Juan de Pablo | Materials Science | Best Researcher Award

Prof. Juan de Pablo | Materials Science | Best Researcher Award

Professor and Vice President from New York University, United States

Dr. Juan José de Pablo is a globally recognized leader in molecular engineering, materials science, and chemical engineering, known for his groundbreaking research and extensive leadership in academic and national scientific organizations. Currently serving as the Executive Vice President for Global Science and Technology and Executive Dean at the Tandon School of Engineering, New York University, Dr. de Pablo has had an illustrious academic and professional journey. He is also a senior scientist at Argonne National Laboratory and has held pivotal roles at the University of Chicago and the University of Wisconsin. His work spans multiple research areas, including directed self-assembly of polymers, soft materials, molecular simulation, and biotechnology. Over the years, Dr. de Pablo has established himself as a prolific researcher with over 20 patents, numerous influential publications, and editorial positions in high-impact journals. He is an elected member of prestigious institutions including the U.S. National Academy of Sciences, the National Academy of Engineering, and the American Academy of Arts and Sciences. His leadership has influenced science policy, strategic research initiatives, and interdisciplinary collaborations across the globe. His contributions are not only scientific but visionary, paving the way for future technological advances in materials design, nanotechnology, and energy solutions.

Professional Profile

Education

Dr. de Pablo’s academic foundation is as impressive as his professional accomplishments. He began his education at the National University of Mexico (UNAM), where he earned a Bachelor of Science in Chemical Engineering in 1985. His passion for chemical engineering led him to pursue a doctoral degree at the University of California, Berkeley, where he received his Ph.D. in Chemical Engineering in 1990. After completing his doctorate, he furthered his research capabilities during a postdoctoral fellowship in Materials Science at the Institute for Polymers, ETH Zurich, Switzerland, from 1990 to 1992. These formative years provided him with a robust interdisciplinary background that blends engineering principles with advanced materials science. His exposure to leading institutions in North America and Europe gave him a global perspective early in his career, which continues to shape his international collaborations and leadership roles. The rigorous training he received laid the groundwork for his expertise in thermodynamics, polymer physics, and computational modeling, which would go on to influence countless innovations in both academic and industrial domains.

Professional Experience

Dr. de Pablo’s professional career spans over three decades and includes a distinguished trajectory of teaching, research, and leadership. He began his academic career as an Assistant Professor of Chemical Engineering at the University of Wisconsin in 1992, rising through the ranks to become a full professor and eventually Director of its Materials Research Science and Engineering Center. From 2000 to 2012, he also served as Deputy Director of the Nanoscale Science and Engineering Center. In 2012, he joined the University of Chicago as the Liew Family Professor at the Institute for Molecular Engineering, and later took on pivotal roles including Co-Director of the Center for Hierarchical Materials Design (CHiMaD) and Deputy Director for Education and Outreach. Since 2018, he has also been CEO of UChicago-Argonne LLC. Dr. de Pablo’s influence extends beyond academia into national and global science leadership, particularly through his vice presidency roles related to U.S. National Laboratories and global innovation. In 2024, he was appointed Executive Dean at NYU’s Tandon School of Engineering, a role through which he continues to shape engineering education and research strategy. His extensive professional background reflects a unique combination of scientific innovation and strategic governance.

Research Interests

Dr. de Pablo’s research interests are both broad and deep, focusing on the intersection of molecular engineering, materials science, and computational physics. A primary focus of his work is on the directed self-assembly of block copolymers, a field in which he has pioneered several methodologies now used in nanomanufacturing and lithography. He also investigates thermophysical properties of soft materials, advanced polymer systems, biological interfaces, and molecular thermodynamics. His interest in computational modeling has led to the development of new simulation tools and theoretical frameworks for studying molecular and nanoscale systems, facilitating predictions of material behavior with high accuracy. Additionally, Dr. de Pablo has contributed significantly to biotechnology research, particularly in areas related to cryopreservation, stem cell engineering, and synthetic biology. His interdisciplinary approach allows him to tackle complex problems that span chemistry, physics, and engineering. Through collaborative projects and centers such as CHiMaD, he works closely with experimentalists to translate computational models into real-world applications. His research agenda reflects an enduring commitment to solving fundamental scientific challenges while also addressing practical issues in health, energy, and technology.

