Jacob Olchowka | Materials Science | Innovative Research Award

Dr. Jacob Olchowka | Materials Science | Innovative Research Award

ICMCB (Institute of Condensed Matter Chemistry of Bordeaux), France

Dr. Jacob Olchowka is a French CNRS researcher in the field of material science with a specialization in electrochemical energy storage, particularly Na-ion/Li-ion batteries, hybrid supercapacitors, and direct recycling of lithium-ion batteries. He earned his Ph.D. in Material Science with very honorable mention through a joint program between the University of Lille, France, and the University of Siegen, Germany, following a Master’s degree in Chemistry, Energy, and Environment and a Bachelor’s degree in Physical Chemistry from the University of Lille, and more recently completed his Habilitation (HDR) at the University of Bordeaux in 2025. His professional career includes international postdoctoral experiences at the University of Geneva, Switzerland, and the University of Siegen, Germany, before securing a permanent CNRS position at ICMCB in 2017. His research interests cover synthesis and nanostructuration of electrode materials, surface modifications, operando and in-situ characterizations, crystallochemistry, and the regeneration of end-of-life electrodes. Skilled in advanced synthesis methods (solid-state, sol-gel, ionothermal, molten salt), particle morphology control, structural characterizations (XRD, Raman, IR, UV-vis, SEM, XAS), and electrochemical testing, he combines fundamental and applied expertise to address energy challenges. His contributions include 56 peer-reviewed publications, 4 patents, more than 900 citations, an h-index of 18, and leadership in major projects such as ANR NANO-INSPIRE, REGENERATE, and H-BAT, alongside supervision of Ph.D. and postdoctoral researchers, teaching commitments at the University of Bordeaux, and involvement in European programs such as Battery 2030+ and H2020 NAIMA. He has received notable honors, including the ANR Young Researcher Grant, Fondation Roi Baudouin – Solvay Grant, and recognition for his research presentations, while being an active member of RS2E, Alistore, and the French Chemical Society. With his strong international collaborations, scientific leadership, and commitment to mentoring, Dr. Olchowka has established himself as an influential researcher whose work significantly advances sustainable energy storage and positions him as a future leader in the global transition toward greener technologies.

Profile: Scopus | ORCID | LinkedIn

Featured Publications

Croguennec, L., Duttine, M., Grebenshchikova, A., Lyonnard, S., Olchowka, J., Simonin, L., & Stievano, L. (2027). Multi-scale multi-techniques investigations of Li-ion batteries: Towards a European Battery Hub [Dataset]. European Synchrotron Radiation Facility.

Grebenshchikova, A., Olchowka, J., Simonin, L., Yaroslavtsev, S., Duttine, M., Fauth, F., Stievano, L., Masquelier, C., & Croguennec, L. (2025). Na₂Fe₃(SO₄)₄: A zero‐strain sustainable positive electrode material for Na‐ion batteries. Angewandte Chemie International Edition. Advance online publication.

Grebenshchikova, A., Olchowka, J., Simonin, L., Yaroslavtsev, S., Duttine, M., Fauth, F., Stievano, L., Masquelier, C., & Croguennec, L. (2025). Na₂Fe₃(SO₄)₄: A zero‐strain sustainable positive electrode material for Na‐ion batteries. Angewandte Chemie. Advance online publication.

Grebenshchikova, A., Olchowka, J., Simonin, L., Duttine, M., Weill, F., Suard, E., Masquelier, C., & Croguennec, L. (2025). NaSICON NaFe₂PO₄(SO₄)₂ revisited: Insights into the crystal structure and electrochemical performance. ACS Applied Energy Materials. Advance online publication.

Hayagan, N., Guillou, P., Olchowka, J., Ercicek, F., Lecoutre, C., Nguyen, O., Aymonier, C., Marre, S., Erriguible, A., & Philippot, G. (2025). Understanding the role of pressurized CO₂ in the direct recycling process of Li-ion battery positive electrode. Journal of CO₂ Utilization, 103, 103080.

Moshe Ben Shalom | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Moshe Ben Shalom | Materials Science | Best Researcher Award

Tel Aviv University | Israel

Assoc. Prof. Dr. Moshe Ben Shalom is a distinguished academic and researcher recognized for his significant contributions to science, technology, and education. His career reflects a blend of scientific excellence, innovative research, and impactful teaching. With an unwavering dedication to advancing knowledge, he has established himself as an authority in his field and continues to influence both the academic community and industry practices. His works span across multiple disciplines, reflecting a highly interdisciplinary approach that bridges theory with practical application. Beyond research, he is deeply committed to mentoring students, fostering international collaborations, and contributing to the development of innovative methodologies and solutions. Dr. Ben Shalom has consistently demonstrated leadership in academic initiatives and professional organizations, showcasing a strong ability to drive impactful change. His role as an educator and researcher has enabled him to inspire future generations of scientists while contributing meaningfully to global knowledge. With an impressive track record of publications, professional memberships, and recognition, he stands as a model scholar and leader in his discipline. His academic journey reflects not only personal achievement but also a broader commitment to advancing society through science and education.

Professional Profile

Education

Assoc. Prof. Dr. Moshe Ben Shalom has pursued a comprehensive academic path that laid a strong foundation for his distinguished career. He completed undergraduate studies in core scientific disciplines, which provided him with essential knowledge in theoretical and applied sciences. His graduate studies expanded into specialized areas, focusing on advanced concepts in physics, chemistry, and materials science. During his doctoral training, he engaged in high-level research that integrated rigorous experimentation with innovative theoretical frameworks. This stage of his education allowed him to develop a deep understanding of scientific methods and the ability to design and conduct impactful research. Throughout his academic journey, he gained extensive exposure to interdisciplinary studies, which later shaped his research philosophy of combining multiple scientific approaches to solve complex problems. His education also involved international training opportunities, exposing him to diverse scientific environments and collaborations. This combination of structured learning and independent research instilled in him a strong sense of academic curiosity and professional discipline. Today, his educational background serves as a cornerstone of his research and teaching philosophy, enabling him to guide students and colleagues while contributing to the advancement of science on a global scale.

Professional Experience

Assoc. Prof. Dr. Moshe Ben Shalom has built an extensive professional portfolio characterized by academic leadership, innovative research, and global collaboration. He has held teaching and research positions at leading universities, where he combined classroom instruction with active laboratory work. His professional roles encompass not only academic teaching but also mentoring graduate and doctoral students, guiding them in cutting-edge research projects. He has played a pivotal role in establishing international collaborations, working with scientists from diverse backgrounds to develop solutions for emerging scientific challenges. His expertise extends beyond academia into advisory roles for research institutions and organizations, where his insights have shaped projects with societal and industrial relevance. He has been actively involved in peer reviewing for high-impact journals and conferences, contributing to the integrity of scholarly communication. Additionally, he has participated in organizing academic events, workshops, and conferences, promoting interdisciplinary dialogue and innovation. His professional journey reflects a balance between leadership responsibilities and continuous contributions to scientific advancement. Through his experience, Dr. Ben Shalom has demonstrated the ability to integrate research excellence with educational impact, ensuring that his work benefits both the academic community and broader society.

Research Interests

Assoc. Prof. Dr. Moshe Ben Shalom’s research interests span a wide spectrum of advanced scientific fields, reflecting his interdisciplinary approach and commitment to addressing global challenges. His primary focus lies in materials science, nanotechnology, and applied physics, with a particular interest in developing novel materials for technological applications. He explores areas such as electronic devices, quantum phenomena, and advanced biomaterials, seeking to design systems that contribute to sustainable technological growth. His interests also extend into the interface of physics and biology, investigating molecular interactions and their applications in medicine and diagnostics. Dr. Ben Shalom actively engages with emerging research areas that bridge theoretical frameworks with experimental innovation, making his work highly adaptable to evolving scientific needs. He is particularly drawn to projects that involve cross-disciplinary collaborations, leveraging expertise from multiple fields to address complex questions. His long-term goal is to create practical applications from fundamental research, ensuring that discoveries translate into societal benefits. These research interests highlight his vision of combining deep scientific exploration with real-world problem-solving, positioning him as a leader in driving research that impacts both academia and industry.

Research Skills

Assoc. Prof. Dr. Moshe Ben Shalom possesses an impressive set of research skills that reflect his academic training, professional experience, and innovative mindset. He is highly skilled in experimental design, laboratory methodologies, and advanced data analysis, enabling him to generate reliable and impactful results. His expertise covers a range of techniques in nanotechnology, material characterization, spectroscopy, and molecular modeling. He is adept at employing computational tools alongside experimental research, ensuring that his findings are both theoretically robust and practically applicable. Collaboration is a key strength, as he frequently integrates multidisciplinary perspectives into his projects, combining physics, chemistry, biology, and engineering methods. Dr. Ben Shalom also demonstrates strong skills in scientific communication, evident in his ability to publish in high-impact journals and present at international conferences. His proficiency in supervising research teams, mentoring students, and managing collaborative projects further underscores his leadership in research. Additionally, he has experience in securing competitive research funding, reflecting his ability to align scientific goals with institutional priorities. Collectively, these skills not only strengthen his own research portfolio but also empower the broader scientific community through shared expertise and innovative contributions.

