Kun Lan | Materials Science | Best Researcher Award

Prof. Kun Lan | Materials Science | Best Researcher Award

Professor From Inner Mongolia University, China

Dr. Kun Lan is currently a Principal Investigator at the College of Energy Materials and Chemistry, Inner Mongolia University. With a research focus on crystalline mesoporous materials, Dr. Lan has contributed significantly to the field of materials chemistry, authoring over 70 peer-reviewed publications in top-tier journals such as Nature Chemistry, JACS, and Advanced Materials. His academic journey spans esteemed institutions including Lanzhou University, Fudan University, and the University of California, Riverside. His interdisciplinary work bridges chemistry, nanotechnology, and renewable energy applications. As head of the K Lab, he leads a team developing novel mesostructures with relevance to sustainable technologies and energy storage. Dr. Lan has earned multiple national and institutional recognitions for his research excellence, including the National Natural Science Foundation of China grants and the BTR New-Energy Scientific Contest Award. He is also an active member of the scientific community, serving on editorial boards and peer-review panels for international journals. Known for his strong mentorship, innovative approaches to porous material synthesis, and his deep engagement in academic collaboration, Dr. Lan is committed to advancing the frontiers of energy material science through both fundamental discoveries and practical innovations.

Professional Profile

Education

Dr. Kun Lan’s academic path began at Lanzhou University, where he earned his Bachelor of Science in Chemistry in 2013. During his undergraduate years, he developed a foundational understanding of chemical synthesis and material characterization, which sparked his lasting interest in functional materials. Motivated by his growing curiosity, Dr. Lan pursued his Ph.D. in Chemistry at Fudan University under the mentorship of Prof. Dongyuan Zhao, a globally recognized authority in mesoporous materials. He earned his doctorate in 2020, producing a highly cited body of work focused on the design and synthesis of crystalline mesostructures. His Ph.D. research addressed challenges in structural precision and functional integration in porous materials, contributing significantly to the understanding of mesophase control. In 2018–2019, he was a visiting doctoral student at the University of California, Riverside, where he expanded his research scope through international collaboration and exposure to cutting-edge laboratory techniques. These formative academic experiences equipped Dr. Lan with a robust scientific foundation and a global perspective, both of which continue to inform his research direction. His education has been instrumental in developing the skills and mindset necessary for tackling pressing challenges in materials chemistry and renewable technologies.

Professional Experience

Dr. Kun Lan’s professional journey is marked by a steady progression through prestigious academic and research institutions. From 2018 to 2019, he undertook a visiting research appointment at the University of California, Riverside, where he enhanced his understanding of nanomaterial assembly and characterization in an international setting. Following the completion of his Ph.D. in 2020, Dr. Lan served as a Postdoctoral Fellow at Fudan University, where he worked closely with Prof. Dongyuan Zhao. During this time, he deepened his expertise in the controlled synthesis of mesoporous materials and published extensively in high-impact journals. In June 2022, Dr. Lan joined the College of Energy Materials and Chemistry at Inner Mongolia University as a Principal Investigator, where he established the K Lab. As a PI, he leads interdisciplinary research focused on mesostructure design for energy-related applications. He mentors graduate and undergraduate students, secures competitive research funding, and actively contributes to the academic community through collaborations, peer reviews, and conference presentations. His leadership has propelled K Lab into a dynamic research environment known for innovation and academic rigor. Dr. Lan’s career reflects a dedication to scientific excellence, international collaboration, and the development of next-generation researchers in energy materials science.

Research Interests

Dr. Kun Lan’s research lies at the intersection of materials chemistry and sustainable technology, with a focus on the precision synthesis of crystalline mesoporous materials. He is particularly interested in controlling the atomic and mesostructural architecture of porous systems to enhance their performance in catalysis, energy storage, and separation technologies. His work explores the fundamental principles of assembly chemistry, aiming to understand and manipulate the self-organization of building blocks into ordered frameworks. A key objective of his research is to design novel mesostructures with high surface area, tunable porosity, and tailored functionality for renewable technology applications. These include advanced batteries, supercapacitors, and carbon capture materials. Dr. Lan is also committed to developing scalable synthetic routes that bridge the gap between laboratory innovation and industrial relevance. His interdisciplinary approach integrates concepts from solid-state chemistry, colloidal science, and nanotechnology, and often involves collaboration across chemistry, physics, and engineering domains. By addressing critical energy and environmental challenges through materials design, Dr. Lan’s research contributes to the development of sustainable technologies and green manufacturing processes. His work continues to push the boundaries of what is possible in the rational design of hierarchical and hybrid porous materials.