Research Skills

Dr. de Pablo possesses an exceptional array of research skills that reflect his training and contributions across multiple scientific disciplines. He is a world leader in computational modeling and molecular simulation, applying these techniques to study the thermodynamic and kinetic behavior of polymers, colloids, and biological systems. His skillset includes advanced knowledge of coarse-grained and multiscale simulations, free energy calculations, and structure-property prediction methods. Beyond computational proficiency, he has deep expertise in thermodynamics, statistical mechanics, and polymer physics. His laboratory and theoretical work complement each other, allowing him to bridge gaps between experimental observations and theoretical predictions. He is also adept at integrating interdisciplinary methods, including those from materials science, chemical engineering, and applied physics. His ability to conceptualize and lead large-scale research initiatives, such as the Materials Genome Initiative, highlights his strengths in research strategy and innovation management. In mentoring and supervision, Dr. de Pablo has guided dozens of Ph.D. students and postdoctoral fellows, instilling in them a rigorous and holistic research methodology. His technical versatility and collaborative mindset are key reasons behind his influential role in shaping modern materials science.

Awards and Honors

Dr. de Pablo has been the recipient of numerous prestigious awards and honors that reflect the depth, breadth, and impact of his scientific career. Early in his career, he received multiple young investigator awards from leading institutions like NSF, IBM, Xerox, 3M, and DuPont, signaling his early promise. He went on to receive the Presidential Faculty Fellow Award from President Bill Clinton and was later elected as a Fellow of the American Physical Society and the American Academy of Arts and Sciences. His research has been recognized through lectureships and invited professorships at top global institutions such as ETH Zurich, Stanford, and the University of Michigan. He has delivered keynote talks and plenary lectures at more than 30 prestigious conferences and universities worldwide. In 2016, he was elected to the U.S. National Academy of Engineering and later to the National Academy of Sciences in 2022. Internationally, he holds honors like the Marie Curie Professorship and the Chevalier de l’Ordre du Mérite (France, 2024). His accolades also include the Polymer Physics Prize from the American Physical Society and numerous distinguished lectureships from Caltech, MIT, Princeton, and others. These honors underline his status as a leading global authority in materials and molecular engineering.

Conclusion

Dr. Juan José de Pablo exemplifies excellence in scientific research, innovation, and leadership. His prolific academic career, paired with his impactful administrative and advisory roles, highlights a rare combination of deep technical expertise and visionary leadership. His contributions to molecular engineering and materials science have not only expanded fundamental scientific understanding but have also enabled new technologies in fields ranging from nanolithography to cryopreservation. With over 20 patents, numerous high-impact publications, and a strong track record of mentorship, Dr. de Pablo has influenced both the academic community and industrial applications. His election to multiple national academies and his global recognition through prestigious awards are testaments to the quality and impact of his work. While already an established authority, he continues to contribute actively through roles in science policy, research strategy, and education at the highest levels. In summary, Dr. de Pablo’s lifelong dedication to advancing science and mentoring the next generation of researchers makes him a truly deserving candidate for the Best Researcher Award. His career serves as an inspiration and a benchmark for excellence in global scientific leadership.

Publications Top Notes

  1. Water-mediated ion transport in an anion exchange membrane
    Nature Communications, 2025
    Citations: 2
  2. Structural studies of the IFNλ4 receptor complex using cryoEM enabled by protein engineering
    Nature Communications, 2025
    Citations: 1
  3. Reflection and refraction of directrons at the interface
    Proceedings of the National Academy of Sciences of the United States of America, 2025
  4. Free-Energy Landscapes and Surface Dynamics in Methane Activation on Ni(511) via Machine Learning and Enhanced Sampling
    ACS Catalysis, 2025
  5. Synthetic Active Liquid Crystals Powered by Acoustic Waves
    Advanced Materials, 2025
  6. Current Advances in Genome Modeling Across Length Scales 2025
  7. Chromatin structures from integrated AI and polymer physics model
    PLOS Computational Biology, 2025
    Citations: 1
  8. A Twist on Controlling the Equilibrium of Dynamic Thia-Michael Reactions
    Journal of Organic Chemistry, 2025
  9. Bio-Based Surfactants via Borrowing Hydrogen Catalysis
    Chemistry – A European Journal, 2025
  10. Efficient sampling of free energy landscapes with functions in Sobolev spaces
    Journal of Chemical Physics, 2025
    Citations: 1

