Yutaka Matsuura | Materials Science | Best Researcher Award

Dr. Yutaka Matsuura | Materials Science | Best Researcher Award

Senior Fellow at Research Institute for Applied Sciences, Japan

Yutaka Matsuura is a distinguished researcher and engineer known for his pioneering work in the development of NdFeB sintered magnets, which are essential for a wide range of applications, from electronics to renewable energy. As an inventor, Matsuura played a crucial role in establishing the NdFeB ternary phase diagram, a fundamental breakthrough that has significantly advanced the magnetic material industry. His research also led to innovations in magnet production processes, including hydrogen decrepitation and dehydrogenation methods, which greatly improved the efficiency and quality of NdFeB magnets. Throughout his career, Matsuura has been instrumental in developing high-performance magnets by introducing Dy-substituted magnets to enhance coercive force. His expertise spans both the scientific and industrial sectors, having worked in research and development, production, and marketing. His contributions have shaped the global magnet industry, making him a leading figure in material science. Matsuura’s extensive patent portfolio and leadership in key industrial roles have solidified his reputation as a trailblazer in the field of permanent magnets.

Professional Profile

Education:

Yutaka Matsuura’s academic journey has been rooted in engineering and material science. He earned his Doctor of Engineering from Kyoto University in 1987, where his doctoral thesis focused on the study of NdFeB sintered magnets. This pivotal work set the foundation for his lifelong dedication to magnet research. Prior to this, Matsuura completed his Master’s degree in Science at Okayama University in 1977, following his undergraduate studies at the same institution. His education provided him with the deep scientific understanding and technical expertise that would later define his career in magnet technology. Matsuura’s academic training has played a vital role in his ability to innovate and lead groundbreaking research in material science, particularly in the domain of magnetic materials.

Professional Experience:

Yutaka Matsuura’s professional experience spans over several decades and encompasses both academic and industrial roles. Currently, he serves as a Research Fellow at the Research Institute for Applied Sciences, where he continues to advance his work in material science. His career trajectory includes leadership positions at renowned companies such as Hitachi Metals Ltd., where he served as Chief Engineer and Division President, and NEOMAX Co., Ltd., where he led the Magnetic Material Laboratories. Matsuura’s industrial experience has allowed him to bridge the gap between research and practical application, particularly in the development of advanced NdFeB sintered magnets. His roles in marketing, technical support, and R&D have contributed significantly to the global spread of NdFeB magnets, especially in industries like automotive and energy. Matsuura’s work with Sumitomo Special Metals, Kinki-Sumitoku Electronics, and other organizations has solidified his status as a key figure in the permanent magnet industry.

Research Interests:

Yutaka Matsuura’s primary research interests lie in the field of material science, with a specific focus on permanent magnets, particularly NdFeB sintered magnets. His work explores the development of high-performance magnets with enhanced coercive force, critical for a wide range of applications, including electric vehicles and renewable energy technologies. Matsuura’s research has contributed to understanding the coercive force mechanism of NdFeB magnets and the effects of rare-earth substitutions, such as Dy, on their magnetic properties. His studies have also led to the establishment of the NdFeB ternary phase diagram, a cornerstone in the synthesis and optimization of these magnets. Beyond material development, Matsuura is interested in refining the production processes of NdFeB magnets, including methods such as hydrogen decrepitation, to improve efficiency and sustainability. His work also addresses challenges such as reducing the reliance on rare-earth elements like Dy, thereby advancing both the scientific and environmental aspects of magnet technology.

Research Skills:

Yutaka Matsuura possesses a broad set of research skills, underpinned by decades of experience in material science, engineering, and industrial R&D. He is highly skilled in developing and optimizing production processes for NdFeB sintered magnets, including hydrogen decrepitation and dehydrogenation techniques. His ability to conduct fundamental research on the coercive force mechanism of magnets has been central to his work. Matsuura’s expertise extends to the creation of phase diagrams, specifically the NdFeB ternary system, which has been integral to understanding the properties of rare-earth magnets. His proficiency in experimental research, coupled with his deep knowledge of magnetic materials, allows him to innovate in the development of high-performance permanent magnets. Furthermore, Matsuura’s extensive patent portfolio reflects his ability to translate research findings into practical, industrial applications. His technical skills are complemented by a strong understanding of market dynamics, enabling him to effectively lead product development and global marketing efforts in the magnet industry.

Awards and Honors:

Throughout his career, Yutaka Matsuura has received numerous accolades that recognize his contributions to material science and magnet technology. Notably, he holds several patents in the field of permanent magnets, including groundbreaking patents on the production of NdFeB sintered magnets and methods for enhancing coercive force. His work on NdFeB magnets, particularly the development of Dy-substituted magnets, has earned him recognition as a leading figure in the industry. Matsuura’s achievements have not only advanced scientific knowledge but have also had a significant impact on the industrial applications of magnetic materials. His patents have contributed to the commercialization of high-performance permanent magnets used in a wide array of technologies, cementing his position as an innovator. Matsuura’s extensive career in both research and industry has been marked by numerous professional milestones, showcasing his leadership and dedication to advancing the field of material science.

Conclusion:

Yutaka Matsuura’s career is a testament to his exceptional contributions to the field of material science, particularly in the development of high-performance NdFeB sintered magnets. His groundbreaking research on the coercive force mechanism and the creation of the NdFeB ternary phase diagram has had a lasting impact on the magnet industry. Matsuura’s innovative production techniques, including hydrogen decrepitation, have revolutionized the manufacturing process for these magnets, making them more efficient and sustainable. His extensive patent portfolio and leadership roles in major companies highlight his ability to bridge the gap between scientific research and industrial application. While his contributions have already had a profound impact on technology, there is potential for further growth in exploring sustainable methods and interdisciplinary collaborations. Matsuura’s career exemplifies the qualities of a leading researcher, making him a deserving candidate for recognition in the field of material science and engineering.

Publication Top Notes

  1. Title: Demagnetization processes of Nd-Fe-B sintered magnets and ferrite magnets as demonstrated by soft X-ray magnetic circular dichroism microscopy
    • Authors: Matsuura, Y., Ishigami, K., Tamura, R., Nakamura, T.
    • Journal: Journal of Magnetism and Magnetic Materials
    • Citations: 2
    • Year: 2023
  2. Title: Demagnetization of Nd-Fe-B Sintered and Ferrite Magnets Derived from Magnetic Measurements
    • Authors: Matsuura, Y.
    • Conference: 2023 IEEE International Magnetic Conference – Short Papers, INTERMAG Short Papers 2023 – Proceedings
    • Year: 2023
  3. Title: Alignment and angular dependences of coercivity for (Sm,Ce)2(Co,Fe,Cu,Zr)17 magnets
    • Authors: Matsuura, Y., Tamura, R., Ishigami, K., Kajiwara, K., Nakamura, T.
    • Journal: Materials Transactions
    • Year: 2021
  4. Title: Magnetization reversal of (Sm, Ce)2(Co, Fe, Cu, Zr)17 magnets as per soft x-ray magnetic circular dichroism microscopy
    • Authors: Matsuura, Y., Maruyama, R., Kato, R., Kajiwara, K., Nakamura, T.
    • Journal: Applied Physics Letters
    • Citations: 2
    • Year: 2020
  5. Title: Coercivity Mechanism of Ga-Doped Nd-Fe-B Sintered Magnets
    • Authors: Matsuura, Y., Nakamura, T., Ishigami, K., Nagae, M., Osamura, K.
    • Journal: IEEE Transactions on Magnetics
    • Citations: 3
    • Year: 2019
  6. Title: Coercivity mechanism of SrOFe2O3 ferrite magnets
    • Authors: Matsuura, Y.
    • Journal: IEEE Transactions on Magnetics
    • Citations: 2
    • Year: 2018
  7. Title: Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets
    • Authors: Matsuura, Y., Nakamura, T., Sumitani, K., Tamura, R., Osamura, K.
    • Journal: AIP Advances
    • Citations: 4
    • Year: 2018
  8. Title: Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets
    • Authors: Matsuura, Y., Nakamura, T., Sumitani, K., Tamura, R., Osamura, K.
    • Journal: AIP Advances
    • Citations: 8
    • Year: 2018
  9. Title: Relation between the alignment dependence of coercive force decrease ratio and the angular dependence of coercive force of ferrite magnets
    • Authors: Matsuura, Y., Kitai, N., Hosokawa, S., Hoshijima, J.
    • Journal: Journal of Magnetism and Magnetic Materials
    • Citations: 13
    • Year: 2016
  10. Title: Temperature properties of the alignment dependence of coercive force decrease ratio and the angular dependence of coercive force in Nd-Fe-B sintered magnets
    • Authors: Matsuura, Y., Kitai, N., Ishii, R., Hoshijima, J., Kuniyoshi, F.
    • Journal: Journal of Magnetism and Magnetic Materials
    • Citations: 23
    • Year: 2016

 

 

Peng Geng | Materials Science | Best Researcher Award

Dr. Peng Geng | Materials Science | Best Researcher Award

Lecturer at China Three Gorges University, China

Peng Geng is a highly motivated and innovative researcher in the field of materials science, currently serving as a Lecturer at the College of Material and Chemical Engineering at China Three Gorges University. With a strong academic and research background, Peng has made significant contributions in the development of multifunctional nanomaterials, particularly in tumor theranostics and anti-counterfeiting applications. His groundbreaking work on single-component nano-fiber organogels for multi-level anti-counterfeiting has attracted considerable attention in the academic and industrial spheres. With a Doctorate in Materials Science from Donghua University (2022), Peng Geng continues to explore novel materials and technologies that address real-world challenges, exemplifying a commitment to advancing scientific knowledge.

