healthcare Innovation Award recognizes visionaries driving change in the healthcare landscape. This award honors
Introduction Excellence in Aerospace Engineering and Technology Award Embark on a journey of innovation soaring to new heights with the Excellence in Aerospace Engineering and Technology Award. This distinguished accolade
Introduction Digital Transformation in Business and Technology Award Step into the future with the Digital Transformation in Business and Technology Award—an accolade celebrating pioneers who redefine the landscape of business
Introduction Emerging Technologies Breakthrough Award in Health Sciences Step into the future of healthcare with the Emerging Technologies Breakthrough Award in Health Sciences. This prestigious award celebrates pioneers who are