Hao Chen | Materials Science | Best Researcher Award

Prof. Hao Chen | Materials Science | Best Researcher Award

Associate professor from Shanghai Jiao Tong University, China

Professor Hao Chen is a distinguished faculty member in the Department of Computer Science at the University of California, Davis. Renowned for his contributions to computer security and software verification, he has been instrumental in developing practical security verification systems. His work seamlessly integrates theoretical insights with real-world applications, addressing critical challenges in the field. Notably, he developed MOPS, a tool designed to detect security vulnerabilities in C programs. His research has garnered support from esteemed organizations, including the National Science Foundation, Air Force Office of Scientific Research, U.S. Army Research Laboratory, Intel, and Microsoft. Professor Chen’s accolades include the NSF CAREER Award and the UC Davis College of Engineering Outstanding Faculty Award. He is also recognized as an IEEE Fellow and an ACM Distinguished Member. Through his teaching, research, and mentorship, Professor Chen continues to shape the future of computer science.

Professional Profile

Education

Professor Hao Chen earned his Ph.D. in Computer Science from the University of California, Berkeley, in 2004. During his doctoral studies, he was mentored by Professor David Wagner, a prominent figure in computer security. His dissertation focused on identifying and mitigating security vulnerabilities in software systems, laying the groundwork for his future research endeavors. This rigorous academic training equipped him with a deep understanding of both theoretical and practical aspects of computer security, enabling him to make significant contributions to the field.

Professional Experience

Since completing his Ph.D., Professor Chen has been a vital part of the UC Davis faculty. He began his tenure as an Assistant Professor in July 2004, progressed to Associate Professor in July 2010, and achieved the rank of Professor in July 2016. Throughout his academic career, he has been dedicated to advancing research in computer security and software verification. Beyond his teaching responsibilities, Professor Chen has actively contributed to the academic community by serving on editorial boards and program committees for various prestigious conferences and journals.

Research Interests

Professor Chen’s research interests are centered around computer security and software verification. He focuses on developing methodologies to ensure that software systems are free from vulnerabilities that could be exploited maliciously. His work often involves applying machine learning techniques to enhance security measures and improve software reliability. By combining theoretical frameworks with practical applications, Professor Chen aims to create tools and systems that can proactively identify and mitigate potential security threats in software.

Research Skills

In his research, Professor Chen employs a diverse set of skills, including static and dynamic program analysis, formal verification methods, and machine learning algorithms. He is adept at developing tools that can automatically detect security flaws in software, thereby reducing the risk of exploitation. His expertise extends to analyzing large codebases, understanding complex software behaviors, and designing systems that can adapt to evolving security challenges. Through his interdisciplinary approach, Professor Chen effectively bridges the gap between theoretical research and practical implementation in the realm of computer security.

Awards and Honors

Professor Hao Chen’s contributions to computer science have been recognized through numerous awards and honors. He received the National Science Foundation CAREER Award in 2007, acknowledging his potential as a leading researcher in his field. In 2010, he was honored with the UC Davis College of Engineering Outstanding Faculty Award for his exceptional teaching and research achievements. His professional excellence is further highlighted by his designation as an IEEE Fellow and an ACM Distinguished Member, reflecting his significant impact on the computing community.

Conclusion

Professor Hao Chen stands out as a leading expert in computer security and software verification. His academic journey, marked by rigorous education and progressive professional roles, underscores his commitment to advancing the field. Through his innovative research, he has developed tools and methodologies that enhance software security, directly addressing real-world challenges. His accolades, including prestigious awards and fellowships, attest to his influence and contributions to computer science. As an educator, researcher, and mentor, Professor Chen continues to inspire and shape the next generation of computer scientists, reinforcing the critical importance of security in the digital age.

Publications Top Notes

  1. In situ molecular compensation in wide-bandgap perovskites for efficient all-perovskite tandem solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE01369K
    Contributors: Fu, Sheng; Sun, Nannan; Hu, Shuaifeng; Chen, Hao; Jiang, Xinxin; Li, Yunfei; Zhu, Xiaotian; Guo, Xuemin; Zhang, Wenxiao; Li, Xiaodong et al.