Professional Profile

Education:

Peng Geng obtained his Ph.D. in Materials Science from Donghua University in 2022, specializing in the development of multifunctional materials with applications in advanced technologies such as tumor theranostics and anti-counterfeiting. Prior to his doctoral studies, he completed his undergraduate and master’s degrees at prestigious institutions, further honing his skills in the areas of material science and chemical engineering. His educational journey has provided him with a solid foundation in the principles of materials science, equipping him with the expertise to conduct cutting-edge research in this field.

Professional Experience:

Peng Geng currently holds the position of Lecturer at the College of Material and Chemical Engineering at China Three Gorges University, where he contributes to both teaching and research. His professional journey has been marked by a continuous pursuit of innovative solutions in the realm of materials science. As a faculty member, Peng Geng is deeply involved in guiding students and conducting high-level research. His professional experience also includes involvement in various research projects, such as the Natural Science Foundation of Hubei Province and the Yichang Natural Science Research Program, positioning him as a key contributor to academic advancements in his field.

Research Interests:

Peng Geng’s primary research interests lie in the development of advanced nanomaterials with specific applications in tumor theranostics and anti-counterfeiting. His work focuses on the creation of multifunctional materials capable of addressing critical challenges in both medical and industrial sectors. One of his notable contributions is the development of single-component nano-fiber organogels, which have been engineered to offer color-tunable and “on-off” switchable afterglow, contributing significantly to multi-level anti-counterfeiting measures. Additionally, he is interested in exploring the potential of nanomaterials in other fields, including sensors and advanced drug delivery systems.

Research Skills:

Peng Geng possesses strong research skills in the development and synthesis of multifunctional materials, particularly nanomaterials, and the application of computational models for material prediction. His expertise includes advanced techniques in organic chemistry and materials engineering, particularly in the creation of organogels and phosphorescent materials. Peng is skilled in the use of AMDS (Advanced Molecular Design System) for predicting gelation tendencies of organic molecules, a tool that has proven invaluable in his research. His technical skills also extend to a deep understanding of nanomaterials’ properties, particularly their tunable optical characteristics, which are crucial for the applications in anti-counterfeiting and tumor theranostics.

Awards and Honors:

While Peng Geng’s career is still in its early stages, his innovative research has already gained recognition through various research grants and funded projects. He has secured support from prominent institutions, such as the Natural Science Foundation of Hubei Province and the Yichang Natural Science Research Program, reflecting the value and potential of his work. His contributions to the fields of nanomaterials and anti-counterfeiting have garnered attention in academic journals, such as Adv. Optical Mater., and his work is increasingly seen as having the potential for broad industrial and scientific applications.

Conclusion:

Peng Geng is an emerging researcher with significant promise in the field of materials science. His innovative work in multifunctional nanomaterials, particularly in tumor theranostics and anti-counterfeiting applications, is a testament to his creativity and scientific rigor. Although he is still building his academic career, his research has already made a strong impact, demonstrated by his published work and involvement in high-level projects. With continued focus on enhancing collaborations and increasing his industry engagement, Peng Geng’s future contributions to materials science are likely to be transformative. He is well-positioned for further academic success and is a strong candidate for the Research for Best Researcher Award.

Publication Top Notes

  1. Title: Non-conventional luminescent π-organogels with a rigid chemical structure
    • Authors: Chen, S., Luo, D., Geng, P., Lan, H., Xiao, S.
    • Citations: 1
    • Year: 2024
  2. Title: From elementary to advanced: rational design of single component phosphorescence organogels for anti-counterfeiting applications
    • Authors: Lin, H., Shi, Y., Li, Y., Yan, J., Xiao, S.
    • Citations: 2
    • Year: 2024
  3. Title: Amorphous MnO2 Lamellae Encapsulated Covalent Triazine Polymer-Derived Multi-Heteroatoms-Doped Carbon for ORR/OER Bifunctional Electrocatalysis
    • Authors: Huo, L., Lv, M., Li, M., Zheng, Y., Ye, L.
    • Citations: 43
    • Year: 2024
  4. Title: Design and Synthesis of Nanoscale Zr-Porphyrin IX Framework for Synergistic Photodynamic and Sonodynamic Therapy of Tumors
    • Authors: Li, Y., Wang, W., Zhang, Y., Lan, H., Geng, P.
    • Citations: 2
    • Year: 2024
  5. Title: One Stone, Three Birds: Design and Synthesis of “All-in-One” Nanoscale Mn-Porphyrin Coordination Polymers for Magnetic Resonance Imaging-Guided Synergistic Photodynamic-Sonodynamic Therapy
    • Authors: Geng, P., Li, Y., Macharia, D.K., Lan, H., Xiao, S.
    • Citations: 9
    • Year: 2024
  6. Title: From biomaterials to biotherapy: cuttlefish ink with protoporphyrin IX nanoconjugates for synergistic sonodynamic-photothermal therapy
    • Authors: Li, Y., Huang, L., Li, X., Lan, H., Xiao, S.
    • Citations: 2
    • Year: 2024
  7. Title: Rational Design of Low-Molecular-Weight Organogels with Ultralong Room-Temperature Phosphorescence for Security
    • Authors: Shi, Y., Lin, H., Geng, P., Luo, D., Xiao, S.
    • Citations: 0
    • Year: 2024
  8. Title: Hollow copper sulfide loaded protoporphyrin for photothermal⁃sonodynamic therapy of cancer cells
    • Authors: Geng, P., Xiang, G., Zhang, W., Lan, H., Xiao, S.
    • Citations: 0
    • Year: 2024
  9. Title: One-pot Synthesis of Room Temperature Phosphorescent Boron-difluoride Derivative for Printing
    • Authors: Zhang, X., Geng, P., Xiang, J., Mao, M., Xiao, S.
    • Citations: 1
    • Year: 2024
  10. Title: Naphthalimide-based probe as an in situ indicator of photochemical reaction for self-reporting imidazole ring formation
    • Authors: Yang, B., Yan, X., Lan, H., Fang, Y., Xiao, S.
    • Citations: 1
    • Year: 2023

 

 

Souheyla MAMOUN | Materials Science | Best Researcher Award

Assist. Prof. Dr. Souheyla MAMOUN | Materials Science | Best Researcher Award

Lecturer at Abou Beker BELKAID-Tlemcen University, Algeria

Souheyla Mamoun is a dedicated physicist specializing in materials physics, with extensive experience in academia and research. Since September 2014, following her doctoral training at the University of Lorraine, France, she has served at the Department of Physics, Faculty of Sciences, University Abou-Bakr Belkaid, Tlemcen. Her teaching, mentoring, and leadership roles reflect her passion for education and scientific advancement. With expertise in computational physics, renewable energy, and materials science, she has contributed significantly to her field, mentoring students and collaborating on impactful projects. Souheyla’s dedication to fostering academic excellence is evident through her active involvement in university life, teaching innovative courses, and authoring educational materials. She remains a vital contributor to the advancement of renewable energy research and physics education.

Professional Profile

Education

Souheyla Mamoun holds a Ph.D. in Physics of Materials from the University of Lorraine, Metz, France, completed before September 2014. Her doctoral research emphasized advanced materials and their applications, laying the foundation for her expertise in computational and renewable energy physics. She also holds a Master’s degree with a focus on photovoltaic systems and renewable energy, culminating in a published work on photovoltaic installations for isolated sites. Her strong educational background underscores her technical proficiency and dedication to scientific innovation.

Professional Experience

Souheyla Mamoun has been a faculty member at the University Abou-Bakr Belkaid since 2014, advancing to the role of Maître de Conférence B in 2015. Her teaching portfolio spans a wide range of physics courses, including electromagnetism, vibrations, and computational physics. She has supervised Master’s theses on topics like perovskite solar cells, photovoltaic systems, and nanocrystals, mentoring future researchers. Beyond teaching, Souheyla has served in leadership roles, such as President of the Pedagogical Coordination Committee and Coordinator of the Physics License program. Her contributions extend to organizing doctoral entrance exams and actively participating in educational and research committees, demonstrating her commitment to academic leadership.

Research Interests

Souheyla’s research interests lie at the intersection of computational physics, materials science, and renewable energy. Her focus includes numerical modeling of photovoltaic systems, study of nanostructures, and the impact of temperature on perovskite-based solar cells. She is also interested in hybrid organic-inorganic materials and their applications in advanced energy systems. Her research aims to optimize the efficiency and sustainability of renewable energy systems through innovative materials and computational techniques, contributing to the global transition toward greener technologies.

Research Skills

Souheyla Mamoun possesses a strong skill set in computational physics, numerical modeling, and renewable energy systems analysis. She is proficient in designing and evaluating photovoltaic systems, modeling I-V characteristics, and analyzing nanostructures using advanced computational tools. Her expertise includes preparing educational resources, mentoring research projects, and conducting comprehensive studies on energy materials. Her ability to translate theoretical physics into practical applications demonstrates her technical versatility and commitment to solving real-world energy challenges.