Research Skills

Dr. Kun Lan possesses a comprehensive skill set that spans advanced synthesis, structural characterization, and application testing of functional materials. He is an expert in templating strategies for constructing crystalline mesoporous materials, with extensive experience in sol–gel chemistry, surfactant-assisted assembly, and confined space synthesis. His lab proficiency includes a wide range of material characterization techniques, such as small-angle X-ray scattering (SAXS), high-resolution transmission electron microscopy (HRTEM), N₂ adsorption-desorption isotherms, and solid-state NMR, enabling him to thoroughly investigate structural and textural properties. Dr. Lan is adept at using advanced software tools for 3D structural modeling and diffraction analysis, as well as programming for data processing. He also has hands-on experience in electrochemical testing for batteries and supercapacitors, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GCD) measurements. In addition, Dr. Lan is skilled in project management, grant writing, and academic publishing, with over 70 peer-reviewed articles. He regularly collaborates with national and international research teams, and actively mentors graduate students, contributing to capacity building in materials research. His broad technical and leadership capabilities support the successful execution of interdisciplinary projects targeting energy, environmental, and catalytic applications.

Awards and Honors

Dr. Kun Lan has received numerous awards in recognition of his academic excellence and contributions to materials chemistry. His accolades began with the prestigious CSC State Scholarship Fund and the Tongji-Clearon Outstanding Academician Award in 2018. In 2019, he was honored with the Baosteel Excellent Student Award, followed by the title of Outstanding Graduate of Fudan University in 2020. His postdoctoral research earned him further distinction, including the 3rd Fudan Postdoctoral Venture Competition Award and the 1st BTR New-Energy Scientific Contest Award in 2021. In the same year, he won the Nano Research Oral Prize at the 21st Chinese Zeolite Conference and was recognized with the Excellent Doctoral Thesis Award by Fudan University in 2023. Dr. Lan has secured competitive funding from national and provincial bodies, such as the Fudan Super Postdoctoral Program, the 67th China Postdoctoral Science Foundation, and the National Natural Science Foundation of China (NSFC). He is also supported by regional talent programs including the “Junma” Program and the Grassland Talent Program. His leadership potential has been further recognized through appointments to editorial boards and invitations to review for top-tier journals like Angewandte Chemie, Advanced Materials, and Nature Protocols.

Conclusion

Dr. Kun Lan stands at the forefront of research in mesoporous materials and their applications in renewable energy technologies. With a robust academic background, diverse international experience, and a consistent record of impactful publications, he has established himself as a dynamic and influential scientist. Through the K Lab at Inner Mongolia University, Dr. Lan continues to pursue groundbreaking work in materials chemistry, fostering innovation and collaboration across disciplines. His efforts in mentorship and scientific outreach have inspired a new generation of researchers. The breadth of his research—from fundamental studies in self-assembly to practical solutions for energy storage—demonstrates his commitment to addressing global challenges through chemistry. His extensive publication record, awards, and ongoing participation in national research programs reflect a strong and growing impact in the field. As an educator, collaborator, and innovator, Dr. Kun Lan embodies the qualities of a future scientific leader in sustainable materials research. His continued work promises to deliver valuable insights and technologies that will shape the future of energy and materials science.

Publications Top Notes

  1. Metal-based mesoporous frameworks as high-performance platforms in energy storage and conversion
    Authors: Rongyao Li, Xu Wen, Yuqi Zhao, Sicheng Fan, Qiulong Wei, Kun Lan
    Year: 2025

  2. DFT-Guided Design of Dual Dopants in Anatase TiO2 for Boosted Sodium Storage
    Authors: Shuang Li, Xu Wen, Xin Miao, Rongyao Li, Wendi Wang, Xiaoyu Li, Ziyang Guo, Dongyuan Zhao, Kun Lan
    Year: 2024

  3. Conversion of Z-Scheme to type-II in dual-defective V2O5/C3N4 heterostructure for durable hydrogen evolution
    Authors: Jingyu Zhang, Jialong Li, Jinwei He, Yalin He, Zelin Wang, Shuang Li, Zhanli Chai, Kun Lan
    Year: 2024

  4. Lanthanum-Integrated Porous Adsorbent for Effective Phosphorus Removal
    Authors: Yalin He, Xingyue Qi, Jialong Li, Wendi Wang, Jingyu Zhang, Lanhao Yang, Mei Xue, Kun Lan
    Year: 2024

  5. Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications
    Authors: Jialong Li, Rongyao Li, Wendi Wang, Kun Lan, Dongyuan Zhao
    Year: 2024