Awards and Honors

Assoc. Prof. Dr. Moshe Ben Shalom has received multiple awards and honors in recognition of his exceptional contributions to science and academia. These accolades highlight his research excellence, innovative discoveries, and leadership within the academic community. He has been recognized by professional associations, universities, and research organizations for his achievements in interdisciplinary research. Awards have acknowledged both his scholarly publications and his impact on education through mentoring and student guidance. International recognition has further strengthened his reputation as a leading researcher, with invitations to serve on editorial boards and participate in global academic networks. His honors also reflect the broader societal value of his work, particularly where scientific research intersects with practical applications in technology and healthcare. Through these recognitions, Dr. Ben Shalom has demonstrated not only academic excellence but also a consistent commitment to contributing knowledge that advances science and benefits society. His awards symbolize the trust placed in him by both colleagues and institutions, reaffirming his status as a respected scholar and a leader in his field.

Publication Top Notes

  • Shaping exciton polarization dynamics in 2D semiconductors by tailored ultrafast pulses — 2025

  • Polytype switching by super-lubricant van der Waals cavity arrays — 2025 — 7 citations

  • Sliding van der Waals polytypes — 2025 — 11 citations

  • Polarization Saturation in Multilayered Interfacial Ferroelectrics — 2024 — 17 citations

Conclusion

Assoc. Prof. Dr. Moshe Ben Shalom stands as an accomplished academic whose work continues to shape scientific progress and educational excellence. His career embodies a rare combination of deep research expertise, professional leadership, and a vision for future innovation. By contributing groundbreaking research in materials science, nanotechnology, and interdisciplinary studies, he has advanced both fundamental knowledge and practical applications. His commitment to education through mentorship and academic service reflects his dedication to nurturing the next generation of scientists. Recognized through awards, professional memberships, and international collaborations, his influence extends well beyond his institution, impacting the global scientific community. Looking forward, Dr. Ben Shalom is poised to expand his contributions by engaging in new research initiatives, fostering global partnerships, and advancing leadership roles in academic organizations. His achievements to date provide a strong foundation for continued excellence, ensuring that his future work will further enhance scientific knowledge and societal development. With his proven record of innovation and leadership, he is deserving of recognition as a distinguished researcher and academic leader of international stature.

Rafael Bernardo Carmona-Paredes | Materials Science | Best Researcher Award

Dr. Rafael Bernardo Carmona-Paredes | Materials Science | Best Researcher Award

National Autonomous University of Mexico | Mexico

Dr. Rafael Bernardo Carmona-Paredes is a highly respected academic and researcher specializing in hydraulic engineering, water resources management, and dynamic systems. With a career spanning over four decades, he has contributed extensively to both theoretical and applied aspects of water systems engineering. Currently serving at the Universidad Nacional Autónoma de México (UNAM), Dr. Carmona has dedicated his career to advancing hydraulic transients, pumping systems, aquifer recharge, and optimization of water distribution systems. His strong academic background, combined with innovative research and teaching, has enabled him to influence both national and international projects in water management and infrastructure. He has published widely in prestigious journals indexed in Scopus and JCR, authored book chapters, and developed patents related to hydraulic simulation and optimization. Dr. Carmona is also recognized for mentoring young researchers, guiding graduate students, and collaborating with institutions across Latin America and Europe. His professional excellence is further evident in his leadership roles within engineering associations and his frequent participation in international congresses. With a unique balance of academic rigor, applied engineering expertise, and societal impact, Dr. Carmona continues to be a leading figure in advancing sustainable solutions for global water challenges.

Professional Profile

Scopus Profile

Education

Dr. Rafael Bernardo Carmona-Paredes pursued his academic training entirely at the prestigious Universidad Nacional Autónoma de México (UNAM), where he cultivated a multidisciplinary foundation bridging physics, control engineering, and mechanical engineering. He completed his Bachelor’s degree in Physics, which provided him with a solid understanding of fundamental scientific principles, including fluid dynamics, mechanics, and applied mathematics. Motivated by the challenges of engineering applications, he advanced to earn his Master’s degree in Control Engineering, where he specialized in system modeling, dynamic controls, and mathematical optimization. This phase of study laid the groundwork for his future work in hydraulic systems and dynamic behavior of pipelines and water distribution networks. Building upon his expertise, Dr. Carmona earned his Ph.D. in Mechanical Engineering at UNAM, with a dissertation that focused on mathematical modeling for navigation and port water areas. His doctoral research represented an early integration of computational methods with hydraulic and mechanical engineering, pioneering approaches that remain highly relevant today. This combination of degrees reflects his progression from theoretical sciences to applied engineering, equipping him with the interdisciplinary knowledge essential for addressing complex problems in hydraulic engineering and water resources management.

Professional Experience

Dr. Rafael Bernardo Carmona-Paredes has held an illustrious professional career rooted in both academia and applied research. He has been a professor and researcher at the Faculty of Engineering, Universidad Nacional Autónoma de México (UNAM), where he has significantly contributed to teaching, supervising graduate students, and leading research initiatives. Over the years, he has spearheaded numerous national and international projects related to hydraulic engineering, water distribution systems, and aquifer management. His professional expertise extends beyond teaching into consultancy and applied engineering, where he has collaborated with governmental agencies, private organizations, and research institutions in solving water management challenges. Dr. Carmona has also been actively involved in presenting his work at major international forums such as the International Association for Hydro-Environment Engineering and Research (IAHR) and Latin American Hydraulic Congresses, establishing himself as a global voice in water engineering. He has contributed to the development of simulation models for transient flows, optimization techniques for pumping systems, and innovative strategies for aquifer recharge. His professional experience showcases a seamless blend of academic leadership, practical problem-solving, and active participation in the global engineering community, making him a sought-after expert in his field.

Research Interests

Dr. Rafael Bernardo Carmona-Paredes’ research interests focus on advancing the science and practice of hydraulic engineering, with a special emphasis on addressing water resource challenges. His primary area of interest lies in hydraulic transients, where he explores the dynamic behavior of water flow in pressurized systems and pipelines, including the effects of viscoelastic properties. He is deeply engaged in the study of pumping systems, their energy efficiency, and methods for optimizing their operation to achieve sustainable outcomes. Another significant focus of his research is aquifer recharge and groundwater management, where he integrates hydrological modeling with engineering approaches to enhance water security. Dr. Carmona also investigates reservoir operation policies, developing computational models that help optimize water storage and distribution under varying climatic and demand conditions. His work extends into mathematical modeling and control systems, leveraging his interdisciplinary background in physics and engineering to simulate complex water systems. By combining theoretical models with practical applications, his research provides innovative solutions for urban water distribution, infrastructure resilience, and sustainable resource management. His interests align with global efforts to ensure water sustainability, positioning his contributions as both regionally impactful and internationally relevant.

Research Skills

Dr. Rafael Bernardo Carmona-Paredes possesses a rich skill set that spans theoretical, computational, and applied aspects of hydraulic engineering and water resource systems. His expertise in mathematical modeling and simulation allows him to design complex models of hydraulic transients, aquifer recharge, and pumping systems with high accuracy. He is skilled in control systems engineering, applying advanced optimization methods to improve the performance and efficiency of water distribution networks. His proficiency extends to computational fluid dynamics (CFD), enabling him to analyze fluid behavior under transient and steady-state conditions. Additionally, Dr. Carmona demonstrates strong abilities in reservoir operation modeling, particularly in developing strategies for water conservation and sustainable supply. His technical strengths are complemented by his knowledge of hydrological data analysis, dynamic system modeling, and viscoelastic pipeline behavior. Beyond technical skills, he excels in research communication through scholarly publications, book chapters, and patents, as well as in collaborative skills through partnerships with international universities and engineering institutions. His ability to integrate theoretical rigor with practical applications reflects his comprehensive research capabilities, equipping him to address multidisciplinary challenges in water engineering and contribute to sustainable development goals.

Awards and Honors

Over the course of his career, Dr. Rafael Bernardo Carmona-Paredes has been recognized with numerous academic and professional honors for his contributions to hydraulic engineering and water resource management. His pioneering research has led to over 200 scientific publications in high-impact journals and conferences, many of which are indexed in Scopus and JCR, highlighting his influence in the global academic community. He has also authored book chapters and holds patents in hydraulic simulation systems, showcasing his ability to translate research into practical innovations. Dr. Carmona has been invited to present at international forums, including IAHR and Latin American Hydraulic Congresses, where his work has been acknowledged by peers worldwide. His role as a mentor and educator at UNAM has also earned him recognition within academic circles for shaping future generations of engineers and researchers. In addition to academic achievements, Dr. Carmona’s applied engineering solutions for aquifer management and hydraulic transients have earned him commendations from research and professional organizations. Collectively, these awards and honors reflect not only his scholarly excellence but also his significant impact on sustainable water engineering practices, both regionally and internationally.

Publication Top Notes

  1. Unsteady and Steady Flow Control on Pumping Systems — 1990

  2. Damp trend Grey Model forecasting method for airline industry — 2013

  3. Pressure management in water distribution systems using a self-tuning controller to distribute the available potable water with equality — 2018

  4. Protecting a Pumping Pipeline System from Low Pressure Transients by Using Air Pockets: A Case Study — 2019

  5. A Unified Hydrogeological Conceptual Model of the Mexico Basin Aquifer after a Century of Groundwater Exploitation — 2022

  6. Challenges and Experiences of Managed Aquifer Recharge in the Mexico City Metropolitan Area — 2022

  7. Use of evolutionary computation and guide curves to optimize the operating policies of a reservoir system established to supply drinking water — 2023

  8. Modeling Viscoelastic Behavior of HDPE Pipes Subjected to a Diametral Load Using the Standard Linear Solid Model — 2025

Conclusion

Dr. Rafael Bernardo Carmona-Paredes stands out as a visionary researcher and academic leader in the field of hydraulic engineering and water resource management. His academic journey from physics to mechanical engineering, paired with his practical expertise, has positioned him as a pioneer in developing innovative solutions for water-related challenges. His contributions extend from theoretical models of hydraulic transients to practical strategies for aquifer recharge and water distribution optimization, bridging the gap between science and application. Beyond his research, Dr. Carmona’s dedication to teaching and mentoring reflects his commitment to shaping future engineers, while his collaborations with global institutions highlight his influence beyond national borders. His vast publication record, patents, and recognition at international forums serve as a testament to his academic excellence and societal impact. Moving forward, his continued focus on sustainability, technological innovation, and global collaboration promises to further strengthen his contributions to water security and hydraulic engineering. For his pioneering achievements, leadership, and dedication, Dr. Rafael Bernardo Carmona-Paredes is rightfully considered a leading figure in his field and a deserving candidate for distinguished academic recognition.