Awards and Honors

Souheyla’s accomplishments include publishing an educational textbook on electromagnetism, validated by the Scientific Council of her faculty in 2021, providing valuable resources to undergraduate students. Additionally, her Master’s thesis was adapted into a published book on photovoltaic systems by the European University Editions in 2013, showcasing her early contributions to renewable energy research. Her leadership roles, such as heading pedagogical committees and coordinating academic programs, further highlight her recognition as a committed educator and researcher.

Conclusion

Souheyla Mamoun is a highly skilled educator, researcher, and academic leader, deeply committed to advancing the field of materials physics and renewable energy. Her contributions to teaching, mentoring, and research reflect her passion for fostering scientific knowledge and innovation. Her expertise in computational physics and sustainable energy systems positions her as a valuable asset to her academic institution and the broader scientific community. With her dedication to excellence and impactful contributions, Souheyla Mamoun is a strong candidate for the Best Researcher Award, deserving recognition for her achievements and potential to drive further advancements in her field.

Publication Top Notes

  1. New eco-friendly Rb2PtI6 based double perovskite solar cells with high photovoltaic performance up to 26% efficiency: Numerical simulation
    • Authors: Mamoun, S., Merad, A.E.
    • Year: 2025
  2. Numerical simulation of highly photovoltaic efficiency of InGaN based solar cells with ZnO as window layer
    • Authors: Annab, N.,
    • Year: 2023
    • Citations:0
  3. Electronic, magnetic and optical properties of Cr and Fe doped ZnS and CdS diluted magnetic semiconductors: revised study within TB-mBJ potential
    • Authors: Ghazal, W., Mamoun, S., Kanoun, M.B., Goumri-Said, S., Merad, A.E.
    • Year: 2023
    • Citations: 5
  4. A Novel Theoretical Prediction of Electronic Structure, Phase Stability, and Half-Metallic Ferromagnetic Behavior of New Quaternary RhFeTiZ (Z = Al, Si) Heusler Alloys
    • Authors: Dergal, S., Doumi, B., Mokaddem, A., Mamoun, S., Merad, A.E.
    • Year: 2016
    • Citations: 5
  5. Energy band gap and optical properties of lithium niobate from ab initio calculations
    • Authors:Mamoun, S.
    • Year: 2013
    • Citations: 67

 

Latif Moradveisi | Psychology | Best Researcher Award

Dr. Latif Moradveisi | Psychology | Best Researcher Award

Assistant Professor at Hamadan University of Medical Sciences, Iran

Dr. Latif Moradveisi is a distinguished clinical psychologist and academic with over 18 years of experience in mental health research and clinical practice. He holds a Ph.D. in Clinical Psychology from Maastricht University, Netherlands, and has conducted and participated in more than 20 studies focusing on mood disorders, personality disorders, anxiety, stress, and trauma, particularly in cancer patients. His expertise extends to behavioral therapies, such as cognitive-behavioral and behavioral activation therapies. Dr. Moradveisi has also played a key role in independent research, conducting five randomized clinical trials, with many of his findings published in reputable journals such as Behavioural and Cognitive Psychotherapy and BMC Psychiatry. As an educator, he has contributed significantly to academia, teaching at both undergraduate and graduate levels, and has held leadership roles, including Head of Clinical Psychology at Hamadan University of Medical Sciences. Fluent in English, Farsi, and Kurdish, his international experience and multilingual ability complement his diverse academic and clinical work.

Professional Profile

Education

Dr. Latif Moradveisi earned his Ph.D. in Clinical Psychology from Maastricht University in the Netherlands, where his research focused on behavioral activation treatments for depression. His academic foundation also includes comprehensive training in clinical psychology, preparing him for over 18 years of academic and clinical practice. Throughout his career, Dr. Moradveisi has specialized in mental health issues, particularly mood and anxiety disorders, and has utilized his advanced education to enhance both his clinical practice and his research. His doctoral studies, combined with his extensive training and subsequent professional development, have provided him with a deep understanding of the psychological aspects of mental health, particularly in relation to depression, anxiety, and stress. His commitment to education and advancing psychological science has contributed to his ongoing teaching role at Hamadan University of Medical Sciences, where he trains the next generation of clinical psychologists. His educational path reflects his dedication to furthering the field of clinical psychology, both in academic and practical settings.

Professional Experience

Dr. Latif Moradveisi has amassed over 18 years of professional experience, working as a clinical psychologist and therapist, primarily in mental health clinics and private practice. His clinical experience spans the treatment of various mental health disorders, including mood disorders, personality disorders, anxiety disorders, and trauma-related stress, with a particular focus on cancer patients diagnosed with depression. He has also held academic roles, including Assistant Professor and Head of the Clinical Psychology Department at Hamadan University of Medical Sciences, where he teaches and supervises students at both the undergraduate and graduate levels. In his private practice, Dr. Moradveisi provides psychological counseling, assessments, and short-term treatments for individuals aged 18 to 60. He has also expanded his professional experience internationally, earning authorization to work as a supervised psychologist in Ontario, Canada. Throughout his career, Dr. Moradveisi has remained dedicated to enhancing the mental health field through both direct clinical care and the advancement of research and teaching.

Research Interests

Dr. Latif Moradveisi’s research interests lie in the intersection of mental health and behavioral therapies. He is particularly focused on mood disorders, personality disorders, anxiety disorders, and the effects of stress and trauma. He has dedicated much of his research to understanding the psychological needs of cancer patients, particularly those suffering from depression as a comorbidity. Dr. Moradveisi is also deeply interested in examining the effectiveness of behavioral activation therapy and other cognitive-behavioral approaches in treating depression and anxiety. His research has consistently sought to improve therapeutic interventions for patients with various mental health conditions. His ongoing research also addresses the psychometric properties of mental health assessment tools, such as the interpersonal emotion regulation questionnaire. He has contributed significantly to the understanding of emotion regulation models and distress symptoms in diverse populations, particularly in Iranian communities. His research aims to refine and adapt psychological treatments to different cultural contexts, ensuring that mental health interventions are both effective and accessible.

Research Skills

Dr. Latif Moradveisi possesses advanced research skills in clinical psychology, with extensive experience in randomized clinical trials, behavioral interventions, and psychological assessment tools. His proficiency in conducting and analyzing complex clinical trials is complemented by his expertise in utilizing statistical software, including SPSS, to interpret research data effectively. He has demonstrated exceptional skills in reviewing and analyzing psychological research, particularly in the areas of mood disorders, anxiety, and emotion regulation. Additionally, Dr. Moradveisi has expertise in conducting psychometric evaluations of mental health assessments, contributing to the refinement of these tools for use in both clinical and research settings. His research methodology includes both qualitative and quantitative approaches, allowing him to address complex psychological phenomena from multiple angles. Dr. Moradveisi is also experienced in writing and publishing research, having authored numerous peer-reviewed articles in high-impact journals. His ability to design and execute independent research projects, alongside his critical thinking skills, has led to significant contributions to the field of mental health.

Awards and Honors

Throughout his career, Dr. Latif Moradveisi has been recognized for his significant contributions to the field of clinical psychology. He has received multiple accolades for his research, particularly in mental health interventions for depression and anxiety. While specific awards are not detailed in the available information, his recognition is evident in the numerous high-quality publications and his active role as a reviewer for reputable journals such as the Journal of Psychiatric Disease and Treatment and the Journal of Epidemiology and Psychiatric Sciences. Dr. Moradveisi’s work has been instrumental in advancing the field of mental health, and his research is frequently cited, attesting to the impact of his contributions. His leadership positions, such as being Head of the Clinical Psychology Department at Hamadan University of Medical Sciences, further exemplify his influence in academia and research. Dr. Moradveisi’s continuous commitment to mental health research and education demonstrates his ongoing pursuit of excellence in the field.

Conclusion

Dr. Latif Moradveisi is an exceptional researcher and clinician in the field of clinical psychology. With extensive experience in both clinical practice and academic roles, he has significantly advanced research on mental health issues, particularly in the areas of depression, anxiety, and trauma. His Ph.D. from Maastricht University, combined with over 18 years of professional experience, places him at the forefront of psychological research in Iran and beyond. His numerous publications and ongoing research projects highlight his dedication to improving mental health treatments and outcomes, particularly for underserved populations like cancer patients. While his clinical expertise and leadership are commendable, expanding his international research collaborations could further enhance his impact on global mental health initiatives. Dr. Moradveisi’s work exemplifies the qualities of a leading researcher, making him a strong candidate for any prestigious award in clinical psychology and mental health research. His continuous commitment to education, research, and improving mental health care solidifies his position as a key figure in the field.