  6. Intrinsic Surface-Redox Sodium-Ion Storage Mechanism of Anatase Titanium Oxide toward High-Rate Capability
    Authors: Kun Lan (and team, unspecified here)
    Year: 2023

  7. Nanodroplet Remodeling Strategy for Synthesis of Hierarchical Multi-chambered Mesoporous Silica Nanoparticles
    Authors: Kun Lan (and team, unspecified here)
    Year: 2023

  8. Construction of Type-II Heterojunctions in Crystalline Carbon Nitride for Efficient Photocatalytic H2 Evolution
    Authors: Jingyu Zhang, Zhongliang Li, Jialong Li, Yalin He, Haojie Tong, Shuang Li, Zhanli Chai, Kun Lan
    Year: 2023

  9. Stepwise Monomicelle Assembly for Highly Ordered Mesoporous TiO2 Membranes with Precisely Tailored Mesophase and Porosity
    Authors: Kun Lan, Lu Liu, Jiayu Yu, Yuzhu Ma, Jun-Ye Zhang, Zirui Lv, Sixing Yin, Qiulong Wei, Dongyuan Zhao
    Year: 2023

  10. Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly
    Authors: Kun Lan
    Year: 2022

  11. Synthesis of Ni/NiO@MoO3-x Composite Nanoarrays for High Current Density Hydrogen Evolution Reaction
    Authors: Kun Lan
    Year: 2022

  12. Versatile Synthesis of Mesoporous Crystalline TiO2 Materials by Monomicelle Assembly
    Authors: Kun Lan
    Year: 2022

  13. Modular super-assembly of hierarchical superstructures from monomicelle building blocks
    Authors: Kun Lan
    Year: 2022

  14. Functional Ordered Mesoporous Materials: Present and Future
    Authors: Kun Lan
    Year: 2022

  15. Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance
    Authors: Kun Lan
    Year: 2021

  16. Streamlined Mesoporous Silica Nanoparticles with Tunable Curvature from Interfacial Dynamic-Migration Strategy for Nanomotors
    Authors: Kun Lan
    Year: 2021

  17. General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles
    Authors: Kun Lan
    Year: 2021

  18. Precisely Controlled Vertical Alignment in Mesostructured Carbon Thin Films for Efficient Electrochemical Sensing
    Authors: Kun Lan
    Year: 2021

  19. Surface-Confined Winding Assembly of Mesoporous Nanorods
    Authors: Kun Lan
    Year: 2020

  20. Interfacial Assembly Directed Unique Mesoporous Architectures: From Symmetric to Asymmetric
    Authors: Kun Lan
    Year: 2020

  21. Stable Ti3+ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis
    Authors: Kun Lan, Ruicong Wang, Qiulong Wei, Yanxiang Wang, Anh Hong, Pingyun Feng, Dongyuan Zhao
    Year: 2020

  22. Branched Mesoporous TiO2 Mesocrystals by Epitaxial Assembly of Micelles for Photocatalysis
    Authors: Kun Lan
    Year: 2020

  23. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting
    Authors: Kun Lan
    Year: 2019

  24. Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production
    Authors: Kun Lan
    Year: 2019

  25. Janus Mesoporous Sensor Devices for Simultaneous Multivariable Gases Detection
    Authors: Kun Lan
    Yar: 2019

  26. Two-Dimensional Mesoporous Heterostructure Delivering Superior Pseudocapacitive Sodium Storage via Bottom-Up Monomicelle Assembly
    Authors: Kun Lan
    Year: 2019

  27. Confined Interfacial Monomicelle Assembly for Precisely Controlled Coating of Single-Layered Titania Mesopores
    Authors: Kun Lan
    Year: 2019

  28. Confinement synthesis of hierarchical ordered macro-/mesoporous TiO2 nanostructures with high crystallization for photodegradation
    Authors: Kun Lan
    Year: 2019

  29. Fully printable hole-conductor-free mesoscopic perovskite solar cells based on mesoporous anatase single crystals
    Authors: Kun Lan
    Year: 2018

  30. Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures
    Authors: Kun Lan
    Year: 2018

  31. Mesoporous TiO2 /TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage
    Authors: Kun Lan
    Year: 2018

  32. Uniform Ordered Two-Dimensional Mesoporous TiO2 Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly
    Authors: Kun Lan, Yao Liu, Wei Zhang, Yong Liu, Ahmed Elzatahry, Ruicong Wang, Yongyao Xia, Dhaifallah Al-Dhayan, Nanfeng Zheng, Dongyuan Zhao
    Year: 2018