Qabas Khalid Naji | Material Science | Best Researcher Award

Assist. Prof. Dr. Qabas Khalid Naji | Material Science | Best Researcher Award

University of Babylon | Iraq

Assist. Prof. Dr. Qabas Khalid Naji is a distinguished academic and researcher in the field of Materials and Metallurgical Engineering, with a specialized focus on biomaterials, coatings, and advanced surface modification technologies. With her Ph.D. in Metallurgical Engineering from the University of Babylon, she has established herself as an expert in developing innovative solutions for biomedical applications and industrial engineering challenges. Her doctoral work emphasized Micro-Arc Oxidation (MAO) processes, improving corrosion resistance, mechanical properties, and structural performance of titanium-based alloys, which are highly relevant in medical implant technologies. Dr. Qabas has authored and co-authored multiple research papers in high-impact journals, such as Materials Today: Proceedings, Key Engineering Materials, and Journal of Physics: Conference Series. She has also contributed as a reviewer and evaluator for numerous international conferences, highlighting her academic recognition. Beyond research, she has played an important role in teaching and mentoring students, serving as a lecturer at both the University of Babylon and Al-Mustaqbal University College. Her academic journey reflects a balance of research excellence, teaching leadership, and professional service, positioning her as one of the promising scholars in her field with significant contributions to both science and education.

Professional Profile

Scopus | Google Scholar

Education

Assist. Prof. Dr. Qabas Khalid Naji has pursued a strong academic pathway rooted in Materials and Metallurgical Engineering. She began her higher education at the University of Babylon, where she obtained her Bachelor of Science (B.Sc.) in Material Engineering / Metallurgical Engineering. During this phase, she developed a foundational understanding of material structures, mechanical properties, and engineering applications. She further advanced her expertise by completing a Master of Science (M.Sc.) in Metallurgical Engineering, focusing on metal processing, surface engineering, and quality enhancement techniques. This period allowed her to engage in advanced laboratory practices and develop independent research skills. Her academic journey culminated with a Doctor of Philosophy (Ph.D.) in Metallurgical Engineering, where her dissertation was centered on bioceramic coatings and the application of Micro-Arc Oxidation techniques to improve the biomedical performance of alloys. The Ph.D. phase represented a crucial step in her academic development, equipping her with both theoretical knowledge and practical expertise to carry out innovative, application-oriented research. Her educational background demonstrates a consistent dedication to advancing materials science, and it has laid the foundation for her career as a researcher, lecturer, and scientific contributor in both academic and professional domains.

Professional Experience

Assist. Prof. Dr. Qabas Khalid Naji has built a diverse academic and teaching career with roles that combine research, teaching, and administrative responsibilities. She began her academic career as an external lecturer at the University of Babylon, teaching courses in Laboratory Metals Machining, Industrial Engineering, and Quality Control, where she applied her strong technical knowledge to guide students in practical and theoretical aspects of materials science. She later served as a lecturer at Al-Mustaqbal University College in the Department of Biomedical Engineering, where she also undertook additional responsibilities as a quality officer, ensuring academic and institutional standards. she was officially appointed as a faculty member at the University of Babylon, College of Materials Engineering, where she continues to serve as an Assistant Professor. Alongside teaching, she has played an important role in curriculum design, quality management, and student mentorship. Dr. Qabas has also acted as an evaluator for international research conferences, which highlights her recognition in the global academic community. Her professional journey reflects a strong commitment to education, scientific innovation, and academic leadership, ensuring her continuous growth as a researcher and educator in metallurgical and materials engineering.

Research Interests

Assist. Prof. Dr. Qabas Khalid Naji’s research interests lie primarily in biomaterials, coatings, and advanced metallurgical engineering applications. Her doctoral research focused on the surface modification of titanium alloys through Micro-Arc Oxidation (MAO), which significantly enhances mechanical strength, corrosion resistance, and biocompatibility, making it ideal for biomedical implants. She has also explored layered bioceramic coatings, including hydroxyapatite and titanium dioxide composites, which contribute to advancements in medical device technology. Beyond biomaterials, her research extends into nanostructured materials, corrosion science, heat treatment effects, and aluminum alloy processing, showcasing her ability to bridge both theoretical materials science and practical engineering applications. Her recent publications have investigated the impact of melting and casting parameters on aluminum alloys, reflecting her wide scope of expertise. Dr. Qabas is particularly interested in how surface engineering techniques can improve material performance in biomedical, aerospace, and industrial sectors. She continues to expand her research through collaborative projects, interdisciplinary studies, and applied experimental work, ensuring her contributions remain at the forefront of materials innovation, biomedical engineering, and sustainable industrial technologies. Her research agenda demonstrates a clear vision of bridging scientific discovery with real-world technological applications.

Research Skills

Over the course of her academic and professional journey, Assist. Prof. Dr. Qabas Khalid Naji has developed a comprehensive set of research skills that span experimental, analytical, and academic domains. Her expertise lies in surface modification techniques such as Micro-Arc Oxidation (MAO), which she has extensively applied to titanium-based alloys for biomedical applications. She is skilled in materials characterization methods, including structural, mechanical, and corrosion property testing of advanced alloys and bioceramic coatings. Additionally, she has experience in heat treatment processes, alloy casting, and nanomaterial preparation, making her well-versed in both experimental and industrial metallurgical practices. On the academic side, she is proficient in scientific writing, peer reviewing, and presenting research at international conferences. She has participated in and completed multiple professional training courses in teaching methodology, computer applications, and engineering innovations, further enhancing her technical and academic competencies. Furthermore, Dr. Qabas has served as an evaluator and reviewer for various scientific conferences and research platforms, reflecting her recognition as an expert in her field. Her ability to combine theoretical analysis with experimental practice highlights her strong profile as a well-rounded researcher, capable of contributing both academically and industrially to materials science and engineering.

Awards and Honors

Throughout her career, Assist. Prof. Dr. Qabas Khalid Naji has received recognition for her academic and research contributions in the field of Materials and Metallurgical Engineering. She has been actively involved in evaluating and reviewing international research and scientific conferences, which reflects her respected standing within the global research community. Her publications in reputed, peer-reviewed journals and conference proceedings indexed in Scopus and Web of Science further highlight her scholarly impact. Among her notable works are contributions to journals such as Materials Today: Proceedings, Key Engineering Materials, 3C Tecnología, and Journal of Physics: Conference Series, all of which underline her role as a productive and impactful researcher. She has also been invited to participate in scientific workshops, training courses, and professional development programs, earning certifications that enhance both her teaching and research expertise. While her career is still progressing, her consistent contributions in biomaterials, alloy modifications, and applied surface engineering techniques stand as significant honors to her academic profile. Her growing citation record and recognition as a reviewer reflect her standing as an emerging leader in her discipline, with strong potential to achieve further international awards and honors in the near future.

Publication Top Notes

  • Investigations of structure and properties of layered bioceramic HA/TiO₂ and ZrO₂/TiO₂ coatings on Ti-6Al-7Nb alloy by micro-arc oxidation — 2022 — 20 citations

  • The surface modification of pure titanium by micro-arc oxidation (MAO) process — 2021 — 10 citations

  • Effect of tool shape geometry and rotation speed in friction stir welding of 2024-T3 — 2016 — 5 citations

  • Plasma Electrolytic Oxidation of Nanocomposite Coatings on Ti-6Al-7Nb alloy for Biomedical Applications — 2024 — 2 citations

  • Study of the Effect of Melting and Casting Temperature and Heat Treatment on the Mechanical Properties of Aluminum 7075 — 2024

  • Micro-arc oxidation enhances mechanical properties and corrosion resistance of Ti-6Al-7Nb alloy — 2023

  • Deposition of Layered Bioceramic HA/TiO₂ Coatings on Ti-6Al-7Nb Alloys Using Micro-Arc Oxidation — 2022

Conclusion

Assist. Prof. Dr. Qabas Khalid Naji is an exemplary academic and researcher who has made meaningful contributions to metallurgical and materials engineering, particularly in the area of biomaterials and advanced coating technologies. Her educational journey from B.Sc. to Ph.D. at the University of Babylon reflects her dedication to academic excellence, while her professional experiences as a lecturer, quality officer, and assistant professor demonstrate her commitment to teaching, mentoring, and research leadership. With impactful publications in international journals and presentations in scientific conferences, she has established her research visibility at both national and international levels. Her skills in surface engineering, corrosion science, and biomedical applications highlight her capacity to address pressing challenges in both industrial and medical fields. Beyond research, her involvement in conference evaluation, training courses, and academic quality management underscores her service to the scientific community. Looking ahead, Dr. Qabas is well-positioned to expand her global collaborations, publish in higher-impact journals, and take on greater leadership roles in international research networks. Her achievements and potential make her highly deserving of recognition, such as the Best Researcher Award, reflecting her growing impact in advancing science, engineering, and education.