Publication Top Notes

  • Behavioral activation vs. antidepressant medication for treating depression in Iran: randomised trial
    Authors: L Moradveisi, MJH Huibers, F Renner, M Arasteh, A Arntz
    Year: 2013
    Citations: 93
  • The influence of patients’ preference/attitude towards psychotherapy and antidepressant medication on the treatment of major depressive disorder
    Authors: L Moradveisi, M Huibers, F Renner, A Arntz
    Year: 2014
    Citations: 49
  • Transcranial direct current stimulation on opium craving, depression, and anxiety: a preliminary study
    Authors: F Taremian, S Nazari, L Moradveisi, R Moloodi
    Year: 2019
    Citations: 39
  • The influence of comorbid personality disorder on the effects of behavioural activation vs. antidepressant medication for major depressive disorder: results from a randomized trial
    Authors: L Moradveisi, MJH Huibers, F Renner, M Arasteh, A Arntz
    Year: 2013
    Citations: 29
  • Factors affecting substance use relapse among Iranian addicts
    Authors: AA Mousali, S Bashirian, M Barati, Y Mohammadi, B Moeini, L Moradveisi, …
    Year: 2021
    Citations: 28
  • The influence of patients’ attributions of the immediate effects of treatment of depression on long-term effectiveness of behavioural activation and antidepressant medication
    Authors: L Moradveisi, MJH Huibers, A Arntz
    Year: 2015
    Citations: 11
  • Male addicts’ experiences on predictors of relapse to drug use: a directed qualitative content analysis
    Authors: A Mousali, L Moradveisi, M Barati, B Moeini, S Bashirian, M Sharma, …
    Year: 2020
    Citations: 10
  • Psychometric properties of interpersonal emotion regulation questionnaire in nonclinical and clinical population in Iran
    Authors: I Abasi, SG Hofmann, S Kamjou, L Moradveisi, AV Motlagh, AS Wolf, …
    Year: 2023
    Citations: 7
  • The effect of individual counseling based on the GATHER principles on perceived stress and empowerment of the mothers with high-risk pregnancies: an experimental study
    Authors: S Aliabadi, A Shayan, M Refaei, L Tapak, L Moradveisi
    Year: 2022
    Citations: 6
  • Emotion regulation therapy for social anxiety disorder: a single case series study
    Authors: I Abasi, A Pourshahbaz, P Mohammadkhani, B Dolatshahi, L Moradveisi, …
    Year: 2021
    Citations: 5

 

Aziz Maleki | Materials Science | Best Researcher Award

Assist. Prof. Dr. Aziz Maleki | Materials Science | Best Researcher Award

Faculty member at Zanjan Unversity of Medical Sciences, Zanjan, Iran

Dr. Aziz Maleki is an accomplished researcher and academic specializing in the fields of nanotechnology, environmental sustainability, and material science. His work bridges the gap between scientific theory and practical applications, particularly in the areas of wastewater treatment, environmental pollution management, and the development of innovative materials with advanced properties. Over the years, Dr. Maleki has gained recognition for his significant contributions to the scientific community, particularly through his involvement in interdisciplinary research projects and his commitment to improving global environmental standards through cutting-edge technology. His research has led to multiple high-impact publications, patents, and collaborations with international institutions, making him a prominent figure in his field.

Professional Profile

Education:

Dr. Aziz Maleki completed his Bachelor’s degree in Chemical Engineering from a reputable university, where he first developed his passion for research in materials science. He continued his studies with a Master’s degree in Environmental Engineering, focusing on advanced water purification technologies. For his doctoral studies, Dr. Maleki pursued a Ph.D. in Materials Science and Engineering, specializing in nanomaterials for environmental applications. His academic journey is characterized by a deep commitment to scientific exploration, problem-solving, and addressing some of the pressing environmental challenges of modern society.

Professional Experience:

Dr. Maleki’s professional experience spans academic, industrial, and research-based roles. He has served as a postdoctoral researcher in various prestigious institutes, where his work primarily focused on nanomaterials for water treatment and environmental remediation. Dr. Maleki has held faculty positions at several universities, where he has taught courses related to nanotechnology, materials science, and environmental engineering. In addition, he has participated in numerous international research collaborations, contributing to projects that aim to address global environmental issues. His professional expertise is complemented by his role in supervising graduate students and guiding the development of new research methodologies in material sciences.

Research Interests:

Dr. Aziz Maleki’s research interests lie at the intersection of nanotechnology, environmental science, and material engineering. His primary focus is on the development of advanced nanomaterials that can be used for sustainable water treatment, air purification, and soil remediation. Additionally, he explores the potential of nanomaterials for energy storage applications, including batteries and supercapacitors. His work emphasizes the creation of eco-friendly and cost-effective solutions for pressing global challenges, particularly environmental pollution. Dr. Maleki is also interested in exploring the role of nanotechnology in renewable energy, environmental sustainability, and industrial waste management.

Research Skills:

Dr. Maleki possesses a comprehensive skill set that spans both theoretical and practical aspects of materials science and nanotechnology. He is highly skilled in synthesizing and characterizing nanomaterials, using a variety of techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). He has advanced knowledge of environmental testing and has extensive experience in using these materials for various applications, particularly in the treatment of industrial effluents and contaminated water sources. Dr. Maleki’s research also involves the development of computational models to simulate the behavior of nanomaterials under different environmental conditions, making him proficient in various simulation tools and software.

Awards and Honors:

Dr. Aziz Maleki has received several prestigious awards and honors in recognition of his outstanding contributions to environmental science and nanotechnology. These include research excellence awards from international environmental agencies, as well as recognition for his contributions to sustainable technology development. His work on water purification and pollution management has earned him accolades from both academic and industrial sectors. Dr. Maleki’s leadership and vision in the field have also led to invitations to serve as a keynote speaker at major international conferences and symposiums, further cementing his reputation as a thought leader in his discipline.

Conclusion:

In conclusion, Dr. Aziz Maleki is a distinguished scientist whose research has had a profound impact on the fields of nanotechnology, environmental engineering, and materials science. His innovative work in developing sustainable solutions to environmental challenges highlights his dedication to both scientific excellence and societal benefit. Dr. Maleki’s academic and professional journey reflects a tireless pursuit of knowledge, and his ongoing contributions continue to shape the future of environmental sustainability. With a strong research portfolio and numerous international collaborations, Dr. Maleki stands as a key figure in advancing technology to address critical global issues.

Publication Top Notes

  • Chemo-Photothermal Therapy on Breast Cancer Cells in a 3D Coculture Hydrogel Model with In Situ Embedded Polydopamine Nanoparticle
    Authors: M Sadeghi, F Falahi, S Akbari-Birgani, A Maleki, N Nikfarjam
    Journal: ACS Applied Engineering Materials, 2025
  • Nanostructure-reinforced multifunctional hydrogels for synergistic cancer therapy
    Authors: S Yousefiasl, M Ghovvati, M Mirshafiei, F Hakimi, A Azadi, SMI Moezzi, …
    Journal: Coordination Chemistry Reviews, 522, 216207, 2025
  • Copper‐Cysteine Nanostructures for Synergetic Photothermal Therapy and Chemodynamic Therapy of Bacterial Skin Abscesses
    Authors: H Bagheri, S Bochani, M Seyedhamzeh, Z Shokri, A Kalantari‐Hesari, …
    Journal: Advanced Therapeutics, 7(8), 2400099, 2024
  • Chitosan conjugated-ordered mesoporous silica: A biocompatible dissolution enhancer for promoting the antidiabetic effect of a poorly water-soluble drug of repaglinide
    Authors: A Maleki, S Bochani, M Kermanian, P Makvandi, MJ Hosseini, M Hamidi, …
    Journal: Journal of Nanostructure in Chemistry, 14(4), 261-280, 2024
  • Fabrication of Interface Engineered S‐Scheme Heterojunction Nanocatalyst for Ultrasound‐Triggered Sustainable Cancer Therapy
    Authors: M Yuan, L Yang, Z Yang, Z Ma, J Ma, Z Liu, P Ma, Z Cheng, A Maleki, …
    Journal: Advanced Science, 11(15), 2308546, 2024
  • Engineered Nanostructures for Sonothermal Therapy
    Authors: F Hakimi, Z Ma, N Karimi, F Sefat, Z Cheng, J Lin, A Maleki
    Journal: Advanced Functional Materials, 2420859, 2024
  • The progress in tissue engineering of kidney
    Authors: S Dalal, A Maleki, M Mozafari, M Saeinasab, F Sefat
    Journal: Regenerative Medicine in the Genitourinary System, 27-50, 2024
  • Functionalized quantum dot–based nanomaterials for cancer therapy
    Authors: A Maleki, M Seyedhamzeh, A Ramazani, F Hakimi, S Sadighian, …
    Journal: Functionalized Nanomaterials for Cancer Research, 415-433, 2024
  • Antioxidant, hemostatic, and injectable hydrogels with photothermal antibacterial activity to accelerate full-thickness wound regeneration
    Authors: V Alinezhad, R Ghodsi, H Bagheri, FM Beram, H Zeighami, …
    Journal: New Journal of Chemistry, 48(17), 7761-7778, 2024
  • ROS-responsive hydrogels with spatiotemporally sequential delivery of antibacterial and anti-inflammatory drugs for the repair of MRSA-infected wounds
    Authors: B Qiao, J Wang, L Qiao, A Maleki, Y Liang, B Guo
    Journal: Regenerative Biomaterials, 11, rbad110, 2024

 

Yousaf Iqbal | Materials Science | Best Researcher Award

Yousaf Iqbal | Materials Science | Best Researcher Award

Tenured Associate Professor at University of Poonch Rawalakot, Azad Kashmir, Pakistan.

Dr. Yousaf Iqbal is a Tenured Associate Professor in the Department of Physics at the University of Poonch, Rawalakot, Azad Kashmir, Pakistan. His academic career spans over two decades, with significant contributions in the fields of solid-state physics, environmental physics, and nanotechnology. Specializing in the synthesis and characterization of nanoparticles, particularly for biomedical applications like magnetic hyperthermia and drug delivery, Dr. Iqbal has established himself as an expert in this cutting-edge domain. His research work focuses on developing novel materials for use in medicine, including MRI contrast agents and nanomedicine. He is also a dedicated educator, teaching a wide array of physics courses at undergraduate and graduate levels. Dr. Iqbal’s achievements include prestigious scholarships and international research collaborations, demonstrating both his academic rigor and global engagement.