  33. Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO2 Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls
    Authors: Yong Liu, Kun Lan, Shushuang Li, Yongmei Liu, Biao Kong, Geng Wang, Pengfei Zhang, Ruicong Wang, Haili He, Yun Ling, et al.
    Year: 2016

  34. Template synthesis of metal tungsten nanowire bundles with high field electron emission performance
    Authors: Yong Liu, Kun Lan, Mahir H. Es-Saheb, Ahmed A. Elzatahry, Dongyuan Zhao
    Year: 2016

  35. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery
    Authors: Kun Lan
    Year: 2016

  36. Ordered Macro/Mesoporous TiO2 Hollow Microspheres with Highly Crystalline Thin Shells for High-Efficiency Photoconversion
    Authors: Yong Liu, Kun Lan, Abdulaziz A. Bagabas, Pengfei Zhang, Wenjun Gao, Jingxiu Wang, Zhenkun Sun, Jianwei Fan, Ahmed A. Elzatahry, Dongyuan Zhao
    Year: 2015

  37. Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals
    Authors: Yong Liu, Yongfeng Luo, Ahmed A. Elzatahry, Wei Luo, Renchao Che, Jianwei Fan, Kun Lan, Abdullah M. Al-Enizi, Zhenkun Sun, Bin Li, et al.
    Year: 2015

Feng Wang | Materials Science | Best Researcher Award

Prof. Feng Wang | Materials Science | Best Researcher Award

Professor at Southwest University, China

Feng Wang is a Professor at the Biological Research Center of Southwest University, China, specializing in molecular biology, genetic engineering, and biomaterials. He earned his Ph.D. in Biochemistry and Molecular Biology from Southwest University in 2014. Wang’s research focuses on genetic modification of silkworms to produce functional biomaterials and recombinant proteins for biomedical applications, such as tissue engineering and drug delivery. His work on genome editing using CRISPR/Cas9 and other techniques has led to significant advancements in bio-functional silk production. Wang has published extensively in high-impact journals, contributing to the fields of biotechnology and bioengineering. He has also held roles as a visiting scholar and postdoctoral researcher at various institutions. His groundbreaking research continues to make valuable contributions to the development of innovative medical technologies.

Professional Profile

Education and Work Experience:

Feng Wang completed his undergraduate degree in Bioengineering at the College of Life Science, Southwest University, Chongqing, China, graduating in 2008. He pursued advanced studies at the same institution, earning a Ph.D. in Biochemistry and Molecular Biology from the State Key Laboratory of Silkworm Genome Biology, Southwest University, in 2014. During his academic career, he has held several important positions. He became an Associate Professor at Southwest University in 2018, and in 2023, he was promoted to a full Professor at the Biological Research Center of the university. Wang has also gained valuable international experience as a visiting scholar at Tufts University, USA, from 2018 to 2019. Before this, he served as a research associate and postdoctoral researcher at Southwest University’s College of Biotechnology, contributing significantly to the fields of molecular biology and biotechnology. His career trajectory showcases his growing expertise and leadership in the scientific community, particularly in genetic engineering and biomaterial development, where he continues to make notable contributions to both academia and industry.

Research Interests and Contributions:

Feng Wang’s primary research interests focus on the genetic modification of silkworms and other insect species to enhance functional biomaterials. He specializes in genome editing techniques such as CRISPR/Cas9, TALEN, and ZFN to regulate gene expression and modify silkworm genomes for various applications. Wang has pioneered the use of genetically engineered silkworm spun silk as a potential biomaterial for biomedical purposes, including tissue engineering. His work on producing recombinant pharmaceutical proteins, such as growth factors, human lactoferrin, and human serum albumin, within silkworms, has significant implications for cost-effective, large-scale production of valuable biomolecules. Wang’s research also explores the use of silkworm silk glands as bioreactors for producing proteins with therapeutic applications. His recent studies emphasize the development of silk-based materials for tissue regeneration and other medical uses, demonstrating his ability to bridge molecular biology, biotechnology, and material science. His interdisciplinary work continues to advance the potential of silkworms in producing bio-functional materials with wide-ranging biomedical applications.

Publications and Achievements:

Feng Wang has authored and co-authored numerous high-impact publications in renowned scientific journals. His work spans diverse topics, with a particular focus on genetic engineering, biomaterials, and recombinant protein production. Notable recent publications include articles in Advanced Materials, Biomaterials, and Insect Science, with research exploring the production of functional silk fibroin-based biomaterials and the application of transgenic silkworms for large-scale recombinant protein production. Wang has contributed significantly to advancements in silk engineering, including the fabrication of silk sericin hydrogels for tissue repair and the development of silk-based systems for the delivery of therapeutic proteins. His collaborative approach has also led to joint publications with international researchers, further expanding the impact of his research. Wang’s scientific contributions have received global recognition, and his work continues to inspire advancements in bioengineering and biotechnology. He is also an active member of various research networks and collaborations, facilitating the exchange of knowledge and ideas across the global scientific community. With a growing body of work, his research continues to address pressing challenges in biomedical applications, making him a recognized leader in his field.

