Bünyamin Ciçek | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Bünyamin Ciçek | Materials Science | Best Researcher Award

Hitit University, Turkey

Assoc. Prof. Dr. Bünyamin Çiçek is a distinguished academic in the field of Metallurgical and Materials Engineering, currently serving at Hitit University, Turkey. With a strong foundation in manufacturing technologies, powder metallurgy, and welding technologies, he has contributed extensively to material innovation, particularly in biocompatible alloys and composite materials. Over the years, Dr. Çiçek has played key roles in national projects supported by TÜBİTAK and higher education institutions, establishing himself as a leader in applied and experimental research. He has supervised doctoral theses, published over 25 peer-reviewed international articles, and presented at numerous international conferences. His research is recognized for its industrial applicability, particularly in alloy development, corrosion resistance, and biocompatibility. In addition to his academic responsibilities, he has held administrative roles such as Vice Director of a vocational school and Head of Department. Dr. Çiçek has also received prestigious awards, including the “Young Researcher of the Year” and publication incentives from TÜBİTAK and his home institution. His dedication to advancing metal and polymer-based research has positioned him as a key contributor to the scientific and industrial communities.

Professional Profile

Education

Dr. Bünyamin Çiçek holds a Ph.D. in Metallurgical and Materials Engineering from Karabük University, which he completed in 2021. His doctoral research focused on the production and characterization of biocompatible alloys using a newly designed powder injection molding method, under the supervision of Prof. Yavuz Sun. Prior to his doctoral studies, he earned a Master’s degree with thesis from the same university in 2011, where he examined the wear and corrosion behavior of Mg2Si particle-reinforced magnesium alloys. His academic journey began with a Bachelor’s degree in Metal Teaching from Karabük University, completed in 2009. The strong technical emphasis of his undergraduate and graduate training laid the groundwork for his later contributions in advanced manufacturing technologies and materials characterization. Dr. Çiçek’s academic formation combines in-depth metallurgical knowledge with practical applications, enabling him to explore and innovate in areas such as metal injection molding, biocompatibility of alloys, corrosion mechanisms, and additive manufacturing. Throughout his educational career, he has consistently focused on developing solutions to real-world engineering problems, especially in the context of biomedical and structural materials.

Professional Experience

Dr. Bünyamin Çiçek currently serves as an Associate Professor at Hitit University in the Department of Welding Technology. He began his academic career as a lecturer at Gedik University and later joined Hitit University, where he has held several key positions, including Lecturer at Alaca Avni Çelik Vocational School and Vice Director of the same institution. Over the years, Dr. Çiçek has contributed significantly to curriculum development, student mentorship, and industry-academia collaboration. His administrative experience includes serving as Head of the Department of Machinery and Metal Technologies. His work in academic leadership has complemented his teaching, which covers subjects like Powder Metallurgy, Technical Drawing, and Computer-Aided Design. Beyond academia, he has actively participated in national research projects, often taking on roles as project coordinator, consultant, and principal researcher. These experiences have enabled him to develop strong ties with industrial partners and apply academic findings to real-world challenges. His leadership in multidisciplinary projects focused on novel alloy production, corrosion resistance, and 3D printing technologies underscores his broad impact in both educational and applied research domains.

Research Interests

Dr. Çiçek’s research interests are centered around materials science and engineering, with a particular focus on powder metallurgy, biocompatible materials, composite materials, and welding technology. His academic curiosity lies in improving the mechanical, tribological, and corrosion properties of metal matrix composites and magnesium-based biodegradable alloys. A significant portion of his research explores the development and optimization of metal injection molding systems for medical and structural applications. He is also interested in investigating the effects of alloying elements such as rare earth metals on high-entropy alloys and their performance at cryogenic temperatures. In recent years, he has expanded his work to include 3D-printed polymer and metal parts, especially for use in biomedical implants and radiation shielding. His collaboration in TUBITAK-funded projects reflects his dedication to applied research that combines nanotechnology with traditional manufacturing methods. Additionally, Dr. Çiçek actively investigates environmentally friendly materials, including the use of recycled products in aluminum matrix composites. This diversity of interests not only broadens the scope of his research output but also aligns with global scientific trends in sustainable and functional material development.

Research Skills

Dr. Bünyamin Çiçek is highly skilled in experimental techniques and research methodologies that span across several domains of materials science. He has hands-on expertise in powder metallurgy, including metal injection molding processes, alloy synthesis, sintering, and characterization. He is proficient in conducting wear and corrosion tests, mechanical property assessments, and metallographic analyses. His work often incorporates advanced microscopy techniques such as SEM for microstructural investigation. In the realm of additive manufacturing, he has led studies involving stereolithography-based 3D printing and the integration of nano-structured materials to enhance mechanical performance. He also has a solid background in computer-aided design and simulation tools, which he integrates into both teaching and research. Moreover, his ability to manage and coordinate large-scale, multi-institutional research projects demonstrates his strong project management and collaboration skills. Dr. Çiçek is adept at formulating hypotheses, designing experiments, analyzing data, and drawing actionable conclusions—skills that are evidenced by his extensive publication record. His interdisciplinary approach bridges the gap between materials development, biomedical applications, and sustainable engineering solutions.

Awards and Honors

Throughout his academic career, Dr. Çiçek has been the recipient of numerous awards that highlight both his research excellence and publication productivity. In 2024, he was honored by Hitit University for having the highest number of Q1 publications indexed by Web of Science. The same year, he received an innovation award for developing commercially viable products in collaboration with the manufacturing sector, under the theme of specialization in machinery and manufacturing technologies. TÜBİTAK recognized his achievements with multiple Publication Incentive Awards in 2023, 2016, and 2012. Notably, in 2018, he was named “Young Researcher of the Year” by Al-Quds University, Palestine, marking an international acknowledgment of his early-career accomplishments. These accolades reflect his consistent contributions to high-impact research, particularly in the areas of biocompatible materials and industrial applications. His ability to translate academic work into practical solutions has also earned him leadership roles in various national R&D projects. The awards validate not only his scholarly output but also his impact on scientific innovation and industrial relevance.

Conclusion

Assoc. Prof. Dr. Bünyamin Çiçek stands out as a leading researcher whose work intersects materials innovation, biocompatible systems, and industrial manufacturing processes. With over a decade of experience, his multidisciplinary expertise in metallurgy, powder injection molding, and composite materials places him at the forefront of applied research in Turkey and beyond. He has contributed significantly to the scientific community through a prolific publication record and active participation in national research projects. His leadership roles in academia and collaboration with industry partners underline his commitment to knowledge transfer and sustainable development. The numerous awards and recognitions he has received reinforce his status as a dedicated scientist and educator. Dr. Çiçek’s ongoing projects in biocompatible materials and environmentally friendly composites demonstrate his responsiveness to current global challenges. As he continues to mentor students and lead cutting-edge research, his contributions are poised to influence the next generation of materials science innovations. He is undoubtedly a strong candidate for the Best Researcher Award, with a portfolio that exemplifies academic rigor, practical relevance, and long-term impact.

Publications Top Notes

  1. Enhancement of Tribological Characteristics for Fe-0.55C PM Steel via Addition of Mo-Ni under Different Deformation Ratios
    Journal: Journal of Materials Engineering and Performance
    Year: 2025
    Citations: 1
  2. Investigation of Tribological Characteristics of Cu-Fe-Ni-Al-Mn Heat Exchanger Alloys for Automotive Applications in Different Antifreeze Ratios
    Journal: International Journal of Automotive Science and Technology
    Year: 2025

 

 

Aimé Peláiz Barranco | Materials Science | Best Researcher Award

Prof. Dr. Aimé Peláiz Barranco | Materials Science | Best Researcher Award

Faculty of Physics, University of Havana, Cuba

Aimé Peláiz Barranco is a distinguished Cuban physicist born on June 25, 1972, in La Habana, Cuba. She currently serves as the Dean and Full Professor at the Faculty of Physics, University of Havana, where she also leads the Ferroic Materials Group. With a prolific academic and research career, she is widely recognized for her contributions to ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials. Dr. Peláiz Barranco has played crucial roles in academic leadership, including serving as Deputy Dean and Secretary of the Scientific Council. Internationally active, she has coordinated the Latin-American Network of Ferroelectric Materials and held invited professorships in prestigious institutions across Mexico, Brazil, Spain, France, Portugal, and China. A full member of the Academy of Sciences of Cuba, she has made significant contributions to teaching, research supervision, and academic development. With over 140 international publications, multiple book chapters, and extensive participation in scientific conferences, she has profoundly impacted the field of materials science. Her outstanding research has earned her several international and national awards, including the TWAS-ROLAC Award, the Sofia Kovalieskaya Award, and the Best Researcher recognition from the University of Havana. Her multilingual proficiency further amplifies her global academic collaborations.

Professional Profile

Education

Aimé Peláiz Barranco pursued all her higher education degrees at the University of Havana, Cuba. She earned her B.Sc. in Physics in 1995, followed by a Master’s degree in Physics Sciences in 1996. She later obtained her Doctorate in Physics Sciences in 2001, cementing her academic foundation in the field of material sciences. Her education has been deeply rooted in the Cuban academic system, particularly at the Faculty of Physics, University of Havana, where she has remained an integral part of the academic community both as a student and later as a faculty leader. Her advanced training provided the essential theoretical and practical framework for her subsequent pioneering research in ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials. Throughout her educational journey, she demonstrated a strong commitment to physics education and material sciences, which laid the groundwork for her international collaborations and leadership roles. Her comprehensive education has not only equipped her with deep expertise in material characterization but also fostered her ability to lead research groups, mentor students, and contribute to scientific advancements globally.