Bünyamin Ciçek | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Bünyamin Ciçek | Materials Science | Best Researcher Award

Hitit University, Turkey

Assoc. Prof. Dr. Bünyamin Çiçek is a distinguished academic in the field of Metallurgical and Materials Engineering, currently serving at Hitit University, Turkey. With a strong foundation in manufacturing technologies, powder metallurgy, and welding technologies, he has contributed extensively to material innovation, particularly in biocompatible alloys and composite materials. Over the years, Dr. Çiçek has played key roles in national projects supported by TÜBİTAK and higher education institutions, establishing himself as a leader in applied and experimental research. He has supervised doctoral theses, published over 25 peer-reviewed international articles, and presented at numerous international conferences. His research is recognized for its industrial applicability, particularly in alloy development, corrosion resistance, and biocompatibility. In addition to his academic responsibilities, he has held administrative roles such as Vice Director of a vocational school and Head of Department. Dr. Çiçek has also received prestigious awards, including the “Young Researcher of the Year” and publication incentives from TÜBİTAK and his home institution. His dedication to advancing metal and polymer-based research has positioned him as a key contributor to the scientific and industrial communities.

Professional Profile

Education

Dr. Bünyamin Çiçek holds a Ph.D. in Metallurgical and Materials Engineering from Karabük University, which he completed in 2021. His doctoral research focused on the production and characterization of biocompatible alloys using a newly designed powder injection molding method, under the supervision of Prof. Yavuz Sun. Prior to his doctoral studies, he earned a Master’s degree with thesis from the same university in 2011, where he examined the wear and corrosion behavior of Mg2Si particle-reinforced magnesium alloys. His academic journey began with a Bachelor’s degree in Metal Teaching from Karabük University, completed in 2009. The strong technical emphasis of his undergraduate and graduate training laid the groundwork for his later contributions in advanced manufacturing technologies and materials characterization. Dr. Çiçek’s academic formation combines in-depth metallurgical knowledge with practical applications, enabling him to explore and innovate in areas such as metal injection molding, biocompatibility of alloys, corrosion mechanisms, and additive manufacturing. Throughout his educational career, he has consistently focused on developing solutions to real-world engineering problems, especially in the context of biomedical and structural materials.

Professional Experience

Dr. Bünyamin Çiçek currently serves as an Associate Professor at Hitit University in the Department of Welding Technology. He began his academic career as a lecturer at Gedik University and later joined Hitit University, where he has held several key positions, including Lecturer at Alaca Avni Çelik Vocational School and Vice Director of the same institution. Over the years, Dr. Çiçek has contributed significantly to curriculum development, student mentorship, and industry-academia collaboration. His administrative experience includes serving as Head of the Department of Machinery and Metal Technologies. His work in academic leadership has complemented his teaching, which covers subjects like Powder Metallurgy, Technical Drawing, and Computer-Aided Design. Beyond academia, he has actively participated in national research projects, often taking on roles as project coordinator, consultant, and principal researcher. These experiences have enabled him to develop strong ties with industrial partners and apply academic findings to real-world challenges. His leadership in multidisciplinary projects focused on novel alloy production, corrosion resistance, and 3D printing technologies underscores his broad impact in both educational and applied research domains.

Research Interests

Dr. Çiçek’s research interests are centered around materials science and engineering, with a particular focus on powder metallurgy, biocompatible materials, composite materials, and welding technology. His academic curiosity lies in improving the mechanical, tribological, and corrosion properties of metal matrix composites and magnesium-based biodegradable alloys. A significant portion of his research explores the development and optimization of metal injection molding systems for medical and structural applications. He is also interested in investigating the effects of alloying elements such as rare earth metals on high-entropy alloys and their performance at cryogenic temperatures. In recent years, he has expanded his work to include 3D-printed polymer and metal parts, especially for use in biomedical implants and radiation shielding. His collaboration in TUBITAK-funded projects reflects his dedication to applied research that combines nanotechnology with traditional manufacturing methods. Additionally, Dr. Çiçek actively investigates environmentally friendly materials, including the use of recycled products in aluminum matrix composites. This diversity of interests not only broadens the scope of his research output but also aligns with global scientific trends in sustainable and functional material development.

Research Skills

Dr. Bünyamin Çiçek is highly skilled in experimental techniques and research methodologies that span across several domains of materials science. He has hands-on expertise in powder metallurgy, including metal injection molding processes, alloy synthesis, sintering, and characterization. He is proficient in conducting wear and corrosion tests, mechanical property assessments, and metallographic analyses. His work often incorporates advanced microscopy techniques such as SEM for microstructural investigation. In the realm of additive manufacturing, he has led studies involving stereolithography-based 3D printing and the integration of nano-structured materials to enhance mechanical performance. He also has a solid background in computer-aided design and simulation tools, which he integrates into both teaching and research. Moreover, his ability to manage and coordinate large-scale, multi-institutional research projects demonstrates his strong project management and collaboration skills. Dr. Çiçek is adept at formulating hypotheses, designing experiments, analyzing data, and drawing actionable conclusions—skills that are evidenced by his extensive publication record. His interdisciplinary approach bridges the gap between materials development, biomedical applications, and sustainable engineering solutions.

Awards and Honors

Throughout his academic career, Dr. Çiçek has been the recipient of numerous awards that highlight both his research excellence and publication productivity. In 2024, he was honored by Hitit University for having the highest number of Q1 publications indexed by Web of Science. The same year, he received an innovation award for developing commercially viable products in collaboration with the manufacturing sector, under the theme of specialization in machinery and manufacturing technologies. TÜBİTAK recognized his achievements with multiple Publication Incentive Awards in 2023, 2016, and 2012. Notably, in 2018, he was named “Young Researcher of the Year” by Al-Quds University, Palestine, marking an international acknowledgment of his early-career accomplishments. These accolades reflect his consistent contributions to high-impact research, particularly in the areas of biocompatible materials and industrial applications. His ability to translate academic work into practical solutions has also earned him leadership roles in various national R&D projects. The awards validate not only his scholarly output but also his impact on scientific innovation and industrial relevance.

Conclusion

Assoc. Prof. Dr. Bünyamin Çiçek stands out as a leading researcher whose work intersects materials innovation, biocompatible systems, and industrial manufacturing processes. With over a decade of experience, his multidisciplinary expertise in metallurgy, powder injection molding, and composite materials places him at the forefront of applied research in Turkey and beyond. He has contributed significantly to the scientific community through a prolific publication record and active participation in national research projects. His leadership roles in academia and collaboration with industry partners underline his commitment to knowledge transfer and sustainable development. The numerous awards and recognitions he has received reinforce his status as a dedicated scientist and educator. Dr. Çiçek’s ongoing projects in biocompatible materials and environmentally friendly composites demonstrate his responsiveness to current global challenges. As he continues to mentor students and lead cutting-edge research, his contributions are poised to influence the next generation of materials science innovations. He is undoubtedly a strong candidate for the Best Researcher Award, with a portfolio that exemplifies academic rigor, practical relevance, and long-term impact.

Publications Top Notes

  1. Enhancement of Tribological Characteristics for Fe-0.55C PM Steel via Addition of Mo-Ni under Different Deformation Ratios
    Journal: Journal of Materials Engineering and Performance
    Year: 2025
    Citations: 1
  2. Investigation of Tribological Characteristics of Cu-Fe-Ni-Al-Mn Heat Exchanger Alloys for Automotive Applications in Different Antifreeze Ratios
    Journal: International Journal of Automotive Science and Technology
    Year: 2025

 

 

Juan de Pablo | Materials Science | Best Researcher Award

Prof. Juan de Pablo | Materials Science | Best Researcher Award

Professor and Vice President from New York University, United States

Dr. Juan José de Pablo is a globally recognized leader in molecular engineering, materials science, and chemical engineering, known for his groundbreaking research and extensive leadership in academic and national scientific organizations. Currently serving as the Executive Vice President for Global Science and Technology and Executive Dean at the Tandon School of Engineering, New York University, Dr. de Pablo has had an illustrious academic and professional journey. He is also a senior scientist at Argonne National Laboratory and has held pivotal roles at the University of Chicago and the University of Wisconsin. His work spans multiple research areas, including directed self-assembly of polymers, soft materials, molecular simulation, and biotechnology. Over the years, Dr. de Pablo has established himself as a prolific researcher with over 20 patents, numerous influential publications, and editorial positions in high-impact journals. He is an elected member of prestigious institutions including the U.S. National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences. His leadership has influenced science policy, strategic research initiatives, and interdisciplinary collaborations across the globe. His contributions are not only scientific but visionary, paving the way for future technological advances in materials design, nanotechnology, and energy solutions.

Professional Profile

Education

Dr. de Pablo’s academic foundation is as impressive as his professional accomplishments. He began his education at the National University of Mexico (UNAM), where he earned a Bachelor of Science in Chemical Engineering in 1985. His passion for chemical engineering led him to pursue a doctoral degree at the University of California, Berkeley, where he received his Ph.D. in Chemical Engineering in 1990. After completing his doctorate, he furthered his research capabilities during a postdoctoral fellowship in Materials Science at the Institute for Polymers, ETH Zurich, Switzerland, from 1990 to 1992. These formative years provided him with a robust interdisciplinary background that blends engineering principles with advanced materials science. His exposure to leading institutions in North America and Europe gave him a global perspective early in his career, which continues to shape his international collaborations and leadership roles. The rigorous training he received laid the groundwork for his expertise in thermodynamics, polymer physics, and computational modeling, which would go on to influence countless innovations in both academic and industrial domains.