Strengths for the Award:

Feng Wang’s research is highly innovative and interdisciplinary, merging molecular biology, genetic engineering, and biomaterial science to address key challenges in biomedical applications. His expertise in genome editing, especially in transgenic silkworms, positions him as a leading figure in the development of functional biomaterials for medical use. Wang’s ability to apply cutting-edge techniques such as CRISPR/Cas9, TALEN, and ZFN for silkworm genetic modification has resulted in the creation of valuable materials, including recombinant pharmaceutical proteins and tissue-engineering scaffolds. His work in engineering silkworm spun silk to express functional proteins demonstrates both creativity and technical proficiency, allowing for the large-scale production of bio-functional biomaterials with significant medical potential. Wang’s leadership as an academic researcher and his extensive publication record, including high-impact journals with broad citations, further demonstrate his research excellence. His collaborative approach with both domestic and international research communities enhances the relevance and impact of his contributions. Overall, his continuous pursuit of innovative solutions for biomedical applications underscores his potential as a strong contender for the Best Researcher Award.

Areas for Improvement:

While Feng Wang has made significant contributions to his field, there are areas where his work can be further expanded to maximize its impact. One potential area for improvement is broadening the scope of his research to include more diverse applications of genetically modified silkworms, particularly in the context of personalized medicine or other innovative therapeutic strategies. Although Wang has focused heavily on protein production and tissue regeneration, there is room for exploring the potential of silkworm-based materials in other areas of biomedical engineering, such as drug delivery systems or diagnostic devices. Additionally, Wang could collaborate with industry partners to translate his findings into real-world applications more effectively. Strengthening his involvement in translational research could accelerate the commercialization of his discoveries, ensuring that his contributions have tangible benefits for society. Another area for improvement lies in the scalability and cost-efficiency of producing genetically modified silkworms and recombinant proteins, which could enhance the practicality and accessibility of his research outcomes. By addressing these challenges, Wang could further elevate the impact of his work and expand its application to broader sectors of healthcare.

Conclusion:

Feng Wang’s exceptional work in gene expression regulation, genome modification, and biomaterials development has significantly advanced the field of biotechnology, particularly in the context of biomedical applications. His pioneering research in genetically engineered silkworms has led to the creation of bio-functional silks that can be used in tissue engineering and the production of therapeutic proteins. With a proven track record of high-impact publications, international collaborations, and continuous innovation, Wang is a leading figure in his field. While there are areas where his research can expand, particularly in translating his findings into commercial applications and exploring additional biomedical uses for silkworm-derived materials, his contributions to science and technology are already substantial. Wang’s dedication to solving complex problems in biomedical engineering, combined with his technical expertise and visionary research, makes him a deserving candidate for the Best Researcher Award. His continued success and impact on the scientific community are promising, and his future work holds even greater potential for advancing healthcare technologies.

Publication Top Notes

  1. Title: Fabrication of a transforming growth factor β1 functionalized silk sericin hydrogel through genetical engineering to repair alveolar bone defects in rabbit
    • Authors: Wang, F., Ning, A., Sun, X., Ma, X., Xia, Q.
    • Year: 2025
  2. Title: Highly efficient expression of human extracellular superoxide dismutase (rhEcSOD) with ultraviolet-B-induced damage-resistance activity in transgenic silkworm cocoons
    • Authors: Wang, F., Wang, R., Zhong, D., Zhao, P., Xia, Q.
    • Year: 2024
    • Citations: 5
  3. Title: CRISPR/Cas9-Mediated Editing of BmEcKL1 Gene Sequence Affected Silk Gland Development of Silkworms (Bombyx mori)
    • Authors: Li, S., Lao, J., Sun, Y., Zhao, P., Xia, Q.
    • Year: 2024
    • Citations: 5
  4. Title: Antimicrobial mechanism of Limosilactobacillus fermentum SHY10 metabolites against pickle film-producing strain by metabolomic and transcriptomic analysis
    • Authors: Lian, Y., Luo, S., Song, J., Liu, K., Zhang, Y.
    • Year: 2024
  5. Title: An Efficient Biosynthetic System for Developing Functional Silk Fibroin-Based Biomaterials
    • Authors: Wang, F., Lei, H., Tian, C., Kaplan, D.L., Xia, Q.
    • Year: 2024
  6. Title: The different effects of molybdate on Hg(II) bio-methylation in aerobic and anaerobic bacteria
    • Authors: Wang, L., Liu, H., Wang, F., Wang, D., Shen, H.
    • Year: 2024
    • Citations: 1
  7. Title: Morusin shows potent antitumor activity for melanoma through apoptosis induction and proliferation inhibition
    • Authors: Liu, W., Ji, Y., Wang, F., Liu, Y., Cui, H.
    • Year: 2023
    • Citations: 3
  8. Title: Correction: Optimization of a 2A self-cleaving peptide-based multigene expression system for efficient expression of upstream and downstream genes in silkworm
    • Authors: Wang, Y., Wang, F., Xu, S., Zhao, P., Xia, Q.
    • Year: 2023