Professional Experience

Aimé Peláiz Barranco has accumulated an extensive professional history at the University of Havana since 1995. She began as a teaching trainee and steadily advanced to become an instructor, assistant professor, auxiliary professor, and eventually a full professor in 2014. Since 2019, she has served as the Dean of the Faculty of Physics, where she also leads the Ferroic Materials Group. Her teaching portfolio includes more than 70 undergraduate and postgraduate courses, with significant involvement in thesis evaluations at the licentiate, master’s, and doctoral levels. Dr. Peláiz Barranco has also held various academic positions such as Deputy Dean, Secretary of the Scientific Council, and Member of the National Physics Commission. She actively participates in scientific organization, having served on committees for over 20 national and international conferences. Internationally, she has been invited as a professor to universities in Mexico, Brazil, Spain, France, Portugal, and China, enhancing global academic exchanges. Her coordination of the Latin-American Network of Ferroelectric Materials between 2000 and 2019 exemplifies her leadership in fostering regional research collaboration. Her broad professional journey showcases her dedication to education, research, and scientific advancement.

Research Interests

Dr. Peláiz Barranco’s research primarily focuses on the preparation and characterization of ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials in the form of ceramics, thin films, and composites. She specializes in the study of phase transitions, relaxors, dielectric relaxation, electrical conductivity, and impedance spectroscopy. Her research extends to bioimpedance, pyroelectricity, piezoelectricity, multiferroics, energy storage, and the electrocaloric effect. These areas contribute significantly to the advancement of modern material science, with applications in sensors, actuators, energy systems, and smart materials. She has led numerous national and international research projects, including three grants awarded by the Third World Academy of Science. Her deep exploration into ferroic materials has resulted in over 140 publications in international journals, four book chapters, and more than 200 presentations at scientific meetings. Dr. Peláiz Barranco’s research activities are globally recognized, positioning her as a leading expert in the field. Through her leadership in the Ferroic Materials Group and the Latin-American Network of Ferroelectric Materials, she has created substantial regional and international research synergies.

Research Skills

Aimé Peláiz Barranco possesses exceptional research skills in experimental design, material synthesis, and advanced characterization techniques. Her expertise spans ceramics, thin films, and composite materials, particularly in the domains of ferroelectric, piezoelectric, antiferroelectric, and multiferroic substances. She is adept at using impedance spectroscopy, dielectric relaxation analysis, and pyroelectric and piezoelectric measurements to explore the functional properties of advanced materials. Additionally, she is skilled in bioimpedance analysis and electrocaloric effect evaluation, essential for emerging applications in biophysics and energy storage. Dr. Peláiz Barranco’s ability to lead large, multi-institutional research projects, both nationally and internationally, underscores her project management and scientific coordination capabilities. Her involvement as an editor and contributor to scientific books further highlights her ability to synthesize complex information and contribute to scientific literature. Furthermore, her supervisory experience, mentoring over 30 undergraduate, master’s, and doctoral theses, demonstrates her leadership and instructional strengths in guiding research teams and developing new scientific talent. Her fluency in Spanish, English, and Portuguese enhances her global research communication and collaboration skills.

Awards and Honors

Aimé Peláiz Barranco has received numerous prestigious awards and recognitions at both national and international levels. Among her international accolades, she won the First Prize at the First Iberoamerican Concourse of Laboratory Classes in Materials Science (1999) and the TWAS-ROLAC Award for Young Scientists in Physics (2011). She has been honored with the Young Scientist Award by CAS-TWAS (2012) and the TWOWS Award for Young Women Scientists (2010), signifying her influence across the Latin America and Caribbean region. Nationally, she has been repeatedly awarded by the Cuban Academy of Sciences, with multiple recognitions spanning from 1999 to 2023. The University of Havana has acknowledged her as Best Researcher in several years, alongside departmental and faculty awards for scientific excellence and educational innovation. She also received the distinguished Carlos J. Finlay Medal for her significant scientific contributions. These honors highlight her sustained commitment to research, education, and academic leadership. Her continuous recognition within Cuba and abroad underscores her remarkable impact on materials science and the broader scientific community.

Conclusion

Aimé Peláiz Barranco is an accomplished physicist whose career exemplifies excellence in teaching, research, and academic leadership. Her extensive expertise in ferroic materials has contributed significantly to the advancement of materials science in Cuba and internationally. Through her roles as Dean, research group leader, and international project coordinator, she has demonstrated exceptional leadership and organizational skills. Her research is widely published, and she has been recognized with numerous prestigious awards for her scientific achievements and educational contributions. Dr. Peláiz Barranco’s commitment to fostering regional and international collaborations, along with her dedication to mentoring the next generation of scientists, highlights her as a key figure in the scientific community. Fluent in multiple languages and having held various visiting professorships, she continues to build global partnerships that enrich both her work and the institutions she serves. Her professional journey reflects a harmonious balance of research excellence, impactful teaching, and significant service to the academic and scientific ecosystem, positioning her as a highly deserving candidate for the Best Researcher Award.

Publications Top Notes

1. Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements

  • Authors: A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela

  • Year: 1998

  • Citations: 163

2. Ionized oxygen vacancy-related electrical conductivity in (Pb₁₋ₓLaₓ)(Zr₀.₉₀Ti₀.₁₀)₁₋ₓ/₄O₃ ceramics

  • Authors: A. Peláiz-Barranco, J.D.S. Guerra, R. Lopez-Noda, E.B. Araujo

  • Year: 2008

  • Citations: 141

3. Ferroelectric ceramic materials of the Aurivillius family

  • Authors: A. Peláiz-Barranco, Y. González-Abreu

  • Year: 2013

  • Citations: 69

4. Dielectric relaxation related to single-ionized oxygen vacancies in (Pb₁₋ₓLaₓ)(Zr₀.₉₀Ti₀.₁₀)₁₋ₓ/₄O₃ ceramics

  • Authors: A. Peláiz-Barranco, J.D.S. Guerra

  • Year: 2010

  • Citations: 65

5. Atomic‐scale imaging and quantification of electrical polarisation in incommensurate antiferroelectric lanthanum‐doped lead zirconate titanate

  • Authors: I. MacLaren, R. Villaurrutia, B. Schaffer, L. Houben, A. Peláiz‐Barranco

  • Year: 2012

  • Citations: 63

6. Raman spectroscopy study of the La‐modified (Bi₀.₅Na₀.₅)₀.₉₂Ba₀.₀₈TiO₃ lead‐free ceramic system

  • Authors: Y. Mendez‐González, A. Peláiz‐Barranco, A.L. Curcio, A.D. Rodrigues, et al.

  • Year: 2019

  • Citations: 57

7. AC behaviour and conductive mechanisms of 2.5 mol% La₂O₃ doped PbZr₀.₅₃Ti₀.₄₇O₃ ferroelectric ceramics

  • Authors: A.P. Barranco, F.C. Pinar, O.P. Martinez, J.D.L.S. Guerra, I.G. Carmenate

  • Year: 1999

  • Citations: 57

8. Effects of MnO₂ additive on the properties of PbZrO₃–PbTiO₃–PbCu₁/₄Nb₃/₄O₃ ferroelectric ceramic system

  • Authors: A.P. Barranco, F.C. Piñar, O.P.M.P. Martínez, E.T. García

  • Year: 2001

  • Citations: 50

9. Thermal and structural characterization of the ZrO₂₋ₓ(OH)₂ₓ to ZrO₂ transition

  • Authors: E. Torres-García, A. Peláiz-Barranco, C. Vázquez-Ramos, G.A. Fuentes

  • Year: 2001

  • Citations: 39

10. Piezo-, pyro-, ferro-, and dielectric properties of ceramic/polymer composites obtained from two modifications of lead titanate

  • Authors: A. Pelaiz-Barranco, P. Marin-Franch

  • Year: 2005

  • Citations: 38

Likun Qian | Materials Science | Best Researcher Award

Mr. Likun Qian | Materials Science | Best Researcher Award

School of Future Technology, China University of Geosciences (Wuhan), China

Qian Likun is an emerging researcher in the field of automation and control systems, currently pursuing his undergraduate degree at China University of Geosciences (Wuhan). With a solid foundation in electronic technologies, embedded systems, and automation instrumentation, Qian has displayed strong technical proficiency and innovative thinking across various academic and practical projects. He has independently designed and developed motion controllers, control platforms, and monitoring systems, showcasing his ability to integrate software and hardware seamlessly. His projects range from motion trajectory control to subsurface conductor detection and RGBD salient object detection using convolutional neural networks. In addition to his technical skills, Qian has demonstrated outstanding leadership capabilities by serving as the class monitor and contributing to his college’s new media promotion initiatives. He has actively led his classmates to achieve multiple awards at the college level, earning personal recognition as an excellent Communist Youth League cadre. His work ethic, problem-solving ability, and teamwork have set him apart as a student leader and aspiring researcher. With his growing expertise in control systems, programming, and intelligent instrumentation, Qian Likun is positioning himself as a promising researcher with the potential to make significant contributions to the field of automation and intelligent systems in the near future.

Professional Profile

Education

Qian Likun is currently enrolled at China University of Geosciences (Wuhan), where he has been studying Automation since September 2018. His undergraduate education has provided him with comprehensive knowledge of automation systems, control theory, embedded technologies, and sensor applications. Throughout his studies, he has maintained a GPA of 3.01 and successfully completed a diverse range of technical courses such as analog electronic technology, digital logic circuit design, digital signal processing, system analysis, embedded programming, and object-oriented software development. These courses have helped him build a solid theoretical foundation and practical skill set. Qian’s education has also included specialized training in big data processing technologies for manufacturing and advanced system control strategies. His participation in several project-based learning modules has further enhanced his engineering abilities and problem-solving skills. His academic journey reflects not only his dedication to learning but also his ability to apply knowledge effectively to real-world scenarios. Qian has also achieved English proficiency certifications, having passed CET-4 and CET-6, and earned a Computer Level 2 certification in C++, which complements his automation expertise with solid programming capabilities. His educational background has fully equipped him to contribute meaningfully to complex research in automation and intelligent control systems.