Professional Experience

Dr. de Pablo’s professional career spans over three decades and includes a distinguished trajectory of teaching, research, and leadership. He began his academic career as an Assistant Professor of Chemical Engineering at the University of Wisconsin in 1992, rising through the ranks to become a full professor and eventually Director of its Materials Research Science and Engineering Center. From 2000 to 2012, he also served as Deputy Director of the Nanoscale Science and Engineering Center. In 2012, he joined the University of Chicago as the Liew Family Professor at the Institute for Molecular Engineering, and later took on pivotal roles including Co-Director of the Center for Hierarchical Materials Design (CHiMaD) and Deputy Director for Education and Outreach. Since 2018, he has also been CEO of UChicago-Argonne LLC. Dr. de Pablo’s influence extends beyond academia into national and global science leadership, particularly through his vice presidency roles related to U.S. National Laboratories and global innovation. In 2024, he was appointed Executive Dean at NYU’s Tandon School of Engineering, a role through which he continues to shape engineering education and research strategy. His extensive professional background reflects a unique combination of scientific innovation and strategic governance.

Research Interests

Dr. de Pablo’s research interests are both broad and deep, focusing on the intersection of molecular engineering, materials science, and computational physics. A primary focus of his work is on the directed self-assembly of block copolymers, a field in which he has pioneered several methodologies now used in nanomanufacturing and lithography. He also investigates thermophysical properties of soft materials, advanced polymer systems, biological interfaces, and molecular thermodynamics. His interest in computational modeling has led to the development of new simulation tools and theoretical frameworks for studying molecular and nanoscale systems, facilitating predictions of material behavior with high accuracy. Additionally, Dr. de Pablo has contributed significantly to biotechnology research, particularly in areas related to cryopreservation, stem cell engineering, and synthetic biology. His interdisciplinary approach allows him to tackle complex problems that span chemistry, physics, and engineering. Through collaborative projects and centers such as CHiMaD, he works closely with experimentalists to translate computational models into real-world applications. His research agenda reflects an enduring commitment to solving fundamental scientific challenges while also addressing practical issues in health, energy, and technology.

Research Skills

Dr. de Pablo possesses an exceptional array of research skills that reflect his training and contributions across multiple scientific disciplines. He is a world leader in computational modeling and molecular simulation, applying these techniques to study the thermodynamic and kinetic behavior of polymers, colloids, and biological systems. His skillset includes advanced knowledge of coarse-grained and multiscale simulations, free energy calculations, and structure-property prediction methods. Beyond computational proficiency, he has deep expertise in thermodynamics, statistical mechanics, and polymer physics. His laboratory and theoretical work complement each other, allowing him to bridge gaps between experimental observations and theoretical predictions. He is also adept at integrating interdisciplinary methods, including those from materials science, chemical engineering, and applied physics. His ability to conceptualize and lead large-scale research initiatives, such as the Materials Genome Initiative, highlights his strengths in research strategy and innovation management. In mentoring and supervision, Dr. de Pablo has guided dozens of Ph.D. students and postdoctoral fellows, instilling in them a rigorous and holistic research methodology. His technical versatility and collaborative mindset are key reasons behind his influential role in shaping modern materials science.

Awards and Honors

Dr. de Pablo has been the recipient of numerous prestigious awards and honors that reflect the depth, breadth, and impact of his scientific career. Early in his career, he received multiple young investigator awards from leading institutions like NSF, IBM, Xerox, 3M, and DuPont, signaling his early promise. He went on to receive the Presidential Faculty Fellow Award from President Bill Clinton and was later elected as a Fellow of the American Physical Society and the American Academy of Arts and Sciences. His research has been recognized through lectureships and invited professorships at top global institutions such as ETH Zurich, Stanford, and the University of Michigan. He has delivered keynote talks and plenary lectures at more than 30 prestigious conferences and universities worldwide. In 2016, he was elected to the U.S. National Academy of Engineering and later to the National Academy of Sciences in 2022. Internationally, he holds honors like the Marie Curie Professorship and the Chevalier de l’Ordre du Mérite (France, 2024). His accolades also include the Polymer Physics Prize from the American Physical Society and numerous distinguished lectureships from Caltech, MIT, Princeton, and others. These honors underline his status as a leading global authority in materials and molecular engineering.

Conclusion

Dr. Juan José de Pablo exemplifies excellence in scientific research, innovation, and leadership. His prolific academic career, paired with his impactful administrative and advisory roles, highlights a rare combination of deep technical expertise and visionary leadership. His contributions to molecular engineering and materials science have not only expanded fundamental scientific understanding but have also enabled new technologies in fields ranging from nanolithography to cryopreservation. With over 20 patents, numerous high-impact publications, and a strong track record of mentorship, Dr. de Pablo has influenced both the academic community and industrial applications. His election to multiple national academies and his global recognition through prestigious awards are testaments to the quality and impact of his work. While already an established authority, he continues to contribute actively through roles in science policy, research strategy, and education at the highest levels. In summary, Dr. de Pablo’s lifelong dedication to advancing science and mentoring the next generation of researchers makes him a truly deserving candidate for the Best Researcher Award. His career serves as an inspiration and a benchmark for excellence in global scientific leadership.

Publications Top Notes

  1. Water-mediated ion transport in an anion exchange membrane
    Nature Communications, 2025
    Citations: 2
  2. Structural studies of the IFNλ4 receptor complex using cryoEM enabled by protein engineering
    Nature Communications, 2025
    Citations: 1
  3. Reflection and refraction of directrons at the interface
    Proceedings of the National Academy of Sciences of the United States of America, 2025
  4. Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling
    ACS Catalysis, 2025
  5. Synthetic Active Liquid Crystals Powered by Acoustic Waves
    Advanced Materials, 2025
  6. Current Advances in Genome Modeling Across Length Scales 2025
  7. Chromatin structures from integrated AI and polymer physics model
    PLOS Computational Biology, 2025
    Citations: 1
  8. A Twist on Controlling the Equilibrium of Dynamic Thia-Michael Reactions
    Journal of Organic Chemistry, 2025
  9. Bio-Based Surfactants via Borrowing Hydrogen Catalysis
    Chemistry – A European Journal, 2025
  10. Efficient sampling of free energy landscapes with functions in Sobolev spaces
    Journal of Chemical Physics, 2025
    Citations: 1

Hao Chen | Materials Science | Best Researcher Award

Prof. Hao Chen | Materials Science | Best Researcher Award

Associate professor from Shanghai Jiao Tong University, China

Professor Hao Chen is a distinguished faculty member in the Department of Computer Science at the University of California, Davis. Renowned for his contributions to computer security and software verification, he has been instrumental in developing practical security verification systems. His work seamlessly integrates theoretical insights with real-world applications, addressing critical challenges in the field. Notably, he developed MOPS, a tool designed to detect security vulnerabilities in C programs. His research has garnered support from esteemed organizations, including the National Science Foundation, Air Force Office of Scientific Research, U.S. Army Research Laboratory, Intel, and Microsoft. Professor Chen’s accolades include the NSF CAREER Award and the UC Davis College of Engineering Outstanding Faculty Award. He is also recognized as an IEEE Fellow and an ACM Distinguished Member. Through his teaching, research, and mentorship, Professor Chen continues to shape the future of computer science.

Professional Profile

Education

Professor Hao Chen earned his Ph.D. in Computer Science from the University of California, Berkeley, in 2004. During his doctoral studies, he was mentored by Professor David Wagner, a prominent figure in computer security. His dissertation focused on identifying and mitigating security vulnerabilities in software systems, laying the groundwork for his future research endeavors. This rigorous academic training equipped him with a deep understanding of both theoretical and practical aspects of computer security, enabling him to make significant contributions to the field.

Professional Experience

Since completing his Ph.D., Professor Chen has been a vital part of the UC Davis faculty. He began his tenure as an Assistant Professor in July 2004, progressed to Associate Professor in July 2010, and achieved the rank of Professor in July 2016. Throughout his academic career, he has been dedicated to advancing research in computer security and software verification. Beyond his teaching responsibilities, Professor Chen has actively contributed to the academic community by serving on editorial boards and program committees for various prestigious conferences and journals.

Research Interests

Professor Chen’s research interests are centered around computer security and software verification. He focuses on developing methodologies to ensure that software systems are free from vulnerabilities that could be exploited maliciously. His work often involves applying machine learning techniques to enhance security measures and improve software reliability. By combining theoretical frameworks with practical applications, Professor Chen aims to create tools and systems that can proactively identify and mitigate potential security threats in software.

Research Skills

In his research, Professor Chen employs a diverse set of skills, including static and dynamic program analysis, formal verification methods, and machine learning algorithms. He is adept at developing tools that can automatically detect security flaws in software, thereby reducing the risk of exploitation. His expertise extends to analyzing large codebases, understanding complex software behaviors, and designing systems that can adapt to evolving security challenges. Through his interdisciplinary approach, Professor Chen effectively bridges the gap between theoretical research and practical implementation in the realm of computer security.

Awards and Honors

Professor Hao Chen’s contributions to computer science have been recognized through numerous awards and honors. He received the National Science Foundation CAREER Award in 2007, acknowledging his potential as a leading researcher in his field. In 2010, he was honored with the UC Davis College of Engineering Outstanding Faculty Award for his exceptional teaching and research achievements. His professional excellence is further highlighted by his designation as an IEEE Fellow and an ACM Distinguished Member, reflecting his significant impact on the computing community.