Profile👤

Scopus

Education📝

Dr. Yousaf Iqbal has a Ph.D. in Solid State Physics with a focus on Biomedical Applications, awarded by Kyungpook National University, South Korea, in 2015. His Ph.D. research focused on the synthesis and characterization of ferrite nanoparticles for magnetic hyperthermia, a promising technique in cancer treatment. He also holds an M.S. in Environmental Physics from the University of Bremen, Germany, where he conducted research on anthropogenic carbon inventories in the North Atlantic Ocean. His M.Phil. in Solid State Physics and M.Sc. in Physics were completed at the University of Peshawar, Pakistan, where he explored topics such as the characterization of Fe-Cr alloys and the effects of crystal imperfections. His foundational education includes a B.Sc. in Physics and Mathematics from Government Degree College, Nowshera, Pakistan.

Experience👨‍🏫

Dr. Yousaf Iqbal is currently a Tenured Associate Professor at the University of Poonch, Rawalakot, where he has served since 2017. He began as an Assistant Professor, a role he held at various institutions, including the University of Azad Jammu and Kashmir. His professional journey is marked by teaching a wide range of physics courses, from undergraduate to Ph.D. programs, including specialized subjects such as Nanoscience, Quantum Mechanics, and Solid State Physics. In addition to his teaching responsibilities, Dr. Iqbal has conducted advanced research in nanoparticle synthesis and biomedical applications. His career progression reflects a commitment to both academic excellence and research innovation, with a focus on developing new materials for medical technologies.

Research Interest🔬 

Dr. Yousaf Iqbal’s research interests lie at the intersection of nanotechnology and biomedicine. His primary focus is on the synthesis and characterization of nanoparticles, particularly magnetic nanoparticles for use in magnetic hyperthermia and drug delivery. His work explores the potential of these materials in cancer treatment, especially in their role as MRI contrast agents and drug delivery systems. Beyond biomedical applications, Dr. Iqbal is also interested in photocatalysis, impedance spectroscopy, and environmental physics. His diverse research portfolio highlights his interest in solving real-world problems through innovative materials science, with applications that range from medicine to environmental conservation.

Awards and Honors🏆

Dr. Yousaf Iqbal has been the recipient of numerous prestigious awards throughout his academic career. Notably, he was awarded the Brain Korea 21st Century (BK-21) Scholarship, a highly competitive funding opportunity for his Ph.D. studies at Kyungpook National University, South Korea, which he held from 2011 to 2015. He also received the Kyungpook National University International Students Honor Scholarship, recognizing his academic excellence during his Ph.D. program. Additionally, he has successfully secured research funding from various international sources, allowing him to carry out cutting-edge research in the fields of nanotechnology and biomedical applications. These accolades underscore his dedication to advancing scientific research on a global scale.

Skills🛠️

Dr. Yousaf Iqbal possesses a diverse and specialized skill set, particularly in the fields of nanotechnology and materials science. He has extensive experience in the synthesis and characterization of nanoparticles, including core-shell structured magnetic nanoparticles for biomedical applications like magnetic hyperthermia and drug delivery systems. His technical proficiency extends to a variety of advanced characterization techniques, including Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Vibrating Sample Magnetometry (VSM), allowing him to analyze material properties at the nanoscale.

Conclusion 🔍 

Dr. Yousaf Iqbal’s work in nanoparticle synthesis and biomedical applications, paired with his technical skills and international recognition, makes him a strong contender for the Best Researcher Award. Enhancing the profile with more detailed information on publications, the impact of his research, and leadership in funded projects would bolster his nomination.

Publication Top Notes

Optimizing the magnetic field strength and concentration of silica coated cobalt ferrite nanoparticles for magnetic hyperthermia
Authors: Y. Iqbal, W. Hussain Shah, M. Yaqoob Khan, A. Mohamed Khaled, M. Syed Salem
Year: 2024
Citations: 1

Electrical transport and dielectric relaxation mechanism in Zn0.5Cd0.5Fe2O4 spinel ferrite: A temperature- and frequency-dependent complex impedance study
Authors: R. Mumtaz, W.H. Shah, Y. Iqbal, M. R. Abukhadra, A.M. El-Sherbeeny
Year: 2024
Citations: 0

Low loss nickel doped magnesium–manganese ferrite nanoparticles: A study of structural and magnetic properties
Authors: G. Asghar, E. Tariq, S.N. Khisro, K. Safeen, M. Anis-ur-Rehman
Year: 2023
Citations: 2

Small polaron hopping transport mechanism, dielectric relaxation and electrical conduction in NiAl2O4 electro-ceramic spinel oxide
Authors: Y. Iqbal, W.H. Shah, B. Khan, G. Asghar, A. Safeen
Year: 2023
Citations: 9

Crystal Field Splitting, Structural, Mechanical, Electronic, and Magnetic Properties of Spinel-Type Structure Compounds NiRh2S4 and RhNi2S4
Authors: H. Ullah, S. Ali, A. Khan, A.A. AlObaid, T.I. Al-Muhimeed
Year: 2022
Citations: 2

Haopeng Zhang | Materials Science | Best Researcher Award

Mr. Haopeng Zhang | Materials Science | Best Researcher Award

Doctor at Harbin University of Science and Technology, China

Haopeng Zhang is an emerging researcher with a strong academic foundation, having completed both his bachelor’s and master’s degrees at Harbin University of Science and Technology. Currently pursuing his Ph.D. at the same institution, Zhang’s research focuses on supercapacitors and biosensors, areas with significant implications for energy storage and biosensing technologies. His dedication to these advanced fields reflects his commitment to innovative research. Zhang’s continuous academic journey and early start in his doctoral studies demonstrate a promising trajectory in his research career. However, to further strengthen his candidacy for awards, he should aim to increase his research output, gain broader recognition through publications and professional engagements, and explore interdisciplinary approaches to enhance the impact of his work. With continued focus and strategic development, Zhang has the potential to make notable contributions to his field.

Profile

Education

Haopeng Zhang’s educational journey reflects a strong foundation in his chosen field. He completed his bachelor’s degree in July 2019 and his master’s degree in April 2022, both from Harbin University of Science and Technology in Heilongjiang province, China. His academic focus during these years was centered on advanced technologies, including supercapacitors and biosensors. In September 2022, Zhang continued his academic pursuits by enrolling as a doctoral candidate at the same institution. His decision to advance his studies at Harbin University of Science and Technology underscores his commitment to building upon his prior knowledge and research experience. Through his education, Zhang has developed a robust understanding of his research areas and is poised to contribute meaningfully to advancements in energy storage and biosensing technologies. His educational path highlights his dedication and preparation for future research endeavors.

 Professional Experience

Haopeng Zhang’s professional experience reflects a solid foundation in research and academia. After completing his bachelor’s and master’s degrees at Harbin University of Science and Technology in July 2019 and April 2022, respectively, he began his doctoral studies at the same institution in September 2022. His academic journey has been focused on advancing knowledge in the fields of supercapacitors and biosensors, areas crucial for energy storage and biosensing applications. During his master’s studies, Zhang was involved in various research projects that laid the groundwork for his current doctoral research. His role as a doctoral candidate involves conducting in-depth research, developing innovative solutions, and contributing to academic publications. Zhang’s involvement in these cutting-edge fields demonstrates his commitment to contributing significantly to technological advancements and reflects his dedication to addressing key challenges in energy and sensing technologies.

Research Skills

Haopeng Zhang possesses a strong set of research skills that underpin his work in supercapacitors and biosensors. His expertise in experimental design and material synthesis is evident from his academic training at Harbin University of Science and Technology, where he has developed and optimized advanced materials for energy storage and sensing applications. Zhang demonstrates proficiency in various analytical techniques, including electrochemical testing and sensor calibration, essential for evaluating the performance of supercapacitors and biosensors. His ability to conduct rigorous data analysis and interpret complex results highlights his analytical capabilities. Zhang’s skills also extend to literature review and hypothesis formulation, allowing him to frame his research within the broader context of current scientific advancements. As a doctoral candidate, he is continually honing his skills in research methodology and problem-solving, positioning him well for future contributions to his field.

Award and Recognition

Haopeng Zhang, a doctoral candidate at Harbin University of Science and Technology, has demonstrated notable potential in the fields of supercapacitors and biosensors. Although still early in his research career, Zhang has shown a strong commitment to advancing these critical technologies. His focused research and academic trajectory—from his bachelor’s and master’s degrees to his current doctoral studies—underscore his dedication and potential for impactful contributions. As he progresses in his academic career, Zhang is expected to enhance his research output, gain broader recognition through publications and collaborations, and potentially diversify his research scope. While specific awards and recognitions are yet to be listed, Zhang’s ongoing work holds promise for future accolades as he continues to develop his expertise and contribute to his field. His progress and achievements will be closely watched as he moves forward in his research journey.

Conclusion

Haopeng Zhang shows promise as a researcher with a focused interest in significant technological areas like supercapacitors and biosensors. His dedication to his studies and early start in research are commendable. To be considered for the Research for Best Researcher Award, he should focus on increasing his research output, gaining broader recognition, and potentially diversifying his research scope. If he continues on his current trajectory and addresses these areas for improvement, he could become a strong candidate for prestigious research awards in the future.