Professional Experience

Although Qian Likun is in the early stages of his professional journey, he has accumulated substantial project-based experience that closely mirrors industry applications. He has led and contributed to multiple innovative projects during his time at China University of Geosciences. Notably, Qian successfully designed and implemented a cascade control system for a water tank and pipeline pressure monitoring, using PID control and Ethernet communication to achieve multi-machine interaction with an impressive 85% control precision. He independently built an integrated motion control experimental platform capable of simple three-dimensional relief processing and developed a modular CNC control interface. His hands-on experience also includes controlling servo motors via 51 microcontrollers, designing circuits for microvoltage signal acquisition, and applying LABVIEW software for upper computer visualization. Additionally, he utilized C++ and QT to create a multifunctional human-machine interaction calculator capable of performing both basic arithmetic and complex trigonometric operations. His graduation project focuses on RGBD salient object detection using convolutional neural networks and bifurcation backbone strategies. Qian’s practical experience demonstrates his ability to handle multidisciplinary engineering tasks, from hardware design to embedded system development and intelligent control applications, making him a well-rounded and capable early-career researcher.

Research Interest

Qian Likun’s research interests are centered on automation systems, intelligent instrumentation, embedded control, and intelligent perception technologies. He is particularly fascinated by the integration of sensor technologies with embedded systems to achieve precise control in real-time industrial environments. His work has also ventured into the field of intelligent detection, including subsurface conductor identification and salient object detection using RGBD imaging and convolutional neural networks. Qian is deeply interested in the development of intelligent monitoring systems that leverage human-machine interfaces (HMI) and multi-device communication through Ethernet networks. His passion lies in designing practical control systems that are both accurate and efficient, particularly in complex industrial processes. Furthermore, his recent exploration of deep learning methodologies, especially in salient object detection using bottom-up feature extraction and bifurcation backbone strategies, reflects his growing interest in artificial intelligence and machine vision applications. He is motivated to pursue research that blends traditional control theories with modern computational intelligence techniques to solve real-world challenges. Qian aspires to further investigate advanced control algorithms, embedded smart devices, and data-driven decision-making systems in future academic or industry research, aiming to contribute to the advancement of intelligent automation and control engineering.

Research Skills

Qian Likun possesses a diverse and practical set of research skills that span programming, circuit design, motion control, system modeling, and embedded development. He is proficient in programming languages such as C++ and MATLAB, which he has used to design embedded software, motion control systems, and data visualization interfaces. His expertise in control systems includes practical application of PID control algorithms, system modeling, and real-time control implementations. Qian has hands-on skills in building experimental platforms for motion processing, servo motor control using 51 microcontrollers, and data acquisition through differential amplification circuits. He has also demonstrated the ability to develop multi-functional human-machine interaction interfaces using QT and C++ for embedded applications. His hardware knowledge extends to sensor integration, analog and digital circuit design, and microcontroller programming. Additionally, Qian is familiar with machine learning techniques, particularly convolutional neural networks, which he applied in his graduation project for salient object detection. His skill set is further strengthened by his capability to design networked systems that enable multi-device communication using Ethernet protocols. Qian’s combination of software development, hardware control, signal processing, and intelligent algorithm application makes him a versatile researcher capable of addressing complex automation challenges.

Awards and Honors

Throughout his academic journey, Qian Likun has received multiple recognitions for both his leadership and academic contributions. He has served as the class monitor at China University of Geosciences (Wuhan), successfully leading his class to receive the “Excellent Class” award at the college level on several occasions. His dedication and organizational skills were further acknowledged when he was honored with the title of “Outstanding Communist Youth League Cadre” at the university level. Qian also played an active role in the university’s New Media Promotion Department, where he contributed to the management and content creation for the Automation College’s official WeChat platform. These leadership roles have allowed him to develop strong communication, teamwork, and project management skills in parallel with his technical education. His certification achievements include passing the Computer Level 2 examination in C++ and successfully completing both the College English Test (CET-4 and CET-6), demonstrating his competency in programming and his readiness for international collaboration. These awards and recognitions highlight his well-rounded profile, balancing academic performance, research activities, and social engagement, which together showcase his suitability as a dedicated and promising young researcher.

Conclusion

Qian Likun is a highly motivated, technically skilled, and leadership-oriented young researcher with a growing background in automation and intelligent control systems. His solid foundation in embedded technologies, motion control, signal acquisition, and human-machine interface design, combined with his demonstrated ability to lead project teams and manage complex system integrations, positions him as a promising talent in the engineering field. While he is still at the beginning of his research journey, his proactive engagement in hands-on projects and his exploration of cutting-edge technologies like convolutional neural networks reflect his potential for impactful future research contributions. Qian has demonstrated excellent leadership skills, receiving recognition for both academic performance and community engagement. However, to elevate his research profile to the next level, he would benefit from increasing his involvement in peer-reviewed research publications, enhancing his academic output, and expanding his international collaborations. With continued dedication, academic refinement, and professional development, Qian Likun has the potential to grow into a highly capable and innovative researcher who can contribute significantly to the advancement of automation, intelligent systems, and interdisciplinary engineering solutions.

Publications Top Notes

  1. Title: Design of audio to image cross-modal learning and generation based on single-layer CoPt spin-orbit torque devices
    Authors: Likun Qian, Liu Yang, Chao Zuo, Ying Tao, Wendi Li, Fang Jin, Huihui Li, Kaifeng Dong
    Year: 2025
    Journal: Journal of Magnetism and Magnetic Materials

  2. Title: Design of spike-timing-dependent plasticity synapses based on CoPt-SOT device and its application in all-spin spiking neural network
    Authors: Liu Yang, Shuguang Zhang, Likun Qian, Ying Tao, Fang Jin, Huihui Li, Zhe Guo, Rujun Tang, Kaifeng Dong
    Year: 2025
    Journal: Applied Physics Letters

Saeed Reza Allahkaram | Materials Science | Best Researcher Award

Prof. Saeed Reza Allahkaram | Materials Science | Best Researcher Award

Professor from College of Engineering, University of Tehran, Iran

Professor Saeed Reza Allahkaram is a highly accomplished academic and researcher specializing in corrosion science and engineering. Currently serving as a Professor at the School of Metallurgy and Materials Engineering, University of Tehran, he has over 25 years of expertise in corrosion protection, materials characterization, and surface engineering. He leads several key research groups and laboratories, including the Metallurgical Chemistry Group and the Centre of Applied Engineering for Oil, Gas, and Petrochemical Pipelines and Vessels. His research is not only scientifically significant but also holds direct industrial applications, particularly in Iran’s oil, gas, petrochemical, and automotive sectors. He is an influential figure in corrosion management and surface coating development, having authored numerous books and impactful journal articles. Professor Allahkaram has earned several prestigious national and international awards, including recognition as a Highly Cited Researcher among the Top 2% of Scientists Worldwide in 2024. His leadership extends to academic administration and professional societies, further evidenced by his role as Editor-in-Chief of the journal “Corrosion Science and Engineering.” His research blends fundamental scientific inquiry with practical, solution-driven applications that have benefited both academia and industry. Professor Allahkaram’s extensive career reflects a commitment to advancing corrosion science through teaching, research, and industry collaboration.

Professional Profile

Education

Professor Saeed Reza Allahkaram has pursued an extensive and prestigious academic path primarily in the United Kingdom. He earned his Ph.D. in Materials Science, specializing in Corrosion and Protection of Materials, from Imperial College of Medicine, Science, and Engineering, London, in 1994. His doctoral thesis focused on electrochemical potential mapping and corrosion studies of rapidly solidified processed light alloys. Additionally, he was awarded the D.I.C. Honoree Degree from Imperial College in the same year, highlighting his outstanding academic performance. Prior to his doctoral studies, Professor Allahkaram completed his M.Sc. in Corrosion Science and Engineering from London Guild Hall University in 1987, where his research concentrated on corrosion inhibition studies in controlled environments. He holds a B.Sc. in Applied Physics from the same university, earned in 1985, with a project focused on fiber optic transmission efficiency. His educational journey began with an O.N.D. in Technology from Bromley College of Technology, Kent, in 1981. Throughout his education, he combined theoretical learning with hands-on projects, establishing a solid foundation for his subsequent career in corrosion science. His diverse academic background provided him with both interdisciplinary knowledge and practical skills that have supported his research and teaching excellence for decades.

Professional Experience

Professor Saeed Reza Allahkaram has developed an impressive professional career, marked by leadership roles in both academic and industrial sectors. He has served as a Professor of Corrosion Science and Engineering at the University of Tehran since 1998, where he also leads the Metallurgical Chemistry Group and the Mechanically Assisted Laboratory. Since 2017, he has headed the Centre of Applied Engineering for Oil, Gas, and Petrochemical Pipelines and Vessels, contributing significantly to Iran’s critical infrastructure industries. He has been an active member of the Centre of Excellence for Surface Engineering and Corrosion of Materials since 2015. His professional influence extends beyond academia, having worked as an executive consultant for the Kerman Copper Production Complex between 1999 and 2011. Professor Allahkaram has played a significant organizational role in national scientific communities, including serving as the Executive Secretary of the Eighth National Corrosion Conference in Iran in 2003. He is also the current Editor-in-Chief of the scientific journal “Corrosion Science and Engineering.” His professional experience bridges the gap between fundamental research and industrial application, demonstrating his ability to lead large-scale projects and foster collaborations that impact national industries and infrastructure resilience.