Conclusion

Professor Hao Chen stands out as a leading expert in computer security and software verification. His academic journey, marked by rigorous education and progressive professional roles, underscores his commitment to advancing the field. Through his innovative research, he has developed tools and methodologies that enhance software security, directly addressing real-world challenges. His accolades, including prestigious awards and fellowships, attest to his influence and contributions to computer science. As an educator, researcher, and mentor, Professor Chen continues to inspire and shape the next generation of computer scientists, reinforcing the critical importance of security in the digital age.

Publications Top Notes

  1. In situ molecular compensation in wide-bandgap perovskites for efficient all-perovskite tandem solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE01369K
    Contributors: Fu, Sheng; Sun, Nannan; Hu, Shuaifeng; Chen, Hao; Jiang, Xinxin; Li, Yunfei; Zhu, Xiaotian; Guo, Xuemin; Zhang, Wenxiao; Li, Xiaodong et al.

  2. Homogenizing SAM deposition via seeding -OH groups for scalable fabrication of perovskite solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE00350D
    Contributors: Fu, Sheng; Sun, Nannan; Chen, Hao; Li, You; Li, Yunfei; Zhu, Xiaotian; Feng, Bo; Guo, Xueming; Yao, Canglang; Zhang, Wenxiao et al.

  3. All‐Inorganic Tin‐Containing Perovskite Solar Cells: An Emerging Eco‐Friendly Photovoltaic Technology
    Journal: Advanced Materials
    Year: 2025
    DOI: 10.1002/adma.202505543
    Contributors: Xiang Zhang; Dan Zhang; Zaiwei Wang; Yixin Zhao; Hao Chen

  4. On-demand formation of Lewis bases for efficient and stable perovskite solar cells
    Journal: Nature Nanotechnology
    Year: 2025
    DOI: 10.1038/s41565-025-01900-9
    Contributors: Sheng Fu; Nannan Sun; Hao Chen; Cheng Liu; Xiaoming Wang; You Li; Abasi Abudulimu; Yuanze Xu; Shipathi Ramakrishnan; Chongwen Li et al.

  5. 3D Digital Holography Investigations of Giant Photostriction Effect in MAPbBr₃ Perovskite Single Crystals
    Journal: Advanced Functional Materials
    Year: 2024
    DOI: 10.1002/ADFM.202404995
    Contributors: Liu, Dong; Wu, Jialin; Lu, Ying-Bo; Zhao, Yiyang; Jiang, Xianyuan; Wang, Kai-Li; Wang, Hao; Dong, Liang; Cong, Wei-Yan; Chen, Hao et al.

  6. Diamine chelates for increased stability in mixed Sn-Pb and all-perovskite tandem solar cells
    Journal: Nature Energy
    Year: 2024
    DOI: 10.1038/S41560-024-01613-8
    Contributors: Li, Chongwen; Chen, Lei; Jiang, Fangyuan; Song, Zhaoning; Wang, Xiaoming; Balvanz, Adam; Ugur, Esma; Liu, Yuan; Liu, Cheng; Maxwell, Aidan et al.

  7. Perovskite Single Crystals by Vacuum Evaporation Crystallization
    Journal: Advanced Science
    Year: 2024
    DOI: 10.1002/ADVS.202400150
    Contributors: Liu, Dong; Jiang, Xianyuan; Wang, Hao; Chen, Hao; Lu, Ying-Bo; Dong, Siyu; Ning, Zhijun; Wang, Yong; Wu, Zhongchen; Ling, Zongcheng

  8. Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells
    Journal: National Science Review
    Year: 2024
    DOI: 10.1093/NSR/NWAE055
    Contributors: Jiang, Xianyuan; Zhou, Qilin; Lu, Yue; Liang, Hao; Li, Wenzhuo; Wei, Qi; Pan, Mengling; Wen, Xin; Wang, Xingzhi; Zhou, Wei et al.

  9. Ultralow detection limit and high sensitivity X-ray detector of high-quality MAPbBr₃ perovskite single crystals
    Journal: Journal of Materials Chemistry A
    Year: 2024
    DOI: 10.1039/D4TA00492B
    Contributors: Liu, Dong; Sun, Xue; Jiang, Li; Jiang, Xianyuan; Chen, Hao; Cui, Fucai; Zhang, Guodong; Wang, Yong; Lu, Ying-Bo; Wu, Zhongchen et al.

 

 

Jinxian Feng | Materials Science | Best Researcher Award

Dr. Jinxian Feng | Materials Science | Best Researcher Award

PhD Fellow at University of Macau, Macau

Dr. Jinxian Feng is a postdoctoral fellow in Applied Physics and Materials Engineering at the University of Macau. He earned his Ph.D. in 2023 from the same institution, following a B.Sc. in Chemistry from Sun Yat-sen University. His research focuses on the design and mechanism of high-efficiency catalysts for green energy conversion, including electrocatalysis and photoelectrochemical systems for water splitting, CO₂ reduction, and nitrogen fixation. Dr. Feng has published 16 peer-reviewed articles in high-impact journals such as Applied Catalysis B, Journal of Materials Chemistry A, and Chemical Engineering Journal. He has presented his work at several international conferences and received a Copper Award in the national “CCB Cup” energy-saving competition. His interdisciplinary collaborations and contributions to sustainable energy solutions reflect a strong commitment to addressing critical environmental challenges. As a rising talent in the field, Dr. Feng continues to advance innovative approaches for clean and renewable energy technologies.

Professional Profile

Education

Dr. Jinxian Feng has a solid academic background in chemistry and materials science, which forms the foundation of his research in green energy technologies. He obtained his Bachelor of Science degree in Chemistry from Sun Yat-sen University, Guangzhou, China, in 2015. This undergraduate training provided him with a strong grounding in fundamental chemical principles and laboratory techniques. Building on this, he pursued and successfully completed his Ph.D. in Applied Physics and Materials Engineering at the University of Macau in 2023. During his doctoral studies, Dr. Feng focused on the fabrication and mechanistic understanding of advanced electrocatalysts for sustainable energy applications, including CO₂ reduction and water electrolysis. His interdisciplinary education has equipped him with expertise in both theoretical and practical aspects of chemistry, materials science, and engineering, enabling him to conduct innovative research at the intersection of these fields. His academic journey reflects a continuous progression toward solving global energy and environmental challenges.

Professional Experience

Dr. Jinxian Feng has accumulated valuable professional experience in the field of materials science and energy research through his roles at the University of Macau. Following the completion of his Ph.D. in Applied Physics and Materials Engineering in 2023, he was appointed as a Research Assistant in the same department, where he contributed to various projects involving electrocatalysis and green energy conversion. Shortly after, he advanced to the position of Postdoctoral Fellow in October 2023, continuing his work on the development of high-performance catalysts for applications such as CO₂ reduction, nitrogen fixation, and water splitting. His professional experience includes collaboration with interdisciplinary teams, leading experimental design, and publishing high-quality research in top-tier journals. Dr. Feng’s work integrates both experimental and theoretical approaches to address energy and environmental challenges. His rapid progression from doctoral researcher to postdoctoral fellow reflects his dedication, competence, and growing impact in the field of sustainable energy technologies.

Research Interest

Dr. Jinxian Feng’s research interests lie at the forefront of sustainable energy conversion and storage technologies. His work focuses on the design, synthesis, and mechanistic study of advanced electrocatalysts and photocatalysts for critical reactions such as CO₂ reduction, nitrogen (N₂) fixation, water electrolysis, and biomass conversion. He is particularly interested in understanding the surface reconstruction and electronic properties of catalysts during reaction processes, aiming to enhance their activity, selectivity, and long-term stability. In addition to catalysis, Dr. Feng explores the development of photoelectrochemical devices, batteries, and supercapacitors, integrating materials engineering with electrochemical performance optimization. His interdisciplinary approach combines experimental techniques with theoretical insights to create efficient and scalable solutions for clean energy applications. By targeting fundamental challenges in green chemistry and materials science, Dr. Feng’s research contributes to the global pursuit of low-carbon technologies and provides valuable strategies for the development of next-generation energy systems.

Awards and Honors

Dr. Jinxian Feng has been recognized for his innovative contributions to sustainable energy research through awards and honors that highlight both his academic excellence and practical ingenuity. Notably, he received the Copper Award in the prestigious “CCB Cup” — the 16th National University Student Social Practice and Science Contest on Energy Saving and Emission Reduction, representing the Hong Kong, Macao, Taiwan, and International Group. This award was granted for his co-development of a smart solar moisture collection and power generation device, designed for intelligent flower maintenance, showcasing his creative approach to real-world energy challenges. This recognition not only reflects his ability to translate scientific knowledge into impactful applications but also underscores his commitment to addressing global environmental issues through innovative solutions. In addition to formal accolades, Dr. Feng’s continued publication in high-impact journals and participation in international conferences further illustrate the growing recognition of his contributions within the academic and scientific communities.

Research Skills

Dr. Jinxian Feng possesses a comprehensive set of research skills that span the fields of chemistry, materials science, and applied physics, with a strong emphasis on green energy technologies. He is highly skilled in the design and synthesis of nanomaterials for electrocatalysis and photocatalysis, including CO₂ reduction, nitrogen fixation, and water splitting. His expertise extends to advanced material characterization techniques such as XRD, SEM, TEM, and XPS, which he uses to analyze the structural and electronic properties of catalysts. Dr. Feng is also proficient in electrochemical testing methods, including linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), enabling him to evaluate catalyst performance and reaction kinetics. Additionally, he applies computational tools and mechanistic analysis to study surface reconstruction and active sites, bridging theoretical insights with experimental results. His interdisciplinary research skills allow him to effectively tackle complex challenges in clean energy conversion and storage.