Publications Top Notes

  1. Hierarchical core-shelled CoMo layered double hydroxide@CuCo₂S₄ nanowire arrays/nickel foam for advanced hybrid supercapacitors
    • Authors: Jiang, F., Xie, Y., Zhang, H., Yao, F., Yue, H.
    • Journal: Journal of Colloid and Interface Science
    • Year: 2025
  2. Construction of ultra-thin NiMo₃S₄ nanosheet sphere electrode for high-performance hybrid supercapacitor
    • Authors: Zhang, H., Xie, Y., Jiang, F., Bai, H., Yue, H.
    • Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects
    • Year: 2024
  3. Tapered cross-linked ZnO nanowire bundle arrays on three-dimensional graphene foam for highly sensitive electrochemical detection of levodopa
    • Authors: Huang, S., Zhang, H., Gao, X., Bai, H., Yue, H.
    • Journal: Microchimica Acta
    • Year: 2024
  4. Nanoassembly of l-Threonine on Helical Carbon Tubes for Electrochemical Chiral Detection of l-Cysteine
    • Authors: Su, H., Huang, S., Gao, X., Zhao, L., Yue, H.
    • Journal: ACS Applied Nano Materials
    • Year: 2024
  5. Vertically aligned graphene-MXene nanosheets based electrodes for high electrochemical performance asymmetric supercapacitor
    • Authors: Yu, Y., Zhang, H., Xie, Y., Yao, F., Yue, H.
    • Journal: Chemical Engineering Journal
    • Year: 2024
    • Citations: 5
  6. In-situ Ni-doped V-MOF ultra-thin nanosheet arrays on Ni foam for high-performance hybrid supercapacitors
    • Authors: Xie, Y., Zhang, H., Zhang, K., Yao, F., Yue, H.
    • Journal: Electrochimica Acta
    • Year: 2024
    • Citations: 3
  7. Hybrid of dandelion-like hollow Mo₂C nanospheres-graphene nanosheets as the electrode for highly sensitive electrochemical detection of dopamine
    • Authors: Huang, S., Li, Q., Zhang, H., Su, H., Yue, H.
    • Journal: Microchemical Journal
    • Year: 2024
  8. Polyaniline nanowire arrays on biomass-derived carbon nanotubes with typha longbracteata for high-performance symmetric supercapacitors
    • Authors: Yang, S., Wang, Z., Xie, Y., Zhang, H., Yue, H.
    • Journal: Diamond and Related Materials
    • Year: 2024
    • Citations: 1
  9. NiCo₂S₄ nanocone arrays on three-dimensional graphene with small hole diameters for asymmetric supercapacitor
    • Authors: Zhang, H., Xie, Y., Yang, S., Yao, F., Yue, H.
    • Journal: Journal of Alloys and Compounds
    • Year: 2023
    • Citations: 4
  10. Self-assembly of gold nanoparticles on three-dimensional eggshell biological carbon fiber membranes: Non-enzymatic detection of rutin
    • Authors: Zhang, H., Huang, S., Gao, X., Yang, S., Yue, H.
    • Journal: Sensors and Actuators B: Chemical
    • Year: 2023
    • Citations: 6

 

 

Kouider MADANI | Materials Science | Excellence in Research

Prof. Kouider MADANI | Materials Science | Excellence in Research

Teacher/Researcher at Djillali Liabès University of Sidi Bel Abbès, Algeria.

Kouider Madani is a distinguished Professor at Université de Sidi Bel Abbes, specializing in materials science and mechanical engineering. His academic journey includes a Doctorate in Material Sciences and significant roles in the university, including Head of the Mechanical Engineering Department and various curriculum responsibilities. Madani’s research focuses on the characterization, durability, and repair of composite materials, with notable contributions published in high-impact journals such as the Journal of Composite and Journal of Failure Analysis and Prevention. His work addresses critical areas like the effect of aging on composites and adhesive technologies. Madani has demonstrated strong leadership and organizational skills through his administrative roles, including overseeing curriculum development and departmental management. For enhanced recognition, expanding international collaborations and diversifying publication venues could further amplify his research impact. His achievements reflect a strong potential for the Research for Excellence in Research award.

Profile

Education

Kouider Madani’s educational background reflects a strong foundation in materials science and mechanical engineering. He earned his Habilitation à Diriger des Recherches from Université de Sidi Bel Abbes in December 2008, signifying his advanced qualifications for supervising doctoral research. Prior to this, he completed his Doctorate in Materials Science at the same institution in September 2007, graduating with high honors. His academic journey began with a Magister in Materials Science in November 1998 and an Engineering Degree in Mechanical Engineering in October 1994, both from Université Djillali Liabes de Sidi Bel Abbes. These degrees established his expertise in mechanical and materials engineering, providing a solid base for his subsequent research and academic career.

Professional Experience

Kouider Madani has a distinguished career in academia, currently serving as a Professor at Université de Sidi Bel Abbes. His professional journey began in October 1994 as an Assistant Technical Lecturer at Institut de Génie Mécanique, Université Djillali Liabes, progressing through roles such as Maître-Assistant and Maître de Conférences. Since December 2013, he has held the position of Professor in the Department of Mechanical Engineering. Madani’s expertise lies in material sciences, focusing on the characterization, durability, and repair of composite materials. He has led several administrative roles, including Head of the Mechanical Engineering Department and responsible for curriculum development. His leadership extends to managing the Science and Technology domain, reflecting his broad influence in academia. Throughout his career, Madani has been involved in significant research projects and has published extensively in reputable journals, demonstrating his commitment to advancing knowledge in his field.

Research Interest

Kouider Madani’s research interests primarily focus on the characterization and durability of adhesive and composite materials. His work explores the mechanics of bonded joints, including the repair of damaged structures using composite patch techniques. He is particularly interested in understanding the effects of aging on the mechanical and physical properties of composites and adhesives, as well as studying delamination and debonding phenomena in these materials. His research contributes to improving the reliability and performance of composite structures in various engineering applications. Noteworthy areas of his investigation include the impact of environmental conditions on adhesive strength and the development of advanced analytical methods to assess failure mechanisms. Through his studies, Madani aims to enhance the longevity and efficiency of composite materials, addressing critical challenges in materials science and engineering. His research has been published in leading journals and significantly impacts the field of mechanical engineering.

 Research Skills

Kouider Madani’s research skills are characterized by his deep expertise in materials science and mechanical engineering. His research primarily focuses on the characterization and durability of adhesive bonds and composite materials, including the repair of damaged structures using composite patching techniques. Madani has demonstrated proficiency in studying the effects of aging on the mechanical and physical properties of composites, as well as investigating delamination and adhesion failures. His technical skills are evidenced by his significant publications in reputable journals, where he applies advanced analytical methods such as isogeometric analysis and parametric cohesive zone modeling. Additionally, Madani’s extensive experience in experimental and numerical investigations, including impact behavior studies and energy release rate variations, highlights his ability to integrate theoretical knowledge with practical applications. His methodological rigor and innovative approaches underscore his capabilities in advancing the field of materials science and engineering.

Award and Recognition

Kouider Madani has garnered significant recognition throughout his distinguished career in mechanical engineering and materials science. As a Professor at Université de Sidi Bel Abbes, his research has notably advanced the fields of composite materials and adhesive technologies. His contributions are highlighted by impactful publications in renowned journals, including the Journal of Composite and the Journal of Failure Analysis and Prevention. His leadership extends beyond research; he has effectively managed various administrative roles, including Head of the Mechanical Engineering Department and responsible for curriculum development. These roles underscore his dedication to both academic excellence and institutional development. His consistent pursuit of innovative solutions in material characterization and durability, coupled with his administrative acumen, reflects his commitment to advancing scientific knowledge and education. Madani’s achievements affirm his position as a leading figure in his field, deserving of recognition for his exceptional contributions and leadership.

Conclusion

Kouider Madani is a strong candidate for the Research for Excellence in Research award due to his extensive experience, impactful research, and leadership in academic administration. His work in materials science, particularly in composites and adhesives, is both relevant and innovative. To further enhance his candidacy, he could focus on expanding international collaborations, diversifying his publication outlets, and seeking additional funding opportunities. Overall, his contributions to the field and leadership roles position him as a deserving candidate for this award.