Research Interests

Professor Saeed Reza Allahkaram’s research interests are wide-ranging within the field of corrosion science and engineering. His primary focus is on cathodic and anodic protection techniques, essential for preserving the integrity of pipelines, vessels, and critical structures. He has made significant advances in the development of composite, nano, and self-healing coatings using innovative methods such as plasma electrolytic oxidation (PEO), electroless deposition, electroplating, and electrophoretic deposition. Professor Allahkaram’s work also addresses the mitigation of corrosion caused by DC/AC interference on cathodically protected underground pipelines, a key challenge in modern infrastructure maintenance. He investigates the use of inhibitors and cathodic protection to control corrosion in reinforced concrete structures, extending the life and safety of buildings and industrial plants. His studies further cover stress corrosion cracking (SCC), corrosion fatigue, cavitation corrosion, fretting corrosion, and the erosion resistance of advanced coatings. Additionally, Professor Allahkaram is deeply involved in corrosion cost assessment and the implementation of comprehensive corrosion management systems for industrial equipment. His research seamlessly integrates scientific exploration with practical problem-solving, offering impactful solutions for industries such as oil, gas, petrochemicals, and automotive manufacturing.

Research Skills

Professor Saeed Reza Allahkaram has cultivated advanced research skills throughout his distinguished career in corrosion science. He possesses expert knowledge in electrochemical testing methods, including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, and electrochemical noise analysis. His technical expertise extends to developing and deploying on-line corrosion monitoring systems, particularly for oil and gas pipeline networks. Professor Allahkaram is proficient in failure analysis techniques, regularly diagnosing complex material degradation in high-risk environments. He has mastered various surface engineering processes such as electroless and electroplating coatings, plasma electrolytic oxidation, and nano-structured coating applications. His hands-on skills also include using wavelet transforms for electrochemical signal processing and employing advanced material characterization tools to evaluate corrosion behavior. Professor Allahkaram demonstrates a unique ability to translate laboratory research into practical industrial solutions, a skill that has led to his successful collaborations with major companies in Iran’s energy sector. He is also an accomplished technical author and educator, having written comprehensive books and developed course materials for undergraduate and postgraduate corrosion engineering programs. His multifaceted research skills position him as a leader in developing both preventive and remedial strategies against corrosion in challenging operational settings.

Awards and Honors

Professor Saeed Reza Allahkaram has received numerous prestigious awards and honors in recognition of his contributions to corrosion science and engineering. Notably, in 2024, he was listed among the Top 2% of Scientists Worldwide as a Highly Cited Researcher, underscoring his significant influence on the global research community. In 2023, the Iranian Corrosion Association honored him as a Veteran in Corrosion Science and Engineering at the 21st National Corrosion Congress of Iran. He was selected as the Outstanding Researcher at the University of Tehran’s 27th Festival of Research in 2018 and similarly recognized in 2013 and 2011. His work on applied industrial research projects, particularly those related to online corrosion monitoring systems in gas refinery plants and transmission pipelines, earned him additional distinctions. Professor Allahkaram has also been celebrated for his research contributions in the automotive industry, particularly with Iran Khodro. His remarkable ability to bridge academic research with industrial applications has been consistently acknowledged at national research festivals and by leading industrial stakeholders. His awards reflect not only the quality and originality of his research but also its tangible impact on infrastructure safety and technological advancement in Iran and beyond.

Conclusion

Professor Saeed Reza Allahkaram is a distinguished figure in the field of corrosion science, whose career has seamlessly integrated academic excellence with impactful industrial contributions. His leadership roles, prolific research output, innovative teaching, and dedication to solving practical engineering problems have made him a highly respected researcher nationally and internationally. His extensive body of work demonstrates a rare ability to translate scientific concepts into real-world applications, particularly in the oil, gas, petrochemical, and automotive sectors. Professor Allahkaram’s recognition among the Top 2% of scientists worldwide and his numerous national awards attest to his sustained influence and the global relevance of his research. His technical skills, leadership in research centers, and role as Editor-in-Chief further emphasize his multifaceted contributions to the scientific community. While future expansion into more international collaborations could further elevate his profile, his current achievements position him as an exemplary researcher and leader in his discipline. Professor Allahkaram’s career embodies the qualities of a Best Researcher Award recipient, blending scientific rigor, practical problem-solving, and academic mentorship to create lasting value in corrosion science and engineering.

Publications Top Notes

  1. Optimization of Ti/TiO2 Nanotube/Nano PbO2 Anodes for Enhanced Electrocatalytic Degradation of Methylene Blue: Pulse vs Direct Current Approaches

    • Authors: H. Eslami, S.R. Allahkaram

    • Year: 2025

  2. Electrophoretic Deposition of Chitosan/Gelatin/Hydroxyapatite Nanocomposite Coatings on 316L Stainless Steel for Biomedical Applications

    • Authors: A. Mohammadsadegh, S.R. Allahkaram, M. Gharagozlou

    • Year: 2025

  3. Enhanced Erosion-Corrosion Resistance of Monolithic ENP Coating on Ductile Cast Iron by Using Electrochemical Pretreatment and Heat Treatment

    • Authors: H. Kheirabadi, S.R. Allahkaram, A. Zarebidaki

    • Year: 2024

  4. Electrochemical Analysis on Localized Corrosion of PEO/Magnesium Oxide Coating

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 4

  5. Evaluation of Biodegradability of ZX504 Alloy/PEO Coating Using Mott-Schottky, Electrochemical Tests, and Microstructural Analysis

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 5

  6. Modeling of PEO Coatings by Coupling an Artificial Neural Network and Taguchi Design of Experiment

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

  7. Surface Roughness Increasing of 2205 Duplex Stainless Steel Using Ultrasonic Cavitation Process

    • Authors: F. Alkhaleel, S.R. Allahkaram

    • Year: 2024

    • Citations: 2

  8. Characterization and Corrosion Behavior of Nano-ceramic Coatings Produced by MAO Method: The Role of Process Time

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 2

  9. Passivation Effects on Corrosion and Cavitation Erosion Resistance of UNS S32205 Duplex Alloy in 3.5% NaCl

    • Authors: F. Alkhaleel, S.R. Allahkaram

    • Year: 2024

  10. Synthesis and Characterization of Electrodeposited Ni-Co Self-Healing Coating with Hybrid Shell Microcapsules

  • Authors: H. Sadabadi, S.R. Allahkaram, A. Kordijazi, P.K. Rohatgi

  • Year: 2024

  • Citations: 1

Wen Chen | Materials Science | Best Researcher Award

Prof. Dr. Wen Chen | Materials Science
| Best Researcher Award

Teacher at Wuhan University of Technology, China

Prof. Dr. Wen Chen, born in April 1963, is a distinguished Chinese scientist and educator specializing in functional materials. He serves as a professor at Wuhan University of Technology, where he has made significant contributions to material science through teaching and research. With a career spanning decades, Prof. Chen is well-regarded for his expertise in piezoelectric and dielectric ceramics, composite materials, and advanced thin film technologies. Known for his academic rigor and innovation, he has earned respect in the national and international research community. His scientific output and dedication to education continue to shape the future of material science in China. Prof. Chen remains active in leading research projects and mentoring future scientists in cutting-edge material technologies.

Professional Profile​

Education

Prof. Dr. Wen Chen completed his entire higher education at Wuhan University of Technology, one of China’s premier institutions for engineering and materials science. Through a rigorous academic journey, he developed a solid foundation in physical and materials sciences, eventually earning his doctoral degree with a focus on functional materials. His educational background includes extensive research training in structure-property relationships, thin film deposition techniques, and ceramic engineering. During his academic formation, Prof. Chen demonstrated exceptional aptitude and was often involved in collaborative research and laboratory projects. His education provided the groundwork for his later innovations in piezoelectric materials and functional composites, and helped him build a lifelong career in academia and research within the same institution that shaped his early professional identity.

Professional Experience

Prof. Dr. Wen Chen has devoted his professional life to Wuhan University of Technology, where he serves as a professor and mentor in the field of materials science. His academic career spans research, teaching, and institutional leadership. He has supervised numerous postgraduate students, published extensively in high-impact journals, and led multiple research projects related to functional ceramics and composite materials. Beyond teaching, Prof. Chen has been actively engaged in developing national and provincial research initiatives. His collaborative efforts with industry and academic institutions have fostered innovation in thin-film technology and piezoelectric systems. His professional journey reflects a commitment to scientific excellence, educational development, and interdisciplinary collaboration within China’s rapidly advancing research ecosystem.

Research Interests

Prof. Dr. Wen Chen’s research centers on functional material structures and their physical effects, with emphasis on piezoelectric and dielectric ceramics and advanced thin-film materials. His work explores the fundamental relationships between microstructure and physical properties, aiming to enhance the performance of smart and responsive materials. Key areas include the synthesis and characterization of ceramic composites for energy harvesting, sensing, and actuation applications. He also investigates novel functional thin films for use in electronic and optoelectronic devices. His multidisciplinary approach integrates materials chemistry, solid-state physics, and device engineering. Prof. Chen’s research contributes to the development of next-generation materials with enhanced efficiency, miniaturization potential, and multifunctionality for emerging applications in electronics, aerospace, and biomedical fields.

Awards and Honors

Prof. Dr. Wen Chen has received several prestigious awards and honors throughout his career in recognition of his contributions to material science and education. He has been honored for his work in functional materials, especially in piezoelectric and dielectric ceramic systems, by both academic societies and governmental bodies. His research projects have earned competitive funding, and he has received accolades for outstanding teaching and mentorship. Prof. Chen’s scholarly publications and patents have also garnered awards for innovation and technological impact. His recognition extends beyond China, with international collaborations and citations highlighting his global influence. These honors reflect not only his scientific acumen but also his dedication to advancing materials research and fostering future scientific talent.