Maryam Noorafshan | Materials Science | Best Researcher Award

Assist. Prof. Dr. Maryam Noorafshan | Materials Science | Best Researcher Award

Assistant Professor at University of Hormozgan, Iran

Dr. Maryam Noorafshan is an accomplished physicist specializing in computational condensed matter physics. Born on September 20, 1983, she has developed a robust academic and research career, currently serving as an Assistant Professor at the University of Hormozgan, Iran. With a passion for advancing knowledge in material sciences, Dr. Noorafshan has focused her research on investigating the electronic, magnetic, and optical properties of materials using advanced computational methods. Her prolific contributions to peer-reviewed journals underscore her commitment to impactful research. Beyond academia, her experience as a visiting researcher at Uppsala University, Sweden, reflects her ability to collaborate internationally and contribute to solving global scientific challenges. Dr. Noorafshan is a dedicated researcher with an unwavering focus on the application of physics to address modern scientific and technological needs.

Professional Profile

Education

Dr. Noorafshan’s academic journey began with a Bachelor’s degree in Theoretical Physics from Shiraz University, Iran, in 2005. She pursued a Master’s degree in the same field at Shiraz University, completing it in 2007. She then achieved a PhD in Computational Condensed Matter Physics from the University of Isfahan, Iran, in 2017. Her education reflects a steady progression toward specialization in condensed matter physics, a field requiring a deep understanding of quantum mechanics and material properties. Additionally, her time as a visiting researcher at Uppsala University in Sweden in 2016 provided her with exposure to advanced research environments and cutting-edge computational techniques. This solid academic foundation has prepared her for a successful career in research and academia.

Professional Experience

Since 2017, Dr. Noorafshan has been serving as an Assistant Professor at the University of Hormozgan, Iran. In this role, she has contributed to both teaching and research, mentoring students and advancing the university’s research agenda. Her experience includes the use of density functional theory (DFT) to explore materials’ electronic, magnetic, and optical properties. Her role as a visiting researcher at Uppsala University allowed her to work in an international research environment, enhancing her global perspective and collaborative skills. Dr. Noorafshan’s professional experience highlights her dedication to advancing scientific knowledge while fostering the next generation of physicists.

Research Interests

Dr. Noorafshan’s research interests lie in the fields of computational condensed matter physics and material science. Her primary focus is on using density functional theory (DFT) and other computational methods to study the electronic, magnetic, and optical properties of materials. She is particularly interested in materials with applications in renewable energy, such as semiconductors for solar cells. Her work on Kondo behavior, electronic structure analysis, and the effect of hydrostatic pressure on material properties underscores her commitment to addressing fundamental questions in physics while exploring practical applications. Dr. Noorafshan’s research contributes to the development of materials that are essential for future technological advancements.

Research Skills

Dr. Noorafshan possesses advanced computational skills, particularly in density functional theory (DFT), first-principles calculations, and materials modeling. Her expertise includes analyzing magnetic, electronic, and optical properties of complex materials. She has a proven ability to design and execute computational experiments, interpret results, and contribute to high-impact publications. Her experience with various software tools and programming languages used in computational physics enhances her research productivity. Additionally, her international collaboration experience has honed her ability to work in diverse research teams and tackle interdisciplinary challenges.

Awards and Honors

While specific awards are not listed in her curriculum vitae, Dr. Noorafshan’s achievements include her selection as a visiting researcher at Uppsala University, Sweden, a recognition of her research potential and capability. Her consistent publication record in reputable journals highlights her contributions to the field of condensed matter physics. Her work on renewable energy materials, particularly those relevant to solar cells, positions her as a valuable researcher addressing global scientific challenges.