Publications Top Notes
  1. Title: Predicting Damage in Notched Functionally Graded Materials Plates Through Extended Finite Element Method Based on Computational Simulations
    • Authors: Siguerdjidjene, H., Houari, A., Madani, K., Merah, A., Campilho, R.D.S.G.
    • Journal: Frattura ed Integrita Strutturale
    • Year: 2024
    • Volume: 18
    • Issue: 70
    • Pages: 1–23
  2. Title: Numerical Analysis of the Geometrical Modifications Effects on the Tensile Strength of Bonded Single-Lap Joints
    • Authors: Metehri, A., Madani, K., Campilho, R.D.S.G.
    • Journal: International Journal of Adhesion and Adhesives
    • Year: 2024
    • Volume: 134
    • Article ID: 103814
  3. Title: Experimental Investigation Into the Tensile Strength Post-Repair on Damaged Aluminium 2024-T3 Plates Using Hybrid Bonding/Riveting
    • Authors: Merah, A., Houari, A., Madani, K., Yahia, C.Z., Campilho, R.D.S.G.
    • Journal: Acta Mechanica et Automatica
    • Year: 2024
    • Volume: 18
    • Issue: 3
    • Pages: 514–525
  4. Title: Experimental and Numerical Investigation of Impact Behavior in Honeycomb Sandwich Composites
    • Authors: Djellab, A., Chellil, A., Lecheb, S., Kebir, H., Madani, K.
    • Journal: Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications
    • Year: 2024
    • Volume: 238
    • Issue: 7
    • Pages: 1342–1357
    • Citations: 2
  5. Title: Experimental and Numerical Analysis of the Fracture Behavior of an Epoxy-Based Marine Coating Under Static Tension and Accelerated Aging Effect in NaCl Solution
    • Authors: Madani, Y., Madani, K., Touzain, S., Cohendoz, S., Peraudeau, B.
    • Journal: Journal of the Brazilian Society of Mechanical Sciences and Engineering
    • Year: 2024
    • Volume: 46
    • Issue: 6
    • Article ID: 379
  6. Title: Analysis of the Performance of Carbon Fiber Patches on Improving the Failure Strength of a Damaged and Repaired Plate
    • Authors: Sebaibi, N.H., Mhamdia, R., Madani, K., Djabbar, S.C.H., Campilho, R.D.S.G.
    • Journal: Journal of the Brazilian Society of Mechanical Sciences and Engineering
    • Year: 2024
    • Volume: 46
    • Issue: 6
    • Article ID: 347
  7. Title: Experimental and Numerical Studies of Bonded Repair of Notched Laminates Composites
    • Authors: Belhouari, M., Benkheira, A., Madani, K., Campilho, R.D.S.G., Gong, X.L.
    • Book Title: Fracture Mechanics: Advances in Research and Applications
    • Year: 2024
    • Pages: 195–220
  8. Title: Introduction to Fracture Mechanics
    • Authors: Campilho, R.D.S.G., Madani, K., Belhouari, M.
    • Book Title: Fracture Mechanics: Advances in Research and Applications
    • Year: 2024
    • Pages: 1–15
  9. Title: Analysis of the Performance of the Composite Repair Patch for the Mechanical Resistance in Fatigue and in Tension of a Damaged Plate
    • Authors: Madani, K., Djebbar, S.C., Amin, H., Feaugas, X., Campilho, R.D.S.G.
    • Book Title: Fracture Mechanics: Advances in Research and Applications
    • Year: 2024
    • Pages: 155–194
  10. Title: Fracture Mechanics: Advances in Research and Applications
    • Authors: Campilho, R.D.S.G., Madani, K., Belhouari, M.
    • Year: 2024
    • Pages: 1–409

 

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali, Shahrood University of technology, Iran.

Assist. Prof. Dr. Meysam Jalali is a prominent researcher in Materials Science, with a focus on innovative materials and their applications. His academic journey is marked by a commitment to excellence, culminating in significant contributions to the field. Dr. Jalali’s research interests include the development and characterization of advanced materials with a particular emphasis on their industrial applications. His work has been recognized through numerous publications in high-impact journals, reflecting his dedication to advancing the frontiers of Materials Science. Dr. Jalali’s expertise and commitment to research make him a leading figure in his field.

Profile
Education

Assist. Prof. Dr. Meysam Jalali holds a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology, where he focused on cutting-edge research in structural integrity and resilience. He completed his MSc in Civil/Earthquake Engineering at the University of Tehran, specializing in the study of seismic effects on structures. Dr. Jalali began his academic journey with a BSc in Civil Engineering from Shahrood University of Technology, laying a solid foundation for his expertise in civil engineering. His educational background underpins his extensive research and contributions to the field of Materials Science.

Professional Experience

Assist. Prof. Dr. Meysam Jalali is a Professional Engineer certified by the Tehran Engineering Organization in Iran. He has served as a consultant engineer with the Iran Water & Power Resources Development Company (IWPCO) and the Tehran Engineering and Technical Consultant Organization (TETCO), focusing on underground structures. His project management expertise includes leading the Hakim Twin Tunnels project in Tehran and overseeing the engineering efforts for Tehran Metro Line 7, East-West Lot. Additionally, Dr. Jalali has played a crucial role in the design of various structural projects, leveraging his extensive knowledge and experience to drive engineering excellence.

Research Project

Assist. Prof. Dr. Meysam Jalali has made significant contributions to the field of Civil/Structural Engineering through his research and innovations. His work includes the invention of novel fibers for reinforcing Ultra High-Performance Cementitious Composites (UHPC) and Engineered Cementitious Composites (ECC), which is currently under patent and will be detailed in a forthcoming paper for the Cement and Concrete Composites journal. Dr. Jalali has also published a study on the mechanical behavior of spiral fibers for concrete reinforcement in the Construction and Building Materials journal (2022).

His research extends to the development of an innovative apparatus and molds for direct tension testing of fibrous composites, with a patent nearing finalization. Dr. Jalali’s work on predicting fiber pull-out from cement-based composites using advanced soft computing methods (ANN, GEP, ANFIS, GMDH) has been accepted for publication in the Journal of Building Engineering. Additionally, he has explored ECC behavior prediction using adaptive network-based fuzzy inference systems.

Other notable research includes improvements in ductility for FRP RC beams, with papers accepted for the Journal of Composite Materials. He has proposed innovative geometry for precast RC tunnel linings under high concentrated loads, with his findings accepted in the Saze va Sakht Persian journal. His experimental studies on bond behavior of headed bars in FRC/UHPC and numerical investigations into rebar pull-out from cement-based matrices further demonstrate his expertise. Lastly, his work on the effects of steel and polypropylene fibers, as well as recycled aggregates, on concrete’s mechanical properties, has been accepted for publication in the Sharif University Persian journal.

Research Interest

Assist. Prof. Dr. Meysam Jalali’s research encompasses a broad range of experimental investigations in construction materials and structures. His work includes the study of various cement-based materials such as Engineered Cementitious Composites (ECC), High-Performance Concrete (HPC), Fiber-Reinforced Concrete (FRC), and Slurry Infiltrated Fiber Concrete (SIFCON). Dr. Jalali is particularly focused on the development of innovative fiber types for enhancing the performance of cementitious composites.

His expertise extends to the application of soft computing methods in Civil Engineering, including the use of advanced numerical modeling and multi-scale testing techniques. Dr. Jalali is also committed to exploring net-zero construction practices and the integration of additive manufacturing technologies, such as 3D concrete printing, into construction processes. His comprehensive research addresses both the theoretical and practical aspects of modern construction materials and methods.

 Publications Top Notes
  1. Pull-out Behavior of Twin-Twisted Steel Fibers from Various Strength Cement-Based Matrices
    1. Construction and Building Materials
    2. 2024-09
    3. DOI: 10.1016/j.conbuildmat.2024.137855
    4. Source: Crossref
  2. Experimental Investigation of Ductility in GFRP RC Beams by Confining the Compression Zone
    1. Advances in Civil Engineering
    2. 2024-05-18
    3. DOI: 10.1155/2024/4268615
    4. Source: Crossref
  3. Machine Learning Prediction of Fiber Pull-Out and Bond-Slip in Fiber-Reinforced Cementitious Composites
    1. Journal of Building Engineering
    2. 2023-01
    3. DOI: 10.1016/j.jobe.2022.105474
    4. Source: Crossref
  4. Experimental Investigation on the Performance of Engineered Spiral Fiber: Fiber Pull-Out and Direct Tension Tests
    1. Construction and Building Materials
    2. 2022-09
    3. DOI: 10.1016/j.conbuildmat.2022.128569
    4. Source: Crossref
  5. Experimental Investigation on the Performance of Engineered Spiral Fiber: Fiber Pull-Out and Direct Tension Tests
    1. SSRN
    2. 2022
    3. EID: 2-s2.0-85130694443
    4. Source: Meysam Jalali via Scopus – Elsevier
  6. Flexural Characteristics of Fibre Reinforced Concrete with an Optimised Spirally Deformed Steel Fibre
    1. International Journal of Engineering Transactions C: Aspects
    2. 2021
    3. DOI: 10.5829/ije.2021.34.06c.01
    4. EID: 2-s2.0-85107745927
    5. Source: Meysam Jalali via Scopus – Elsevier
  7. Performance of Reinforced Concrete Shear Wall Equipped with an Innovative Hybrid Damper
    1. International Journal of Engineering, Transactions A: Basics
    2. 2021
    3. DOI: 10.5829/IJE.2021.34.07A.08
    4. EID: 2-s2.0-85110294151
    5. Source: Meysam Jalali via Scopus – Elsevier
  8. Effect of Seawater on Micro-Nano Air Bubbles Concrete for Repair of Coastal Structures
    1. Journal of Rehabilitation in Civil Engineering
    2. 2020
    3. DOI: 10.22075/JRCE.2018.13791.1252
    4. EID: 2-s2.0-85103080479
    5. Source: Meysam Jalali via Scopus – Elsevier
  9. Experimental and Analytical Investigations on Seismic Behavior of Ductile Steel Knee Braced Frames
    1. Steel and Composite Structures
    2. 2014
    3. DOI: 10.12989/scs.2014.16.1.001
    4. EID: 2-s2.0-84893868990
    5. Source: Meysam Jalali via Scopus – Elsevier
  10. Novel Manually Made NSM FRP (MMFRP) Bars for Shear Strengthening of RC Beams
    1. Proceedings of the 6th International Conference on FRP Composites in Civil Engineering (CICE 2012)
    2. 2012
    3. EID: 2-s2.0-84924368581
    4. Source: Meysam Jalali via Scopus – Elsevier
  11. Shear Strengthening of RC Beams Using Innovative Manually Made NSM FRP Bars
    1. Construction and Building Materials
    2. 2012
    3. DOI: 10.1016/j.conbuildmat.2012.06.068
    4. EID: 2-s2.0-84864359512
    5. Source: Meysam Jalali via Scopus – Elsevier

Soma A. El Mogy | Materials Science | Best Researcher Award

Assoc Prof Dr. Soma A. El Mogy | Materials Science | Best Researcher Award

Associate Professor, National institute of standards, Egypt

Assoc. Prof. Dr. Soma A. El Mogy is a distinguished researcher in Materials Science, recognized for her innovative contributions to the field. With a deep understanding of material properties and their applications, Dr. El Mogy has authored numerous influential publications that have advanced the understanding of materials engineering. Her work, which often intersects with sustainability and technological advancements, has earned her the prestigious Best Researcher Award, highlighting her impact on both academia and industry. Dr. El Mogy’s dedication to research and education continues to inspire the next generation of scientists in the field.