Conclusion

Prof. Dr. Wen Chen stands as a leading expert in the field of functional materials, with decades of experience in research, teaching, and technological innovation. His enduring commitment to academic excellence and scientific discovery has made him a pillar of Wuhan University of Technology and a respected voice in China’s materials science community. Through his contributions to ceramic and thin film materials, he has influenced a wide range of applications, from electronics to energy solutions. As a mentor, he continues to guide future scientists and engineers, fostering a culture of inquiry and innovation. Prof. Chen’s legacy is one of impactful research, dedicated mentorship, and an unwavering pursuit of scientific progress in the field of advanced materials.

Publications Top Notes

  • Qin, Z., Zhou, J., Liu, R., Cheng, Z., Liu, K., Zhou, J., Shen, J., Jin, W., & Chen, W. (2025). A novel strategy for measuring the Villari effect of amorphous alloys by utilizing low frequency magnetic emission. Measurement, 2025-09. https://doi.org/10.1016/j.measurement.2025.117480

  • Liu, Y., Shao, L., Ding, L., Chen, X., Bao, Y., & Chen, W. (2025). In Situ Anchoring of Co Single Atoms within Keto-Enamine COFs via the Coordination of an Interlayer N Atom with Co for the Enhanced Photocatalytic CO₂ Reduction Efficiency. ACS Applied Materials & Interfaces, 2025-04-24. https://doi.org/10.1021/acsami.5c02762

  • Li, X., Zhu, C., Zhou, J., Shen, J., & Chen, W. (2025). Polytetrafluoroethylene‐based composites with improved thermal properties and excellent mechanical, dielectric properties using the synergy of mesoporous silica and aramid fiber. Polymer Composites, 2025-04-23. https://doi.org/10.1002/pc.29984

  • Shen, J., Chen, X., Qi, Y., He, W., Li, Q., Zhang, J., Zhou, J., & Chen, W. (2025). Introduction of the interfacial layer between filler and matrix: An effective approach towards developing high thermal conductive dielectric composite. Ceramics International, 2025-03. https://doi.org/10.1016/j.ceramint.2025.03.127

  • Tang, X., Zhang, S., Sun, H., Zhang, H., Jian, Z., Hu, S., & Chen, W. (2025). Incorporation of Organic Benzoquinone Framework Into rGO via Strong π–π Interaction for High‐Performance Aqueous Ammonium‐Ion Battery. Small, 2025-01. https://doi.org/10.1002/smll.202410374

  • Hu, Y., Shen, J., Chen, B., Zhang, H., Zhou, J., & Chen, W. (2025). The Wake-Up Behavior in Bi₁/₂(Na₀.₈K₀.₂)₁/₂TiO₃ Thin Films by Nb Doping. ACS Applied Electronic Materials, 2025-01-28. https://doi.org/10.1021/acsaelm.4c01988

Kun Lan | Materials Science | Best Researcher Award

Prof. Kun Lan | Materials Science | Best Researcher Award

Professor From Inner Mongolia University, China

Dr. Kun Lan is currently a Principal Investigator at the College of Energy Materials and Chemistry, Inner Mongolia University. With a research focus on crystalline mesoporous materials, Dr. Lan has contributed significantly to the field of materials chemistry, authoring over 70 peer-reviewed publications in top-tier journals such as Nature Chemistry, JACS, and Advanced Materials. His academic journey spans esteemed institutions including Lanzhou University, Fudan University, and the University of California, Riverside. His interdisciplinary work bridges chemistry, nanotechnology, and renewable energy applications. As head of the K Lab, he leads a team developing novel mesostructures with relevance to sustainable technologies and energy storage. Dr. Lan has earned multiple national and institutional recognitions for his research excellence, including the National Natural Science Foundation of China grants and the BTR New-Energy Scientific Contest Award. He is also an active member of the scientific community, serving on editorial boards and peer-review panels for international journals. Known for his strong mentorship, innovative approaches to porous material synthesis, and his deep engagement in academic collaboration, Dr. Lan is committed to advancing the frontiers of energy material science through both fundamental discoveries and practical innovations.

Professional Profile

Education

Dr. Kun Lan’s academic path began at Lanzhou University, where he earned his Bachelor of Science in Chemistry in 2013. During his undergraduate years, he developed a foundational understanding of chemical synthesis and material characterization, which sparked his lasting interest in functional materials. Motivated by his growing curiosity, Dr. Lan pursued his Ph.D. in Chemistry at Fudan University under the mentorship of Prof. Dongyuan Zhao, a globally recognized authority in mesoporous materials. He earned his doctorate in 2020, producing a highly cited body of work focused on the design and synthesis of crystalline mesostructures. His Ph.D. research addressed challenges in structural precision and functional integration in porous materials, contributing significantly to the understanding of mesophase control. In 2018–2019, he was a visiting doctoral student at the University of California, Riverside, where he expanded his research scope through international collaboration and exposure to cutting-edge laboratory techniques. These formative academic experiences equipped Dr. Lan with a robust scientific foundation and a global perspective, both of which continue to inform his research direction. His education has been instrumental in developing the skills and mindset necessary for tackling pressing challenges in materials chemistry and renewable technologies.

Professional Experience

Dr. Kun Lan’s professional journey is marked by a steady progression through prestigious academic and research institutions. From 2018 to 2019, he undertook a visiting research appointment at the University of California, Riverside, where he enhanced his understanding of nanomaterial assembly and characterization in an international setting. Following the completion of his Ph.D. in 2020, Dr. Lan served as a Postdoctoral Fellow at Fudan University, where he worked closely with Prof. Dongyuan Zhao. During this time, he deepened his expertise in the controlled synthesis of mesoporous materials and published extensively in high-impact journals. In June 2022, Dr. Lan joined the College of Energy Materials and Chemistry at Inner Mongolia University as a Principal Investigator, where he established the K Lab. As a PI, he leads interdisciplinary research focused on mesostructure design for energy-related applications. He mentors graduate and undergraduate students, secures competitive research funding, and actively contributes to the academic community through collaborations, peer reviews, and conference presentations. His leadership has propelled K Lab into a dynamic research environment known for innovation and academic rigor. Dr. Lan’s career reflects a dedication to scientific excellence, international collaboration, and the development of next-generation researchers in energy materials science.

Research Interests

Dr. Kun Lan’s research lies at the intersection of materials chemistry and sustainable technology, with a focus on the precision synthesis of crystalline mesoporous materials. He is particularly interested in controlling the atomic and mesostructural architecture of porous systems to enhance their performance in catalysis, energy storage, and separation technologies. His work explores the fundamental principles of assembly chemistry, aiming to understand and manipulate the self-organization of building blocks into ordered frameworks. A key objective of his research is to design novel mesostructures with high surface area, tunable porosity, and tailored functionality for renewable technology applications. These include advanced batteries, supercapacitors, and carbon capture materials. Dr. Lan is also committed to developing scalable synthetic routes that bridge the gap between laboratory innovation and industrial relevance. His interdisciplinary approach integrates concepts from solid-state chemistry, colloidal science, and nanotechnology, and often involves collaboration across chemistry, physics, and engineering domains. By addressing critical energy and environmental challenges through materials design, Dr. Lan’s research contributes to the development of sustainable technologies and green manufacturing processes. His work continues to push the boundaries of what is possible in the rational design of hierarchical and hybrid porous materials.

Research Skills

Dr. Kun Lan possesses a comprehensive skill set that spans advanced synthesis, structural characterization, and application testing of functional materials. He is an expert in templating strategies for constructing crystalline mesoporous materials, with extensive experience in sol–gel chemistry, surfactant-assisted assembly, and confined space synthesis. His lab proficiency includes a wide range of material characterization techniques, such as small-angle X-ray scattering (SAXS), high-resolution transmission electron microscopy (HRTEM), N₂ adsorption-desorption isotherms, and solid-state NMR, enabling him to thoroughly investigate structural and textural properties. Dr. Lan is adept at using advanced software tools for 3D structural modeling and diffraction analysis, as well as programming for data processing. He also has hands-on experience in electrochemical testing for batteries and supercapacitors, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GCD) measurements. In addition, Dr. Lan is skilled in project management, grant writing, and academic publishing, with over 70 peer-reviewed articles. He regularly collaborates with national and international research teams, and actively mentors graduate students, contributing to capacity building in materials research. His broad technical and leadership capabilities support the successful execution of interdisciplinary projects targeting energy, environmental, and catalytic applications.

Awards and Honors

Dr. Kun Lan has received numerous awards in recognition of his academic excellence and contributions to materials chemistry. His accolades began with the prestigious CSC State Scholarship Fund and the Tongji-Clearon Outstanding Academician Award in 2018. In 2019, he was honored with the Baosteel Excellent Student Award, followed by the title of Outstanding Graduate of Fudan University in 2020. His postdoctoral research earned him further distinction, including the 3rd Fudan Postdoctoral Venture Competition Award and the 1st BTR New-Energy Scientific Contest Award in 2021. In the same year, he won the Nano Research Oral Prize at the 21st Chinese Zeolite Conference and was recognized with the Excellent Doctoral Thesis Award by Fudan University in 2023. Dr. Lan has secured competitive funding from national and provincial bodies, such as the Fudan Super Postdoctoral Program, the 67th China Postdoctoral Science Foundation, and the National Natural Science Foundation of China (NSFC). He is also supported by regional talent programs including the “Junma” Program and the Grassland Talent Program. His leadership potential has been further recognized through appointments to editorial boards and invitations to review for top-tier journals like Angewandte Chemie, Advanced Materials, and Nature Protocols.