Conclusion

Dr. Maryam Noorafshan is a dedicated physicist with significant expertise in computational condensed matter physics. Her strong educational background, professional experience, and focused research interests make her a valuable contributor to the field. With advanced computational skills and a growing body of impactful research, she exemplifies the qualities of a leading researcher. While further recognition through awards and interdisciplinary collaborations would strengthen her profile, Dr. Noorafshan’s current achievements and potential position her as a deserving candidate for the Best Researcher Award.

Publication Top Notes

  • “Study of ab initio calculations of structural, electronic and optical properties of ternary semiconductor Ga1-xInxSb alloys”
    • Authors: Noorafshan, M., Heydari, S.
    • Year: 2024
  • “Density functional study of electronic, elastic and optical properties of GaAs1−xNx (x=0, 0.25, 0.50, 0.75, 1) alloys”
    • Authors: Noorafshan, M.
    • Year: 2022
    • Citations: 1
  • “Effect of hydrostatic pressure on electronic structure and optical properties of InAs: A first principle study”
    • Authors: Noorafshan, M.
    • Year: 2020
    • Citations: 4
  • “First principle calculations of hydrostatic pressure effect on the Kondo behavior and magnetic properties of CePdBi”
    • Authors: Noorafshan, M.
    • Year: 2019
  • “LDA + DMFT and LDA + U study of the electronic and magnetic properties of DyFeSi”
    • Authors: Noorafshan, M.
    • Year: 2018
    • Citations: 4
  • “Density functional investigation of Kondo behavior, electronic structure and magnetic properties of CeRuPO-nano-layer”
    • Authors: Noorafshan, M., Nourbakhsh, Z.
    • Year: 2018
    • Citations: 1
  • “First-Principle Study of the Electronic and Magnetic Properties of Nd1−xLaxFeSi Alloys (x = 0, 0.25, 0.50, 0.75, and 1)”
    • Authors: Noorafshan, M., Nourbakhsh, Z.
    • Year: 2018
    • Citations: 1
  • “The effect of Ce dilution on the ferromagnetic ordering and Kondo behavior of CeRuPO”
    • Authors: Noorafshan, M., Nourbakhsh, Z.
    • Year: 2017
    • Citations: 2
  • “Frequency dependency of magnetic susceptibility in SP magnetite grains”
    • Authors: Hamedpour Darabi, M., Noorafshan, M., Dearing, J.
    • Year: 2012

 

Guanjun Chang | Materials Science | Best Researcher Award

Prof. Dr. Guanjun Chang | Materials Science | Best Researcher Award

Professor/Associate Dean at Southwest University of Science and Technology, China

Dr. Guanjun Chang, a distinguished expert in polymer materials, is currently a Professor and Associate Dean at the School of Materials and Chemistry, Southwest University of Science and Technology. Born on February 20, 1981, he has established himself as a leading figure in the field through groundbreaking research, innovative contributions, and academic leadership. With over a decade of experience in academia and research, Dr. Chang specializes in the design, synthesis, and characterization of high-performance polymers. His work has earned him numerous prestigious awards, including recognition for his contributions to dynamic bond-driven recyclable polymers. Dr. Chang has also held significant leadership roles, including Deputy Director of the State Key Laboratory of Environment-Friendly Energy Materials. He is widely respected for his contributions to sustainable polymer development, and his research has had a significant impact on both academic and industrial applications.

Professional Profile

Education

Dr. Chang’s academic journey began at Qingdao University of Science and Technology, where he earned his Bachelor’s degree in Polymer Physics and Chemistry in 2006. He pursued a Master’s degree in Material Processing Engineering at the same institution, graduating in 2009. Dr. Chang completed his doctoral studies at the China Academy of Engineering Physics in 2012. His Ph.D. research focused on “The Design, Synthesis, and Properties of Novel Polyaryliminos,” showcasing his expertise in advanced polymer design and characterization. This strong educational foundation provided him with the technical and theoretical knowledge to excel in polymer science, which he has further developed through subsequent research and professional experiences.

Professional Experience

Dr. Chang has held several key academic and research positions. Currently, he serves as a Professor and Associate Dean at Southwest University of Science and Technology, overseeing teaching management and leading research initiatives. He previously served as Deputy Director of the State Key Laboratory of Environment-Friendly Energy Materials from 2018 to 2022. Dr. Chang also gained international experience as a Visiting Assistant Professor at the University of Pennsylvania, where he focused on high-strength and tough polymers. Earlier in his career, he served as an Associate Researcher and Lecturer at Southwest University of Science and Technology. These roles reflect his progressive growth in academic leadership and research excellence, marked by significant contributions to polymer science.