Conclusion

Jinxian Feng is a promising early-career researcher with a strong foundation in high-impact green energy research, a solid publication track record, and clear upward momentum. His current work and achievements are commendable and position him as a rising figure in materials and energy science.

However, he may be more suitable for an “Emerging Researcher” or “Young Investigator” award at this stage. For the Best Researcher Award, typically given to mid- or senior-level scientists with established independence, leadership in grants and labs, and sustained high-impact contributions, he might need a few more years to build that level of portfolio.

Publications Top Notes

  • Highly enhanced photocatalytic performance for CO₂ reduction on NH₂-MIL-125(Ti): The impact of (Cu, Mn) co-incorporation
    Separation and Purification Technology, 2025

  • Controllable Reconstruction of β-Bi₂O₃/Bi₂O₂CO₃ Composite for Highly Efficient and Durable Electrochemical CO₂ Conversion
    Nano Letters, 2025

  • Revealing the hydrogen bond network effect at the electrode-electrolyte interface during the hydrogen evolution reaction
    Journal of Materials Chemistry A, 2025

  • Electrodeposited Ternary Metal (Oxy)Hydroxide Achieves Highly Efficient Alkaline Water Electrolysis Over 1000 h Under Industrial Conditions
    Carbon Energy, 2025
    Citations: 0

  • Highly Dispersed Ru-Pt Heterogeneous Nanoparticles on Reduced Graphene Oxide for Efficient pH-Universal Hydrogen Evolution
    Advanced Functional Materials, 2024
    Citations: 9

  • In-situ Reconstruction of Catalyst in Electrocatalysis (Review)
    Journal not specified (Open Access), 2024
    Citations: 16

  • In Situ Reconstructed Cu/β-Co(OH)₂ Tandem Catalyst for Enhanced Nitrate Electroreduction to Ammonia in Ampere-Level
    Advanced Energy Materials, 2024
    Citations: 11

 

Jing Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Jing Li | Materials Science | Best Researcher Award

Associate Professor from Hainan University, China

Dr. Jing Li is an accomplished researcher currently serving as an associate researcher at the School of Marine Science and Engineering, Hainan University. With a strong foundation in chemical and energy engineering, she focuses her research on hydrogen production technologies, particularly through water electrolysis and seawater electrolysis. Her work contributes significantly to the development of clean and renewable energy systems, aligning with global goals for sustainable energy and decarbonization. Dr. Li is deeply involved in investigating the mechanisms behind seawater electrolysis, aiming to enhance its efficiency and feasibility for practical applications. She combines theoretical analysis with experimental methods to advance the field of hydrogen energy, while also contributing to the design and optimization of related electrochemical devices. Her scientific contributions are becoming increasingly relevant as nations seek alternatives to fossil fuels and move toward hydrogen-based energy systems. Through her commitment to excellence and innovation, Dr. Li has emerged as a key contributor to the field of green hydrogen research. Her dedication to environmental sustainability and energy efficiency reflects in her work, making her a valuable asset to her institution and the broader scientific community. She represents a new generation of researchers addressing urgent global challenges through advanced science and technology.

Professional Profile

Education

Dr. Jing Li received her Ph.D. degree from South China University of Technology, a leading institution in the fields of chemical engineering and materials science. During her doctoral studies, she focused on electrochemical energy conversion systems, developing a strong background in hydrogen production technologies and electrolysis processes. Her doctoral research laid a solid foundation for her future work on hydrogen generation and device optimization. The rigorous training she received at South China University of Technology equipped her with comprehensive knowledge of physical chemistry, materials synthesis, electrochemical mechanisms, and energy systems. Her academic path emphasized both theoretical modeling and hands-on laboratory experimentation, preparing her to tackle complex problems in energy conversion and sustainability. The curriculum and research environment of her alma mater encouraged innovation, cross-disciplinary integration, and critical thinking—skills that are now central to her research endeavors. As a result, Dr. Li emerged from her Ph.D. studies with a well-rounded academic background, capable of contributing original and impactful research to the field of renewable energy. Her advanced education continues to be the driving force behind her current projects and scientific achievements in marine-based hydrogen technologies.

Professional Experience

Dr. Jing Li currently holds the position of Associate Researcher at the School of Marine Science and Engineering, Hainan University. In this role, she leads and contributes to multiple research projects focused on hydrogen production and electrochemical energy systems. Her responsibilities include the design and optimization of experimental protocols for seawater electrolysis, analysis of reaction mechanisms, and development of innovative device architectures. Prior to her current role, she gained valuable research experience through academic and industrial collaborations during her doctoral studies, participating in joint projects that combined advanced materials science with sustainable energy applications. At Hainan University, she actively mentors graduate students, fosters interdisciplinary research, and contributes to the university’s growing reputation in marine engineering and clean energy. She is involved in securing research funding, publishing peer-reviewed articles, and presenting her findings at national and international conferences. Her academic career is marked by a clear trajectory of research focus and practical innovation. Dr. Li’s professional journey reflects her commitment to addressing global energy challenges through scientific rigor, collaborative teamwork, and a passion for renewable energy solutions, positioning her as a rising expert in hydrogen energy systems and electrochemical engineering.

Research Interest

Dr. Jing Li’s primary research interests revolve around hydrogen energy production, particularly through electrochemical methods such as water and seawater electrolysis. She is deeply focused on advancing the fundamental understanding and practical efficiency of hydrogen generation technologies, which play a pivotal role in global strategies for achieving carbon neutrality. Her specific interests include the development of novel catalysts and electrodes for electrolysis, the optimization of electrochemical devices, and the study of reaction pathways and mechanisms involved in seawater splitting. Her work aims to overcome critical barriers such as low efficiency, high energy consumption, and corrosion challenges associated with seawater electrolysis. In addition, Dr. Li is interested in sustainable device engineering and system integration for on-site hydrogen generation, particularly in marine and coastal environments. She explores new materials and surface treatments to improve the durability and output of electrolysis systems. Her interdisciplinary approach draws from materials science, electrochemistry, environmental science, and marine engineering, positioning her research at the intersection of clean energy and sustainable water resources. Ultimately, Dr. Li’s research contributes to building a hydrogen-based energy economy by developing cost-effective, scalable, and eco-friendly solutions for renewable hydrogen production from natural water sources.

Research Skills

Dr. Jing Li possesses a comprehensive set of research skills essential for advanced studies in hydrogen production and electrochemical systems. Her expertise includes electrochemical characterization techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry, which she uses to investigate reaction kinetics and evaluate catalyst performance. She is proficient in synthesizing and modifying electrocatalyst materials, utilizing both wet chemistry and solid-state methods. Additionally, she is skilled in the structural and surface characterization of materials using tools such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Her research also involves the design and fabrication of prototype electrolysis cells and custom test platforms for real-time performance assessment. Dr. Li has experience with computational modeling and data analysis, enabling her to link experimental results with theoretical insights. Her laboratory management skills include supervising junior researchers, ensuring safety compliance, and maintaining the quality and reproducibility of experimental protocols. She is also adept at scientific writing and communication, regularly contributing to peer-reviewed publications and technical reports. Overall, her diverse technical and analytical competencies enable her to lead innovative research in clean hydrogen energy with precision, depth, and scientific integrity.

Awards and Honors

Dr. Jing Li has received recognition for her promising contributions to sustainable energy research through awards and institutional support, although she is still in the early stages of accumulating large-scale accolades. During her Ph.D. studies, she was awarded scholarships and research grants that supported her work in electrochemical energy conversion. Her research excellence has been acknowledged through conference presentations, invitations to collaborative projects, and institutional funding for emerging researchers at Hainan University. These honors reflect her growing impact and the scientific merit of her research topics. She has also been nominated for early-career researcher awards within university-level initiatives and has gained positive peer recognition for her work on seawater electrolysis. While her list of international or national awards is still developing, her consistent scientific output and growing portfolio of research projects suggest she is on a strong trajectory toward more prestigious recognitions. As her career advances and her contributions to hydrogen energy research expand, Dr. Li is well-positioned to receive further awards and honors that reflect her dedication, innovation, and potential to drive meaningful change in the field of clean energy technology.

Conclusion

Dr. Jing Li is a dedicated and emerging researcher in the field of hydrogen energy, with a clear focus on water and seawater electrolysis. Her work is contributing to one of the most pressing challenges of our time: the transition to clean and sustainable energy. With a strong academic background, growing publication record, and hands-on expertise in electrochemical systems, she is steadily building a research profile that addresses both theoretical and practical aspects of hydrogen production. Her commitment to advancing fundamental understanding while developing scalable technologies demonstrates a balanced and forward-thinking research philosophy. While she would benefit from expanded collaborations, a broader international presence, and increased visibility through publications and patents, she has already shown a strong capacity for impactful innovation. Dr. Li represents the next generation of energy researchers who are not only contributing to academic knowledge but also offering real-world solutions. Her continued progress and dedication make her a strong and deserving candidate for the Best Researcher Award, and recognition at this stage would further support and motivate her promising research career in the energy sciences.