Conclusion

Dr. Kun Lan stands at the forefront of research in mesoporous materials and their applications in renewable energy technologies. With a robust academic background, diverse international experience, and a consistent record of impactful publications, he has established himself as a dynamic and influential scientist. Through the K Lab at Inner Mongolia University, Dr. Lan continues to pursue groundbreaking work in materials chemistry, fostering innovation and collaboration across disciplines. His efforts in mentorship and scientific outreach have inspired a new generation of researchers. The breadth of his research—from fundamental studies in self-assembly to practical solutions for energy storage—demonstrates his commitment to addressing global challenges through chemistry. His extensive publication record, awards, and ongoing participation in national research programs reflect a strong and growing impact in the field. As an educator, collaborator, and innovator, Dr. Kun Lan embodies the qualities of a future scientific leader in sustainable materials research. His continued work promises to deliver valuable insights and technologies that will shape the future of energy and materials science.

Publications Top Notes

  1. Metal-based mesoporous frameworks as high-performance platforms in energy storage and conversion
    Authors: Rongyao Li, Xu Wen, Yuqi Zhao, Sicheng Fan, Qiulong Wei, Kun Lan
    Year: 2025

  2. DFT-Guided Design of Dual Dopants in Anatase TiO2 for Boosted Sodium Storage
    Authors: Shuang Li, Xu Wen, Xin Miao, Rongyao Li, Wendi Wang, Xiaoyu Li, Ziyang Guo, Dongyuan Zhao, Kun Lan
    Year: 2024

  3. Conversion of Z-Scheme to type-II in dual-defective V2O5/C3N4 heterostructure for durable hydrogen evolution
    Authors: Jingyu Zhang, Jialong Li, Jinwei He, Yalin He, Zelin Wang, Shuang Li, Zhanli Chai, Kun Lan
    Year: 2024

  4. Lanthanum-Integrated Porous Adsorbent for Effective Phosphorus Removal
    Authors: Yalin He, Xingyue Qi, Jialong Li, Wendi Wang, Jingyu Zhang, Lanhao Yang, Mei Xue, Kun Lan
    Year: 2024

  5. Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications
    Authors: Jialong Li, Rongyao Li, Wendi Wang, Kun Lan, Dongyuan Zhao
    Year: 2024

  6. Intrinsic Surface-Redox Sodium-Ion Storage Mechanism of Anatase Titanium Oxide toward High-Rate Capability
    Authors: Kun Lan (and team, unspecified here)
    Year: 2023

  7. Nanodroplet Remodeling Strategy for Synthesis of Hierarchical Multi-chambered Mesoporous Silica Nanoparticles
    Authors: Kun Lan (and team, unspecified here)
    Year: 2023

  8. Construction of Type-II Heterojunctions in Crystalline Carbon Nitride for Efficient Photocatalytic H2 Evolution
    Authors: Jingyu Zhang, Zhongliang Li, Jialong Li, Yalin He, Haojie Tong, Shuang Li, Zhanli Chai, Kun Lan
    Year: 2023

  9. Stepwise Monomicelle Assembly for Highly Ordered Mesoporous TiO2 Membranes with Precisely Tailored Mesophase and Porosity
    Authors: Kun Lan, Lu Liu, Jiayu Yu, Yuzhu Ma, Jun-Ye Zhang, Zirui Lv, Sixing Yin, Qiulong Wei, Dongyuan Zhao
    Year: 2023

  10. Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly
    Authors: Kun Lan
    Year: 2022

  11. Synthesis of Ni/NiO@MoO3-x Composite Nanoarrays for High Current Density Hydrogen Evolution Reaction
    Authors: Kun Lan
    Year: 2022

  12. Versatile Synthesis of Mesoporous Crystalline TiO2 Materials by Monomicelle Assembly
    Authors: Kun Lan
    Year: 2022

  13. Modular super-assembly of hierarchical superstructures from monomicelle building blocks
    Authors: Kun Lan
    Year: 2022

  14. Functional Ordered Mesoporous Materials: Present and Future
    Authors: Kun Lan
    Year: 2022

  15. Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance
    Authors: Kun Lan
    Year: 2021

  16. Streamlined Mesoporous Silica Nanoparticles with Tunable Curvature from Interfacial Dynamic-Migration Strategy for Nanomotors
    Authors: Kun Lan
    Year: 2021

  17. General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles
    Authors: Kun Lan
    Year: 2021

  18. Precisely Controlled Vertical Alignment in Mesostructured Carbon Thin Films for Efficient Electrochemical Sensing
    Authors: Kun Lan
    Year: 2021

  19. Surface-Confined Winding Assembly of Mesoporous Nanorods
    Authors: Kun Lan
    Year: 2020

  20. Interfacial Assembly Directed Unique Mesoporous Architectures: From Symmetric to Asymmetric
    Authors: Kun Lan
    Year: 2020

  21. Stable Ti3+ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis
    Authors: Kun Lan, Ruicong Wang, Qiulong Wei, Yanxiang Wang, Anh Hong, Pingyun Feng, Dongyuan Zhao
    Year: 2020

  22. Branched Mesoporous TiO2 Mesocrystals by Epitaxial Assembly of Micelles for Photocatalysis
    Authors: Kun Lan
    Year: 2020

  23. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting
    Authors: Kun Lan
    Year: 2019

  24. Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production
    Authors: Kun Lan
    Year: 2019

  25. Janus Mesoporous Sensor Devices for Simultaneous Multivariable Gases Detection
    Authors: Kun Lan
    Yar: 2019

  26. Two-Dimensional Mesoporous Heterostructure Delivering Superior Pseudocapacitive Sodium Storage via Bottom-Up Monomicelle Assembly
    Authors: Kun Lan
    Year: 2019

  27. Confined Interfacial Monomicelle Assembly for Precisely Controlled Coating of Single-Layered Titania Mesopores
    Authors: Kun Lan
    Year: 2019

  28. Confinement synthesis of hierarchical ordered macro-/mesoporous TiO2 nanostructures with high crystallization for photodegradation
    Authors: Kun Lan
    Year: 2019

  29. Fully printable hole-conductor-free mesoscopic perovskite solar cells based on mesoporous anatase single crystals
    Authors: Kun Lan
    Year: 2018

  30. Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures
    Authors: Kun Lan
    Year: 2018

  31. Mesoporous TiO2 /TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage
    Authors: Kun Lan
    Year: 2018

  32. Uniform Ordered Two-Dimensional Mesoporous TiO2 Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly
    Authors: Kun Lan, Yao Liu, Wei Zhang, Yong Liu, Ahmed Elzatahry, Ruicong Wang, Yongyao Xia, Dhaifallah Al-Dhayan, Nanfeng Zheng, Dongyuan Zhao
    Year: 2018

  33. Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO2 Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls
    Authors: Yong Liu, Kun Lan, Shushuang Li, Yongmei Liu, Biao Kong, Geng Wang, Pengfei Zhang, Ruicong Wang, Haili He, Yun Ling, et al.
    Year: 2016

  34. Template synthesis of metal tungsten nanowire bundles with high field electron emission performance
    Authors: Yong Liu, Kun Lan, Mahir H. Es-Saheb, Ahmed A. Elzatahry, Dongyuan Zhao
    Year: 2016

  35. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery
    Authors: Kun Lan
    Year: 2016

  36. Ordered Macro/Mesoporous TiO2 Hollow Microspheres with Highly Crystalline Thin Shells for High-Efficiency Photoconversion
    Authors: Yong Liu, Kun Lan, Abdulaziz A. Bagabas, Pengfei Zhang, Wenjun Gao, Jingxiu Wang, Zhenkun Sun, Jianwei Fan, Ahmed A. Elzatahry, Dongyuan Zhao
    Year: 2015

  37. Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals
    Authors: Yong Liu, Yongfeng Luo, Ahmed A. Elzatahry, Wei Luo, Renchao Che, Jianwei Fan, Kun Lan, Abdullah M. Al-Enizi, Zhenkun Sun, Bin Li, et al.
    Year: 2015

Feng Wang | Materials Science | Best Researcher Award

Prof. Feng Wang | Materials Science | Best Researcher Award

Professor at Southwest University, China

Feng Wang is a Professor at the Biological Research Center of Southwest University, China, specializing in molecular biology, genetic engineering, and biomaterials. He earned his Ph.D. in Biochemistry and Molecular Biology from Southwest University in 2014. Wang’s research focuses on genetic modification of silkworms to produce functional biomaterials and recombinant proteins for biomedical applications, such as tissue engineering and drug delivery. His work on genome editing using CRISPR/Cas9 and other techniques has led to significant advancements in bio-functional silk production. Wang has published extensively in high-impact journals, contributing to the fields of biotechnology and bioengineering. He has also held roles as a visiting scholar and postdoctoral researcher at various institutions. His groundbreaking research continues to make valuable contributions to the development of innovative medical technologies.

Professional Profile

Education and Work Experience:

Feng Wang completed his undergraduate degree in Bioengineering at the College of Life Science, Southwest University, Chongqing, China, graduating in 2008. He pursued advanced studies at the same institution, earning a Ph.D. in Biochemistry and Molecular Biology from the State Key Laboratory of Silkworm Genome Biology, Southwest University, in 2014. During his academic career, he has held several important positions. He became an Associate Professor at Southwest University in 2018, and in 2023, he was promoted to a full Professor at the Biological Research Center of the university. Wang has also gained valuable international experience as a visiting scholar at Tufts University, USA, from 2018 to 2019. Before this, he served as a research associate and postdoctoral researcher at Southwest University’s College of Biotechnology, contributing significantly to the fields of molecular biology and biotechnology. His career trajectory showcases his growing expertise and leadership in the scientific community, particularly in genetic engineering and biomaterial development, where he continues to make notable contributions to both academia and industry.