Research Interests

Dr. Chang’s primary research interests lie in the field of polymer materials, with a particular focus on high-performance and recyclable polymers. He is deeply engaged in designing dynamic bond-driven polymer networks that exhibit enhanced mechanical properties, recyclability, and functionality. His innovative work integrates advanced molecular design with practical applications, contributing to the development of sustainable materials. Dr. Chang’s research also explores cation-π interactions and dynamic covalent chemistry to design toughened thermosets. These interests align with global efforts toward sustainable material development, making his contributions highly relevant to both academic and industrial communities.

Research Skills

Dr. Chang possesses a wide array of research skills, particularly in the synthesis, characterization, and processing of polymer materials. His expertise includes designing recyclable polymers, employing dynamic chemical bonds, and exploring innovative molecular mechanisms for high-performance materials. He is skilled in advanced analytical techniques such as spectroscopy, microscopy, and thermal analysis, which are essential for characterizing polymer structures and properties. Dr. Chang’s research is also marked by his ability to integrate theoretical principles with experimental applications, enabling him to solve complex challenges in polymer science. His collaborative skills and leadership in managing research teams further enhance his effectiveness as a researcher and innovator.

Awards and Honors

Dr. Chang has received numerous prestigious awards for his contributions to polymer science. Among his accolades are the Sichuan Province “Tianfu Science and Technology Elite” Award and the Outstanding Young Scientific and Technological Talent of Sichuan Province. He has been recognized at provincial and national levels for his work on dynamic bond-driven recyclable polymers, earning first and second prizes in several categories, including the Innovation Award of Invention and the Science and Technology Award of the Chinese Materials Research Society. These honors underscore his exceptional contributions to the advancement of polymer science and his impact on sustainable material development.

Conclusion

Dr. Guanjun Chang is a highly suitable candidate for the Best Researcher Award due to his exceptional contributions to polymer science, leadership roles, and innovative research achievements. His focus on recyclable high-performance polymers aligns well with global sustainability goals, making his work highly relevant. With minor improvements in international visibility and diversified research applications, he could establish himself as an even stronger contender.

Publication Top Notes

  1. A turn-on AIE dual-channel fluorescent probe for sensing Cr3+/ClO− and application in cell imaging
    • Authors: Wang, H., Tang, Y., Gou, K., Xie, Z., Chang, G.
    • Year: 2025
  2. A high-temperature resistant benzimidazole-based porous polymer for efficient adsorption of trinitrotoluene in aqueous solution
    • Authors: Yang, C., Mo, S., Chen, X., Chang, G., Xu, Y.
    • Year: 2024
  3. Preparation of Indole-Based Porous Magnetic Composite via Cation-π Interaction-Driven and Induced Strategy and its Efficient Adsorption of TNT
    • Authors: Mao, Y., Zhu, H., Zhang, B., Chang, G., Xu, Y.
    • Year: 2024
  4. Facile construction of recyclable heat-resistant polymers via alkaline-induced cation-π cross-linking
    • Authors: Yuan, R., Huang, Y., Ma, T., Liang, Q., Chang, G.
    • Year: 2024
  5. Dynamic Covalent Polymer-Nanoparticle Networks as High-Performance Green Lubricants: Synergetic Effect in Load-Bearing Capacity
    • Authors: Xue, H., Wang, C., Liang, F., Zhou, F., Bu, W.
    • Year: 2024
    • Citations: 2
  6. Do the liquid-free poly(ionic liquids) have good environmental reliability?
    • Authors: Liu, J., Yang, D., Yue, Q., Chang, G., Wei, Y.
    • Year: 2024
  7. Multiple non-covalent interactions for mechanically robust and electrically detachable liquid-free poly(ionic liquids) ionoadhesives
    • Authors: Liu, J., Gan, S., Yang, D., Chang, G., Wei, Y.
    • Year: 2024
    • Citations: 2
  8. Hydro-Thermal Degradation: A New and Rapid Method for Evaluating the Bio-degradation Performance of Poly(lactic acid)
    • Authors: Qiang Peng, Li, R., Yin, S., Chang, G., Kang, M.
    • Year: 2024
  9. Adsorption of 2,4,6-trinitrotoluene by indole-based porous organic polymer with suitable three-dimensional space size via physisorption and chemisorption
    • Authors: Xu, Y., Zhu, H., Mo, S., Zhou, M., Chang, G.
    • Year: 2024
    • Citations: 4
  10. Demonstration of π-π Stacking at Interfaces: Synthesis of an Indole-Modified Monodisperse Silica Microsphere SiO2@IN
    • Authors: Tang, Q., Zhu, F., Li, Y., Kang, M., Chang, G.
    • Year: 2024