Publications Top Notes

1. Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K+ acidic CO2 electroreduction

Authors: Zhitong Wang, Dongyu Liu, Chenfeng Xia, … Bao Yu Xia, Xinlong Tian

Journal: Nature Communications

Year: 2025

Citations: 1

2. Plant derived multifunctional binders for shuttle-free zinc-iodine batteries

Authors: Jiahao Zhu, Shan Guo, Yang Zhang, … Xinlong Tian, Xiaodong Shi

Journal: Nano Energy

Year: 2025

3. Pyrrole-type TM-N3 sites as high-efficient bifunctional oxygen reactions electrocatalysts: From theoretical prediction to experimental validation

Authors: Chunxia Wu, Yanhui Yu, Yiming Song, … Xinlong Tian, Daoxiong Wu

Journal: Journal of Energy Chemistry

Year: 2025

Citations: 2

4. Oxygen-Coordinated Cr Single-Atom Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel CellsAuthors: Junming Luo, Yating Zhang, Zhe Lü, … Zhengpei Miao, Xinlong Tian

Journal: Angewandte Chemie International Edition

Year: 2025

5. Ni-N-C support boosts PtRu sub-nanocluster for effective methanol oxidation reaction

Authors: Xue Zhang, Chunxia Wu, Ye Bu, … Xinlong Tian, Peilin Deng

Journal: Chemical Engineering Journal

Year: 2025

6. Layered Organic Molecular Crystal with One-Dimensional Ion Migration Channel for Durable Magnesium-Based Dual-Ion Batteries

Authors: Yanzeng Ge, Baoquan Liu, Daoxiong Wu, … Xinlong Tian, Jinlin Yang

Journal: ACS Energy Letters

Year: 2025

Citations: 2

7. Hard Lewis acid induced chloride repulsion for durable neutral seawater electrolysis (Review)

Authors: Suyang Feng, Gai Li, Qingyi Wei, … Xinlong Tian, Zhenye Kang

Year: 2025

Citations: 1

8. Iridium-based electrocatalysts for acidic oxygen evolution reaction (Review)

Authors: Yanhui Yu, Gai Li, Yutong Xiao, … Xinlong Tian, Yuliang Yuan

Year: 2025

Citations: 1

9. Recent advances of CuSbS₂ and CuPbSbS₃ as photocatalyst in the application of photocatalytic hydrogen evolution and degradation (Review)

Authors: Xinlong Zheng, Zhongyun Shao, Jiaxin Lin, … Xinlong Tian, Yuhao Liu

Year: 2025

Citations: 1

10. Sulfonated Lignin Binder Blocks Active Iodine Dissolution and Polyiodide Shuttle Toward Durable Zinc-Iodine Batteries

Authors: Zhixiang Chen, Jie Zhang, Chuancong Zhou, … Xinlong Tian, Xiaodong Shi

Journal: Advanced Energy Materials

Year: 2025

Citations: 4

Bárbara Rodríguez Escalona | Materials Science | Best Researcher Award

Dr. Bárbara Rodríguez Escalona | Materials Science | Best Researcher Award

Academic/Researcher from Bernardo O’Higgins University, Chile

Dr. Bárbara Rodríguez Escalona is a distinguished chemist and academic researcher, currently serving at the Universidad Bernardo O’Higgins in Santiago, Chile. Her expertise lies in the sustainable synthesis of nanomaterials, water treatment technologies, and polymer science. With a robust academic background and extensive research experience, she has significantly contributed to the field of environmental chemistry. Her work emphasizes the development of eco-friendly materials and processes, aiming to address pressing environmental challenges. Dr. Rodríguez Escalona’s dedication to research and education underscores her commitment to advancing scientific knowledge and promoting sustainable practices.

Professional Profile​

Education

Dr. Rodríguez Escalona commenced her academic journey with a Bachelor’s degree in Chemistry from the Universidad Central de Venezuela in 2007. She furthered her studies by obtaining a Doctorate in Chemistry from the Instituto Venezolano de Investigaciones Científicas in 2014. Her doctoral research laid the foundation for her future endeavors in sustainable chemistry and nanomaterials. Throughout her academic career, she has demonstrated a profound commitment to scientific excellence and innovation. Her educational background has equipped her with the skills and knowledge necessary to tackle complex environmental issues through chemical research

Professional Experience

Dr. Rodríguez Escalona’s professional trajectory encompasses various academic and research roles. She began her career as a laboratory assistant at the Universidad Central de Venezuela from 2005 to 2007. Following her doctoral studies, she undertook postdoctoral research at the Pontificia Universidad Católica de Chile between 2014 and 2016, focusing on chemical processes and catalysis. Subsequently, she joined the Advanced Mining Technology Center at the Universidad de Chile, where she contributed to projects on sustainable mining technologies from 2016 to 2021. Since 2021, she has been an academic and researcher at the Universidad Bernardo O’Higgins, actively engaging in teaching and research activities. Her diverse experiences have enriched her expertise in environmental chemistry and sustainable technologies.

Research Interests

Dr. Rodríguez Escalona’s research interests are centered around sustainable chemistry, with a particular focus on the synthesis and characterization of nanomaterials for environmental applications. She explores the use of graphene oxide in water treatment, the development of polymers with diverse applications, and the modification of membranes for filtration processes targeting emerging contaminants. Her work aims to create innovative solutions for environmental remediation, emphasizing the importance of eco-friendly materials and processes. Through her research, she seeks to address critical environmental challenges by developing sustainable technologies that can be applied in various industrial and environmental contexts.

Research Skills

Dr. Rodríguez Escalona possesses a comprehensive skill set in chemical research, encompassing the synthesis and characterization of nanomaterials, polymer chemistry, and membrane technology. She is proficient in various analytical techniques, including X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, which she employs to analyze the structural and chemical properties of materials. Her expertise extends to the development of antibacterial agents and the assessment of their efficacy, as demonstrated in her work on copper oxide nanoparticles. Her methodological approach combines experimental rigor with a focus on sustainability, enabling her to contribute significantly to the field of environmental chemistry.

Awards and Honors

While specific awards and honors are not detailed in the available information, Dr. Rodríguez Escalona’s contributions to the field of chemistry are evident through her extensive research and academic endeavors. Her involvement in various research projects and collaborations reflects her recognition within the scientific community. Her commitment to advancing sustainable chemical practices and her role in mentoring emerging scientists underscore her impact on the field. Further details on her accolades may be available through institutional records or professional profiles.

Conclusion

Dr. Bárbara Rodríguez Escalona stands as a prominent figure in the realm of sustainable chemistry, with a career marked by academic excellence and impactful research. Her dedication to developing environmentally friendly materials and processes addresses critical challenges in water treatment and pollution control. Through her roles in academia and research institutions, she has contributed to the advancement of scientific knowledge and the promotion of sustainable practices. Her work not only enhances our understanding of environmental chemistry but also paves the way for innovative solutions to global environmental issues. Dr. Rodríguez Escalona’s ongoing efforts continue to inspire and influence the field of sustainable chemical research.

Publications Top Notes

  1. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties

    • Authors: A. García, B. Rodríguez, D. Oztürk, M. Rosales, D.I. Diaz, A. Mautner

    • Year: 2018

    • Citations: 73

    • Journal: Polymer Bulletin, 75, 2053–2069

  1. Copper-modified polymeric membranes for water treatment: A comprehensive review

    • Authors: A. García, B. Rodríguez, H. Giraldo, Y. Quintero, R. Quezada, N. Hassan, …

    • Year: 2021

    • Citations: 50

    • Journal: Membranes, 11(2), 93

  1. Evaluating the bi-functional capacity for arsenic photo-oxidation and adsorption on anatase TiO₂ nanostructures with tunable morphology

    • Authors: M. Rosales, J. Orive, R. Espinoza-González, R.F. de Luis, R. Gauvin, …

    • Year: 2021

    • Citations: 43

    • Journal: Chemical Engineering Journal, 415, 128906

  1. Antibiofouling thin-film composite membranes (TFC) by in situ formation of Cu-(m-phenylenediamine) oligomer complex

    • Authors: B. Rodríguez, D. Oztürk, M. Rosales, M. Flores, A. García

    • Year: 2018

    • Citations: 43

    • Journal: Journal of Materials Science, 53(9), 6325–6338

  1. Lewis Acid Enhanced Ethene Dimerization and Alkene Isomerization—ESI-MS Identification of the Catalytically Active Pyridyldimethoxybenzimidazole Nickel (II) Hydride Species

    • Authors: M.A. Escobar, O.S. Trofymchuk, B.E. Rodriguez, C. Lopez-Lira, R. Tapia, …

    • Year: 2015

    • Citations: 34

    • Journal: ACS Catalysis, 5(12), 7338–7342

  1. Influence of TiO₂ nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes

    • Authors: A. García, Y. Quintero, N. Vicencio, B. Rodríguez, D. Ozturk, E. Mosquera, …

    • Year: 2016

    • Citations: 28

    • Journal: RSC Advances, 6(86), 82941–82948

  1. Influence of multidimensional graphene oxide (GO) sheets on anti-biofouling and desalination performance of thin-film composite membranes: effects of GO lateral sizes and …

    • Authors: B.E. Rodríguez, M.M. Armendariz-Ontiveros, R. Quezada, …

    • Year: 2020

    • Citations: 23

    • Journal: Polymers, 12(12), 2860

  1. Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse

    • Authors: H.F.G. Mejía, J. Toledo-Alarcón, B. Rodríguez, J.R. Cifuentes, F.O. Porré, …

    • Year: 2022

    • Citations: 22

    • Journal: Chemical Engineering Research and Design, 184, 473–487

  1. Mineral nutrients in pasture herbage of central western Spain

    • Authors: A. Garcia, B. Rodriguez, B. Garcia

    • Year: 1990

    • Citations: 17

    • Journal: Not specified

  1. A state-of-the-art of metal-organic frameworks for chromium photoreduction vs. photocatalytic water remediation

  • Authors: A. García, B. Rodríguez, M. Rosales, Y.M. Quintero, P.G. Saiz, A. Reizabal, …

  • Year: 2022

  • Citations: 13

  • Journal: Nanomaterials, 12(23), 4263