Research Interests and Contributions:

Feng Wang’s primary research interests focus on the genetic modification of silkworms and other insect species to enhance functional biomaterials. He specializes in genome editing techniques such as CRISPR/Cas9, TALEN, and ZFN to regulate gene expression and modify silkworm genomes for various applications. Wang has pioneered the use of genetically engineered silkworm spun silk as a potential biomaterial for biomedical purposes, including tissue engineering. His work on producing recombinant pharmaceutical proteins, such as growth factors, human lactoferrin, and human serum albumin, within silkworms, has significant implications for cost-effective, large-scale production of valuable biomolecules. Wang’s research also explores the use of silkworm silk glands as bioreactors for producing proteins with therapeutic applications. His recent studies emphasize the development of silk-based materials for tissue regeneration and other medical uses, demonstrating his ability to bridge molecular biology, biotechnology, and material science. His interdisciplinary work continues to advance the potential of silkworms in producing bio-functional materials with wide-ranging biomedical applications.

Publications and Achievements:

Feng Wang has authored and co-authored numerous high-impact publications in renowned scientific journals. His work spans diverse topics, with a particular focus on genetic engineering, biomaterials, and recombinant protein production. Notable recent publications include articles in Advanced Materials, Biomaterials, and Insect Science, with research exploring the production of functional silk fibroin-based biomaterials and the application of transgenic silkworms for large-scale recombinant protein production. Wang has contributed significantly to advancements in silk engineering, including the fabrication of silk sericin hydrogels for tissue repair and the development of silk-based systems for the delivery of therapeutic proteins. His collaborative approach has also led to joint publications with international researchers, further expanding the impact of his research. Wang’s scientific contributions have received global recognition, and his work continues to inspire advancements in bioengineering and biotechnology. He is also an active member of various research networks and collaborations, facilitating the exchange of knowledge and ideas across the global scientific community. With a growing body of work, his research continues to address pressing challenges in biomedical applications, making him a recognized leader in his field.

Strengths for the Award:

Feng Wang’s research is highly innovative and interdisciplinary, merging molecular biology, genetic engineering, and biomaterial science to address key challenges in biomedical applications. His expertise in genome editing, especially in transgenic silkworms, positions him as a leading figure in the development of functional biomaterials for medical use. Wang’s ability to apply cutting-edge techniques such as CRISPR/Cas9, TALEN, and ZFN for silkworm genetic modification has resulted in the creation of valuable materials, including recombinant pharmaceutical proteins and tissue-engineering scaffolds. His work in engineering silkworm spun silk to express functional proteins demonstrates both creativity and technical proficiency, allowing for the large-scale production of bio-functional biomaterials with significant medical potential. Wang’s leadership as an academic researcher and his extensive publication record, including high-impact journals with broad citations, further demonstrate his research excellence. His collaborative approach with both domestic and international research communities enhances the relevance and impact of his contributions. Overall, his continuous pursuit of innovative solutions for biomedical applications underscores his potential as a strong contender for the Best Researcher Award.

Areas for Improvement:

While Feng Wang has made significant contributions to his field, there are areas where his work can be further expanded to maximize its impact. One potential area for improvement is broadening the scope of his research to include more diverse applications of genetically modified silkworms, particularly in the context of personalized medicine or other innovative therapeutic strategies. Although Wang has focused heavily on protein production and tissue regeneration, there is room for exploring the potential of silkworm-based materials in other areas of biomedical engineering, such as drug delivery systems or diagnostic devices. Additionally, Wang could collaborate with industry partners to translate his findings into real-world applications more effectively. Strengthening his involvement in translational research could accelerate the commercialization of his discoveries, ensuring that his contributions have tangible benefits for society. Another area for improvement lies in the scalability and cost-efficiency of producing genetically modified silkworms and recombinant proteins, which could enhance the practicality and accessibility of his research outcomes. By addressing these challenges, Wang could further elevate the impact of his work and expand its application to broader sectors of healthcare.

Conclusion:

Feng Wang’s exceptional work in gene expression regulation, genome modification, and biomaterials development has significantly advanced the field of biotechnology, particularly in the context of biomedical applications. His pioneering research in genetically engineered silkworms has led to the creation of bio-functional silks that can be used in tissue engineering and the production of therapeutic proteins. With a proven track record of high-impact publications, international collaborations, and continuous innovation, Wang is a leading figure in his field. While there are areas where his research can expand, particularly in translating his findings into commercial applications and exploring additional biomedical uses for silkworm-derived materials, his contributions to science and technology are already substantial. Wang’s dedication to solving complex problems in biomedical engineering, combined with his technical expertise and visionary research, makes him a deserving candidate for the Best Researcher Award. His continued success and impact on the scientific community are promising, and his future work holds even greater potential for advancing healthcare technologies.

Publication Top Notes

  1. Title: Fabrication of a transforming growth factor β1 functionalized silk sericin hydrogel through genetical engineering to repair alveolar bone defects in rabbit
    • Authors: Wang, F., Ning, A., Sun, X., Ma, X., Xia, Q.
    • Year: 2025
  2. Title: Highly efficient expression of human extracellular superoxide dismutase (rhEcSOD) with ultraviolet-B-induced damage-resistance activity in transgenic silkworm cocoons
    • Authors: Wang, F., Wang, R., Zhong, D., Zhao, P., Xia, Q.
    • Year: 2024
    • Citations: 5
  3. Title: CRISPR/Cas9-Mediated Editing of BmEcKL1 Gene Sequence Affected Silk Gland Development of Silkworms (Bombyx mori)
    • Authors: Li, S., Lao, J., Sun, Y., Zhao, P., Xia, Q.
    • Year: 2024
    • Citations: 5
  4. Title: Antimicrobial mechanism of Limosilactobacillus fermentum SHY10 metabolites against pickle film-producing strain by metabolomic and transcriptomic analysis
    • Authors: Lian, Y., Luo, S., Song, J., Liu, K., Zhang, Y.
    • Year: 2024
  5. Title: An Efficient Biosynthetic System for Developing Functional Silk Fibroin-Based Biomaterials
    • Authors: Wang, F., Lei, H., Tian, C., Kaplan, D.L., Xia, Q.
    • Year: 2024
  6. Title: The different effects of molybdate on Hg(II) bio-methylation in aerobic and anaerobic bacteria
    • Authors: Wang, L., Liu, H., Wang, F., Wang, D., Shen, H.
    • Year: 2024
    • Citations: 1
  7. Title: Morusin shows potent antitumor activity for melanoma through apoptosis induction and proliferation inhibition
    • Authors: Liu, W., Ji, Y., Wang, F., Liu, Y., Cui, H.
    • Year: 2023
    • Citations: 3
  8. Title: Correction: Optimization of a 2A self-cleaving peptide-based multigene expression system for efficient expression of upstream and downstream genes in silkworm
    • Authors: Wang, Y., Wang, F., Xu, S., Zhao, P., Xia, Q.
    • Year: 2023

Maryam Noorafshan | Materials Science | Best Researcher Award

Assist. Prof. Dr. Maryam Noorafshan | Materials Science | Best Researcher Award

Assistant Professor at University of Hormozgan, Iran

Dr. Maryam Noorafshan is an accomplished physicist specializing in computational condensed matter physics. Born on September 20, 1983, she has developed a robust academic and research career, currently serving as an Assistant Professor at the University of Hormozgan, Iran. With a passion for advancing knowledge in material sciences, Dr. Noorafshan has focused her research on investigating the electronic, magnetic, and optical properties of materials using advanced computational methods. Her prolific contributions to peer-reviewed journals underscore her commitment to impactful research. Beyond academia, her experience as a visiting researcher at Uppsala University, Sweden, reflects her ability to collaborate internationally and contribute to solving global scientific challenges. Dr. Noorafshan is a dedicated researcher with an unwavering focus on the application of physics to address modern scientific and technological needs.

Professional Profile

Education

Dr. Noorafshan’s academic journey began with a Bachelor’s degree in Theoretical Physics from Shiraz University, Iran, in 2005. She pursued a Master’s degree in the same field at Shiraz University, completing it in 2007. She then achieved a PhD in Computational Condensed Matter Physics from the University of Isfahan, Iran, in 2017. Her education reflects a steady progression toward specialization in condensed matter physics, a field requiring a deep understanding of quantum mechanics and material properties. Additionally, her time as a visiting researcher at Uppsala University in Sweden in 2016 provided her with exposure to advanced research environments and cutting-edge computational techniques. This solid academic foundation has prepared her for a successful career in research and academia.

Professional Experience

Since 2017, Dr. Noorafshan has been serving as an Assistant Professor at the University of Hormozgan, Iran. In this role, she has contributed to both teaching and research, mentoring students and advancing the university’s research agenda. Her experience includes the use of density functional theory (DFT) to explore materials’ electronic, magnetic, and optical properties. Her role as a visiting researcher at Uppsala University allowed her to work in an international research environment, enhancing her global perspective and collaborative skills. Dr. Noorafshan’s professional experience highlights her dedication to advancing scientific knowledge while fostering the next generation of physicists.

Research Interests

Dr. Noorafshan’s research interests lie in the fields of computational condensed matter physics and material science. Her primary focus is on using density functional theory (DFT) and other computational methods to study the electronic, magnetic, and optical properties of materials. She is particularly interested in materials with applications in renewable energy, such as semiconductors for solar cells. Her work on Kondo behavior, electronic structure analysis, and the effect of hydrostatic pressure on material properties underscores her commitment to addressing fundamental questions in physics while exploring practical applications. Dr. Noorafshan’s research contributes to the development of materials that are essential for future technological advancements.

Research Skills

Dr. Noorafshan possesses advanced computational skills, particularly in density functional theory (DFT), first-principles calculations, and materials modeling. Her expertise includes analyzing magnetic, electronic, and optical properties of complex materials. She has a proven ability to design and execute computational experiments, interpret results, and contribute to high-impact publications. Her experience with various software tools and programming languages used in computational physics enhances her research productivity. Additionally, her international collaboration experience has honed her ability to work in diverse research teams and tackle interdisciplinary challenges.