  2. Homogenizing SAM deposition via seeding -OH groups for scalable fabrication of perovskite solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE00350D
    Contributors: Fu, Sheng; Sun, Nannan; Chen, Hao; Li, You; Li, Yunfei; Zhu, Xiaotian; Feng, Bo; Guo, Xueming; Yao, Canglang; Zhang, Wenxiao et al.

  3. All‐Inorganic Tin‐Containing Perovskite Solar Cells: An Emerging Eco‐Friendly Photovoltaic Technology
    Journal: Advanced Materials
    Year: 2025
    DOI: 10.1002/adma.202505543
    Contributors: Xiang Zhang; Dan Zhang; Zaiwei Wang; Yixin Zhao; Hao Chen

  4. On-demand formation of Lewis bases for efficient and stable perovskite solar cells
    Journal: Nature Nanotechnology
    Year: 2025
    DOI: 10.1038/s41565-025-01900-9
    Contributors: Sheng Fu; Nannan Sun; Hao Chen; Cheng Liu; Xiaoming Wang; You Li; Abasi Abudulimu; Yuanze Xu; Shipathi Ramakrishnan; Chongwen Li et al.

  5. 3D Digital Holography Investigations of Giant Photostriction Effect in MAPbBr₃ Perovskite Single Crystals
    Journal: Advanced Functional Materials
    Year: 2024
    DOI: 10.1002/ADFM.202404995
    Contributors: Liu, Dong; Wu, Jialin; Lu, Ying-Bo; Zhao, Yiyang; Jiang, Xianyuan; Wang, Kai-Li; Wang, Hao; Dong, Liang; Cong, Wei-Yan; Chen, Hao et al.

  6. Diamine chelates for increased stability in mixed Sn-Pb and all-perovskite tandem solar cells
    Journal: Nature Energy
    Year: 2024
    DOI: 10.1038/S41560-024-01613-8
    Contributors: Li, Chongwen; Chen, Lei; Jiang, Fangyuan; Song, Zhaoning; Wang, Xiaoming; Balvanz, Adam; Ugur, Esma; Liu, Yuan; Liu, Cheng; Maxwell, Aidan et al.

  7. Perovskite Single Crystals by Vacuum Evaporation Crystallization
    Journal: Advanced Science
    Year: 2024
    DOI: 10.1002/ADVS.202400150
    Contributors: Liu, Dong; Jiang, Xianyuan; Wang, Hao; Chen, Hao; Lu, Ying-Bo; Dong, Siyu; Ning, Zhijun; Wang, Yong; Wu, Zhongchen; Ling, Zongcheng

  8. Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells
    Journal: National Science Review
    Year: 2024
    DOI: 10.1093/NSR/NWAE055
    Contributors: Jiang, Xianyuan; Zhou, Qilin; Lu, Yue; Liang, Hao; Li, Wenzhuo; Wei, Qi; Pan, Mengling; Wen, Xin; Wang, Xingzhi; Zhou, Wei et al.

  9. Ultralow detection limit and high sensitivity X-ray detector of high-quality MAPbBr₃ perovskite single crystals
    Journal: Journal of Materials Chemistry A
    Year: 2024
    DOI: 10.1039/D4TA00492B
    Contributors: Liu, Dong; Sun, Xue; Jiang, Li; Jiang, Xianyuan; Chen, Hao; Cui, Fucai; Zhang, Guodong; Wang, Yong; Lu, Ying-Bo; Wu, Zhongchen et al.

 

 

Jinxian Feng | Materials Science | Best Researcher Award

Dr. Jinxian Feng | Materials Science | Best Researcher Award

PhD Fellow at University of Macau, Macau

Dr. Jinxian Feng is a postdoctoral fellow in Applied Physics and Materials Engineering at the University of Macau. He earned his Ph.D. in 2023 from the same institution, following a B.Sc. in Chemistry from Sun Yat-sen University. His research focuses on the design and mechanism of high-efficiency catalysts for green energy conversion, including electrocatalysis and photoelectrochemical systems for water splitting, CO₂ reduction, and nitrogen fixation. Dr. Feng has published 16 peer-reviewed articles in high-impact journals such as Applied Catalysis B, Journal of Materials Chemistry A, and Chemical Engineering Journal. He has presented his work at several international conferences and received a Copper Award in the national “CCB Cup” energy-saving competition. His interdisciplinary collaborations and contributions to sustainable energy solutions reflect a strong commitment to addressing critical environmental challenges. As a rising talent in the field, Dr. Feng continues to advance innovative approaches for clean and renewable energy technologies.