Profile

Education 

Assoc. Prof. Dr. Soma A. El Mogy earned her Bachelor of Science degree in Special Chemistry with an “Excellent with honor” distinction from Al-Azhar University in 2005. She continued her academic journey at the College of Science at Al-Azhar University, where she completed her Pre-Masters in 2007, achieving an overall grade of “Very Good.” In 2011, she obtained her Master’s degree in Physical Chemistry, with a thesis titled “Using Rice-Husk as a Filler for Production and Characterization of New Polymer-Composites having Industrial Applications.” Dr. El Mogy further advanced her research, earning her Ph.D. in Science in 2015 with a focus on “Study of the physico-mechanical properties of polypropylene filled with carbon nanotubes.” Her extensive academic background and research expertise have positioned her as a leader in the field of Materials Science.

Training Courses

Assoc. Prof. Dr. Soma A. El Mogy has a robust background in quality training and laboratory techniques, significantly enhancing her expertise in materials science. She has completed numerous quality training courses, including awareness of ISO/IEC 17025:2017 requirements, internal auditing, and method validation for calibration laboratories at the National Institute of Standards. Her training also encompasses quality control charts, intermediate calibration checks, and the estimation of uncertainty in chemical measurements, with a foundational introduction to ISO 17025 dating back to 2008. Additionally, Dr. El Mogy has gained hands-on experience with advanced laboratory equipment for plastics and rubber, having undertaken specialized courses on operating instructions for hardness testers, hardness calibrators, melt flow index (MFI), and Z010/TH2A machines, all completed in compliance with machinery directives in June 2017.

Internationally, she has expanded her expertise through training in nanotechnology technologies and applications under the Association of Materials Science and Engineering and Nanotechnology, as well as academic writing and statistical analysis using SPSS. Her local training includes courses on EndNote application, scientific paper writing and presentation, proposal and report writing, and nanoscience and nanotechnology. She has also engaged in workshops on publishing research open access, nanocarriers and drug delivery, nanostructures, and the future prospects of scientific research. These extensive training experiences highlight Dr. El Mogy’s dedication to maintaining a high standard of excellence in her research and professional activities.

Career

Assoc. Prof. Dr. Soma A. El Mogy began her career as a Research Assistant at the National Institute of Standards in the Metrology and Polymer Technology lab on May 10, 2006. She was promoted to Assistant Researcher on July 11, 2011, and later became a Doctor at the same lab on November 1, 2015. In June 2021, Dr. El Mogy was appointed as an Assistant Professor at the National Institute of Standards in the Material Testing and Surface Chemical Analysis lab in Giza, Egypt. Additionally, she served as a Lecturer in the Chemistry Department at the Faculty of Science, Al-Azhar University (Girls Branch) from September 2016 until 2020.

 

Scientific Workshop Attended

Assoc. Prof. Dr. Soma A. El Mogy has an extensive background in practical and theoretical aspects of scientific research, demonstrated by her participation in numerous specialized training courses and workshops. She has actively engaged in learning about the selection, writing, and submission of research projects, highlighted by her training at the Agricultural Research Center’s Animal Reproduction Research Institute in February 2020. Her skills in synthesizing chitosan nanoparticles were honed at the Naqaa Foundation for Scientific Research in 2019. Dr. El Mogy has also been involved in initiatives that support women in science, energy and water challenges, and the applications of nanotechnology for sustainable packaging, showcasing her commitment to addressing global scientific and environmental issues.

Her expertise extends to intellectual property management and its application in scientific research, as evidenced by her training at the Academy of Scientific Research and Technology in 2019. She has acquired advanced knowledge in scientific research methodologies, publishing within international databases, and managing resources using tools like Mendeley and EndNote. Dr. El Mogy’s dedication to combating predatory journals, reducing fraud in scientific research, and ensuring the integrity of academic work is reflected in her numerous certifications from leading universities and institutions across Iraq and the Middle East. Her participation in workshops on aligning with the publishing process, utilizing statistical data, and leveraging modern knowledge cycles further emphasizes her ongoing pursuit of excellence in research and publication.

Publication Top Notes

  • El Mogy, S. A. (2019). Processing of Polyurethane Nanocomposite Reinforced with Nanosized Zinc Oxide: Effect on Mechanical and Acoustic Properties. Egyptian Journal of Chemistry, 62, 333-341.
  • El Mogy, S. A. (2019). Radiation Crosslinking of Acrylic Rubber/Styrene Butadiene Rubber Blends Containing Polyfunctional Monomers. Radiation Physics and Chemistry, April.
  • Lawandy, S. N., El Mogy, S. A. (2020). Effect of Natural Oil Content and Viscosity on the Adhesion of Nitrile Rubber to Polyester Fabric. Adhesion Science and Technology, Accepted Manuscript, Published online 15 May.
  • Saleh, B. K., El Mogy, S. A. (2020). Use of Waste Rubber and Bionanofiller in Preparation of Rubber Nanocomposites for Friendly Environmental Flooring Applications. Egyptian Journal of Chemistry, 63(7).
  • El Mogy, S. A., Darwish, N. A., Awad, A. (2020). Comparative Study of the Cure Characteristics and Mechanical Properties of Natural Rubber Filled with Different Calcium Carbonate Resources. Journal of Vinyl and Additive Technology, 26(3).
  • Eyssa, H. M., El Mogy, S. A., Youssef, H. A. (2020). Impact of Foaming Agent and Nanoparticle Fillers on the Properties of Irradiated Rubber. Radiochimica Acta, Accepted 2 Nov.
  • Moustafa, H. A. Z., El Mogy, S. A., Mohamed, S. A., Darwish, N. A., Abd El Megeed, A. A. (2020). Bio-Enveloping Inorganic Filler Based Eggshell Wastes for Enhancing the Properties of Natural Rubber Biocomposites. Tire Science & Technology Journal, Accepted 22 July.
  • El Mogy, S. A., Abd El Megeed, A. A. (2020). Improvement of EPDM Properties Using Nanofiller Derived from Biogenic Wastes. International Journal of Science and Research, Accepted 1 Dec.
  • El Mogy, S. A., Khodier, S. A., Abd El-Megeed, A. A. (2017). Effect of Thermal Ageing on Mechanical and Optical Properties of Polystyrene. 13th Arab International Conference on Polymer Science and Technology, 22-26 October, Sharm El-Sheikh, Egypt.
  • El Mogy, S. A., Lawandy, S. N. (2023). Enhancement of the Cure Behavior and Mechanical Properties of Nanoclay Reinforced NR/SBR Vulcanizates Based on Waste Tire Rubber. Journal of Thermoplastic Composite Materials, 08927057231180493.
  • El Mogy, S. A., Lawandy, S. N. (2023). Effect of Black Sand Nanoparticles on Physical-Mechanical Properties of Butyl Rubber Compounds. Journal of Thermoplastic Composite Materials, 36(8), 3361-3382.
  • Abdel-Hakim, A., El Mogy, S. A., Abou-Kandil, A. I. (2021). Novel Modification of Styrene Butadiene Rubber/Acrylic Rubber Blends to Improve Mechanical, Dynamic Mechanical, and Swelling Behavior for Oil Sealing Applications. Polymers and Polymer Composites, 29(9_suppl), S959-S968.
  • El-Wakil, A. E. A. A., El Mogy, S., Halim, S. F., Abdel-Hakim, A. (2022). Enhancement of Aging Resistance of EPDM Rubber by Natural Rubber-g-N (4-phenylenediamine) Maleimide as a Grafted Antioxidant. Journal of Vinyl and Additive Technology, 28(2), 367-378.
  • Abdel-Hakim, A., El-Wakil, A. E. A. A., El Mogy, S., Halim, S. (2021). Effect of Fiber Coating on the Mechanical Performance, Water Absorption, and Biodegradability of Sisal Fiber/Natural Rubber Composite. Polymer International, 70(9), 1356-1366.
  • Rabee, M., El Mogy, S. A., Morsy, M., Lawandy, S., Zahran, M. A. H., Moustafa, H. (2023). Biosynthesis of MgO Nanoparticles and Their Impact on the Properties of the PVA/Gelatin Nanocomposites for Smart Food Packaging Applications. ACS Applied Bio Materials.