Awards and Honors

While specific awards are not listed in her curriculum vitae, Dr. Noorafshan’s achievements include her selection as a visiting researcher at Uppsala University, Sweden, a recognition of her research potential and capability. Her consistent publication record in reputable journals highlights her contributions to the field of condensed matter physics. Her work on renewable energy materials, particularly those relevant to solar cells, positions her as a valuable researcher addressing global scientific challenges.

Conclusion

Dr. Maryam Noorafshan is a dedicated physicist with significant expertise in computational condensed matter physics. Her strong educational background, professional experience, and focused research interests make her a valuable contributor to the field. With advanced computational skills and a growing body of impactful research, she exemplifies the qualities of a leading researcher. While further recognition through awards and interdisciplinary collaborations would strengthen her profile, Dr. Noorafshan’s current achievements and potential position her as a deserving candidate for the Best Researcher Award.

Publication Top Notes

  • “Study of ab initio calculations of structural, electronic and optical properties of ternary semiconductor Ga1-xInxSb alloys”
    • Authors: Noorafshan, M., Heydari, S.
    • Year: 2024
  • “Density functional study of electronic, elastic and optical properties of GaAs1−xNx (x=0, 0.25, 0.50, 0.75, 1) alloys”
    • Authors: Noorafshan, M.
    • Year: 2022
    • Citations: 1
  • “Effect of hydrostatic pressure on electronic structure and optical properties of InAs: A first principle study”
    • Authors: Noorafshan, M.
    • Year: 2020
    • Citations: 4
  • “First principle calculations of hydrostatic pressure effect on the Kondo behavior and magnetic properties of CePdBi”
    • Authors: Noorafshan, M.
    • Year: 2019
  • “LDA + DMFT and LDA + U study of the electronic and magnetic properties of DyFeSi”
    • Authors: Noorafshan, M.
    • Year: 2018
    • Citations: 4
  • “Density functional investigation of Kondo behavior, electronic structure and magnetic properties of CeRuPO-nano-layer”
    • Authors: Noorafshan, M., Nourbakhsh, Z.
    • Year: 2018
    • Citations: 1
  • “First-Principle Study of the Electronic and Magnetic Properties of Nd1−xLaxFeSi Alloys (x = 0, 0.25, 0.50, 0.75, and 1)”
    • Authors: Noorafshan, M., Nourbakhsh, Z.
    • Year: 2018
    • Citations: 1
  • “The effect of Ce dilution on the ferromagnetic ordering and Kondo behavior of CeRuPO”
    • Authors: Noorafshan, M., Nourbakhsh, Z.
    • Year: 2017
    • Citations: 2
  • “Frequency dependency of magnetic susceptibility in SP magnetite grains”
    • Authors: Hamedpour Darabi, M., Noorafshan, M., Dearing, J.
    • Year: 2012

 

Guanjun Chang | Materials Science | Best Researcher Award

Prof. Dr. Guanjun Chang | Materials Science | Best Researcher Award

Professor/Associate Dean at Southwest University of Science and Technology, China

Dr. Guanjun Chang, a distinguished expert in polymer materials, is currently a Professor and Associate Dean at the School of Materials and Chemistry, Southwest University of Science and Technology. Born on February 20, 1981, he has established himself as a leading figure in the field through groundbreaking research, innovative contributions, and academic leadership. With over a decade of experience in academia and research, Dr. Chang specializes in the design, synthesis, and characterization of high-performance polymers. His work has earned him numerous prestigious awards, including recognition for his contributions to dynamic bond-driven recyclable polymers. Dr. Chang has also held significant leadership roles, including Deputy Director of the State Key Laboratory of Environment-Friendly Energy Materials. He is widely respected for his contributions to sustainable polymer development, and his research has had a significant impact on both academic and industrial applications.

Professional Profile

Education

Dr. Chang’s academic journey began at Qingdao University of Science and Technology, where he earned his Bachelor’s degree in Polymer Physics and Chemistry in 2006. He pursued a Master’s degree in Material Processing Engineering at the same institution, graduating in 2009. Dr. Chang completed his doctoral studies at the China Academy of Engineering Physics in 2012. His Ph.D. research focused on “The Design, Synthesis, and Properties of Novel Polyaryliminos,” showcasing his expertise in advanced polymer design and characterization. This strong educational foundation provided him with the technical and theoretical knowledge to excel in polymer science, which he has further developed through subsequent research and professional experiences.

Professional Experience

Dr. Chang has held several key academic and research positions. Currently, he serves as a Professor and Associate Dean at Southwest University of Science and Technology, overseeing teaching management and leading research initiatives. He previously served as Deputy Director of the State Key Laboratory of Environment-Friendly Energy Materials from 2018 to 2022. Dr. Chang also gained international experience as a Visiting Assistant Professor at the University of Pennsylvania, where he focused on high-strength and tough polymers. Earlier in his career, he served as an Associate Researcher and Lecturer at Southwest University of Science and Technology. These roles reflect his progressive growth in academic leadership and research excellence, marked by significant contributions to polymer science.

Research Interests

Dr. Chang’s primary research interests lie in the field of polymer materials, with a particular focus on high-performance and recyclable polymers. He is deeply engaged in designing dynamic bond-driven polymer networks that exhibit enhanced mechanical properties, recyclability, and functionality. His innovative work integrates advanced molecular design with practical applications, contributing to the development of sustainable materials. Dr. Chang’s research also explores cation-π interactions and dynamic covalent chemistry to design toughened thermosets. These interests align with global efforts toward sustainable material development, making his contributions highly relevant to both academic and industrial communities.

Research Skills

Dr. Chang possesses a wide array of research skills, particularly in the synthesis, characterization, and processing of polymer materials. His expertise includes designing recyclable polymers, employing dynamic chemical bonds, and exploring innovative molecular mechanisms for high-performance materials. He is skilled in advanced analytical techniques such as spectroscopy, microscopy, and thermal analysis, which are essential for characterizing polymer structures and properties. Dr. Chang’s research is also marked by his ability to integrate theoretical principles with experimental applications, enabling him to solve complex challenges in polymer science. His collaborative skills and leadership in managing research teams further enhance his effectiveness as a researcher and innovator.

Awards and Honors

Dr. Chang has received numerous prestigious awards for his contributions to polymer science. Among his accolades are the Sichuan Province “Tianfu Science and Technology Elite” Award and the Outstanding Young Scientific and Technological Talent of Sichuan Province. He has been recognized at provincial and national levels for his work on dynamic bond-driven recyclable polymers, earning first and second prizes in several categories, including the Innovation Award of Invention and the Science and Technology Award of the Chinese Materials Research Society. These honors underscore his exceptional contributions to the advancement of polymer science and his impact on sustainable material development.

Conclusion

Dr. Guanjun Chang is a highly suitable candidate for the Best Researcher Award due to his exceptional contributions to polymer science, leadership roles, and innovative research achievements. His focus on recyclable high-performance polymers aligns well with global sustainability goals, making his work highly relevant. With minor improvements in international visibility and diversified research applications, he could establish himself as an even stronger contender.

Publication Top Notes

  1. A turn-on AIE dual-channel fluorescent probe for sensing Cr3+/ClO− and application in cell imaging
    • Authors: Wang, H., Tang, Y., Gou, K., Xie, Z., Chang, G.
    • Year: 2025
  2. A high-temperature resistant benzimidazole-based porous polymer for efficient adsorption of trinitrotoluene in aqueous solution
    • Authors: Yang, C., Mo, S., Chen, X., Chang, G., Xu, Y.
    • Year: 2024
  3. Preparation of Indole-Based Porous Magnetic Composite via Cation-π Interaction-Driven and Induced Strategy and its Efficient Adsorption of TNT
    • Authors: Mao, Y., Zhu, H., Zhang, B., Chang, G., Xu, Y.
    • Year: 2024
  4. Facile construction of recyclable heat-resistant polymers via alkaline-induced cation-π cross-linking
    • Authors: Yuan, R., Huang, Y., Ma, T., Liang, Q., Chang, G.
    • Year: 2024
  5. Dynamic Covalent Polymer-Nanoparticle Networks as High-Performance Green Lubricants: Synergetic Effect in Load-Bearing Capacity
    • Authors: Xue, H., Wang, C., Liang, F., Zhou, F., Bu, W.
    • Year: 2024
    • Citations: 2
  6. Do the liquid-free poly(ionic liquids) have good environmental reliability?
    • Authors: Liu, J., Yang, D., Yue, Q., Chang, G., Wei, Y.
    • Year: 2024
  7. Multiple non-covalent interactions for mechanically robust and electrically detachable liquid-free poly(ionic liquids) ionoadhesives
    • Authors: Liu, J., Gan, S., Yang, D., Chang, G., Wei, Y.
    • Year: 2024
    • Citations: 2
  8. Hydro-Thermal Degradation: A New and Rapid Method for Evaluating the Bio-degradation Performance of Poly(lactic acid)
    • Authors: Qiang Peng, Li, R., Yin, S., Chang, G., Kang, M.
    • Year: 2024
  9. Adsorption of 2,4,6-trinitrotoluene by indole-based porous organic polymer with suitable three-dimensional space size via physisorption and chemisorption
    • Authors: Xu, Y., Zhu, H., Mo, S., Zhou, M., Chang, G.
    • Year: 2024
    • Citations: 4
  10. Demonstration of π-π Stacking at Interfaces: Synthesis of an Indole-Modified Monodisperse Silica Microsphere SiO2@IN
    • Authors: Tang, Q., Zhu, F., Li, Y., Kang, M., Chang, G.
    • Year: 2024