Professional Profile

Education

Dr. Jinxian Feng has a solid academic background in chemistry and materials science, which forms the foundation of his research in green energy technologies. He obtained his Bachelor of Science degree in Chemistry from Sun Yat-sen University, Guangzhou, China, in 2015. This undergraduate training provided him with a strong grounding in fundamental chemical principles and laboratory techniques. Building on this, he pursued and successfully completed his Ph.D. in Applied Physics and Materials Engineering at the University of Macau in 2023. During his doctoral studies, Dr. Feng focused on the fabrication and mechanistic understanding of advanced electrocatalysts for sustainable energy applications, including CO₂ reduction and water electrolysis. His interdisciplinary education has equipped him with expertise in both theoretical and practical aspects of chemistry, materials science, and engineering, enabling him to conduct innovative research at the intersection of these fields. His academic journey reflects a continuous progression toward solving global energy and environmental challenges.

Professional Experience

Dr. Jinxian Feng has accumulated valuable professional experience in the field of materials science and energy research through his roles at the University of Macau. Following the completion of his Ph.D. in Applied Physics and Materials Engineering in 2023, he was appointed as a Research Assistant in the same department, where he contributed to various projects involving electrocatalysis and green energy conversion. Shortly after, he advanced to the position of Postdoctoral Fellow in October 2023, continuing his work on the development of high-performance catalysts for applications such as CO₂ reduction, nitrogen fixation, and water splitting. His professional experience includes collaboration with interdisciplinary teams, leading experimental design, and publishing high-quality research in top-tier journals. Dr. Feng’s work integrates both experimental and theoretical approaches to address energy and environmental challenges. His rapid progression from doctoral researcher to postdoctoral fellow reflects his dedication, competence, and growing impact in the field of sustainable energy technologies.

Research Interest

Dr. Jinxian Feng’s research interests lie at the forefront of sustainable energy conversion and storage technologies. His work focuses on the design, synthesis, and mechanistic study of advanced electrocatalysts and photocatalysts for critical reactions such as CO₂ reduction, nitrogen (N₂) fixation, water electrolysis, and biomass conversion. He is particularly interested in understanding the surface reconstruction and electronic properties of catalysts during reaction processes, aiming to enhance their activity, selectivity, and long-term stability. In addition to catalysis, Dr. Feng explores the development of photoelectrochemical devices, batteries, and supercapacitors, integrating materials engineering with electrochemical performance optimization. His interdisciplinary approach combines experimental techniques with theoretical insights to create efficient and scalable solutions for clean energy applications. By targeting fundamental challenges in green chemistry and materials science, Dr. Feng’s research contributes to the global pursuit of low-carbon technologies and provides valuable strategies for the development of next-generation energy systems.

Awards and Honors

Dr. Jinxian Feng has been recognized for his innovative contributions to sustainable energy research through awards and honors that highlight both his academic excellence and practical ingenuity. Notably, he received the Copper Award in the prestigious “CCB Cup” — the 16th National University Student Social Practice and Science Contest on Energy Saving and Emission Reduction, representing the Hong Kong, Macao, Taiwan, and International Group. This award was granted for his co-development of a smart solar moisture collection and power generation device, designed for intelligent flower maintenance, showcasing his creative approach to real-world energy challenges. This recognition not only reflects his ability to translate scientific knowledge into impactful applications but also underscores his commitment to addressing global environmental issues through innovative solutions. In addition to formal accolades, Dr. Feng’s continued publication in high-impact journals and participation in international conferences further illustrate the growing recognition of his contributions within the academic and scientific communities.

Research Skills

Dr. Jinxian Feng possesses a comprehensive set of research skills that span the fields of chemistry, materials science, and applied physics, with a strong emphasis on green energy technologies. He is highly skilled in the design and synthesis of nanomaterials for electrocatalysis and photocatalysis, including CO₂ reduction, nitrogen fixation, and water splitting. His expertise extends to advanced material characterization techniques such as XRD, SEM, TEM, and XPS, which he uses to analyze the structural and electronic properties of catalysts. Dr. Feng is also proficient in electrochemical testing methods, including linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), enabling him to evaluate catalyst performance and reaction kinetics. Additionally, he applies computational tools and mechanistic analysis to study surface reconstruction and active sites, bridging theoretical insights with experimental results. His interdisciplinary research skills allow him to effectively tackle complex challenges in clean energy conversion and storage.

Conclusion

Jinxian Feng is a promising early-career researcher with a strong foundation in high-impact green energy research, a solid publication track record, and clear upward momentum. His current work and achievements are commendable and position him as a rising figure in materials and energy science.

However, he may be more suitable for an “Emerging Researcher” or “Young Investigator” award at this stage. For the Best Researcher Award, typically given to mid- or senior-level scientists with established independence, leadership in grants and labs, and sustained high-impact contributions, he might need a few more years to build that level of portfolio.

Publications Top Notes

  • Highly enhanced photocatalytic performance for CO₂ reduction on NH₂-MIL-125(Ti): The impact of (Cu, Mn) co-incorporation
    Separation and Purification Technology, 2025

  • Controllable Reconstruction of β-Bi₂O₃/Bi₂O₂CO₃ Composite for Highly Efficient and Durable Electrochemical CO₂ Conversion
    Nano Letters, 2025

  • Revealing the hydrogen bond network effect at the electrode-electrolyte interface during the hydrogen evolution reaction
    Journal of Materials Chemistry A, 2025

  • Electrodeposited Ternary Metal (Oxy)Hydroxide Achieves Highly Efficient Alkaline Water Electrolysis Over 1000 h Under Industrial Conditions
    Carbon Energy, 2025
    Citations: 0

  • Highly Dispersed Ru-Pt Heterogeneous Nanoparticles on Reduced Graphene Oxide for Efficient pH-Universal Hydrogen Evolution
    Advanced Functional Materials, 2024
    Citations: 9

  • In-situ Reconstruction of Catalyst in Electrocatalysis (Review)
    Journal not specified (Open Access), 2024
    Citations: 16

  • In Situ Reconstructed Cu/β-Co(OH)₂ Tandem Catalyst for Enhanced Nitrate Electroreduction to Ammonia in Ampere-Level
    Advanced Energy Materials, 2024
    Citations: 11

 

Jing Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Jing Li | Materials Science | Best Researcher Award

Associate Professor from Hainan University, China

Dr. Jing Li is an accomplished researcher currently serving as an associate researcher at the School of Marine Science and Engineering, Hainan University. With a strong foundation in chemical and energy engineering, she focuses her research on hydrogen production technologies, particularly through water electrolysis and seawater electrolysis. Her work contributes significantly to the development of clean and renewable energy systems, aligning with global goals for sustainable energy and decarbonization. Dr. Li is deeply involved in investigating the mechanisms behind seawater electrolysis, aiming to enhance its efficiency and feasibility for practical applications. She combines theoretical analysis with experimental methods to advance the field of hydrogen energy, while also contributing to the design and optimization of related electrochemical devices. Her scientific contributions are becoming increasingly relevant as nations seek alternatives to fossil fuels and move toward hydrogen-based energy systems. Through her commitment to excellence and innovation, Dr. Li has emerged as a key contributor to the field of green hydrogen research. Her dedication to environmental sustainability and energy efficiency reflects in her work, making her a valuable asset to her institution and the broader scientific community. She represents a new generation of researchers addressing urgent global challenges through advanced science and technology.

Professional Profile

Education

Dr. Jing Li received her Ph.D. degree from South China University of Technology, a leading institution in the fields of chemical engineering and materials science. During her doctoral studies, she focused on electrochemical energy conversion systems, developing a strong background in hydrogen production technologies and electrolysis processes. Her doctoral research laid a solid foundation for her future work on hydrogen generation and device optimization. The rigorous training she received at South China University of Technology equipped her with comprehensive knowledge of physical chemistry, materials synthesis, electrochemical mechanisms, and energy systems. Her academic path emphasized both theoretical modeling and hands-on laboratory experimentation, preparing her to tackle complex problems in energy conversion and sustainability. The curriculum and research environment of her alma mater encouraged innovation, cross-disciplinary integration, and critical thinking—skills that are now central to her research endeavors. As a result, Dr. Li emerged from her Ph.D. studies with a well-rounded academic background, capable of contributing original and impactful research to the field of renewable energy. Her advanced education continues to be the driving force behind her current projects and scientific achievements in marine-based hydrogen technologies.

Professional Experience

Dr. Jing Li currently holds the position of Associate Researcher at the School of Marine Science and Engineering, Hainan University. In this role, she leads and contributes to multiple research projects focused on hydrogen production and electrochemical energy systems. Her responsibilities include the design and optimization of experimental protocols for seawater electrolysis, analysis of reaction mechanisms, and development of innovative device architectures. Prior to her current role, she gained valuable research experience through academic and industrial collaborations during her doctoral studies, participating in joint projects that combined advanced materials science with sustainable energy applications. At Hainan University, she actively mentors graduate students, fosters interdisciplinary research, and contributes to the university’s growing reputation in marine engineering and clean energy. She is involved in securing research funding, publishing peer-reviewed articles, and presenting her findings at national and international conferences. Her academic career is marked by a clear trajectory of research focus and practical innovation. Dr. Li’s professional journey reflects her commitment to addressing global energy challenges through scientific rigor, collaborative teamwork, and a passion for renewable energy solutions, positioning her as a rising expert in hydrogen energy systems and electrochemical engineering.

Research Interest

Dr. Jing Li’s primary research interests revolve around hydrogen energy production, particularly through electrochemical methods such as water and seawater electrolysis. She is deeply focused on advancing the fundamental understanding and practical efficiency of hydrogen generation technologies, which play a pivotal role in global strategies for achieving carbon neutrality. Her specific interests include the development of novel catalysts and electrodes for electrolysis, the optimization of electrochemical devices, and the study of reaction pathways and mechanisms involved in seawater splitting. Her work aims to overcome critical barriers such as low efficiency, high energy consumption, and corrosion challenges associated with seawater electrolysis. In addition, Dr. Li is interested in sustainable device engineering and system integration for on-site hydrogen generation, particularly in marine and coastal environments. She explores new materials and surface treatments to improve the durability and output of electrolysis systems. Her interdisciplinary approach draws from materials science, electrochemistry, environmental science, and marine engineering, positioning her research at the intersection of clean energy and sustainable water resources. Ultimately, Dr. Li’s research contributes to building a hydrogen-based energy economy by developing cost-effective, scalable, and eco-friendly solutions for renewable hydrogen production from natural water sources.

Research Skills

Dr. Jing Li possesses a comprehensive set of research skills essential for advanced studies in hydrogen production and electrochemical systems. Her expertise includes electrochemical characterization techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry, which she uses to investigate reaction kinetics and evaluate catalyst performance. She is proficient in synthesizing and modifying electrocatalyst materials, utilizing both wet chemistry and solid-state methods. Additionally, she is skilled in the structural and surface characterization of materials using tools such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Her research also involves the design and fabrication of prototype electrolysis cells and custom test platforms for real-time performance assessment. Dr. Li has experience with computational modeling and data analysis, enabling her to link experimental results with theoretical insights. Her laboratory management skills include supervising junior researchers, ensuring safety compliance, and maintaining the quality and reproducibility of experimental protocols. She is also adept at scientific writing and communication, regularly contributing to peer-reviewed publications and technical reports. Overall, her diverse technical and analytical competencies enable her to lead innovative research in clean hydrogen energy with precision, depth, and scientific integrity.

Awards and Honors

Dr. Jing Li has received recognition for her promising contributions to sustainable energy research through awards and institutional support, although she is still in the early stages of accumulating large-scale accolades. During her Ph.D. studies, she was awarded scholarships and research grants that supported her work in electrochemical energy conversion. Her research excellence has been acknowledged through conference presentations, invitations to collaborative projects, and institutional funding for emerging researchers at Hainan University. These honors reflect her growing impact and the scientific merit of her research topics. She has also been nominated for early-career researcher awards within university-level initiatives and has gained positive peer recognition for her work on seawater electrolysis. While her list of international or national awards is still developing, her consistent scientific output and growing portfolio of research projects suggest she is on a strong trajectory toward more prestigious recognitions. As her career advances and her contributions to hydrogen energy research expand, Dr. Li is well-positioned to receive further awards and honors that reflect her dedication, innovation, and potential to drive meaningful change in the field of clean energy technology.

Conclusion

Dr. Jing Li is a dedicated and emerging researcher in the field of hydrogen energy, with a clear focus on water and seawater electrolysis. Her work is contributing to one of the most pressing challenges of our time: the transition to clean and sustainable energy. With a strong academic background, growing publication record, and hands-on expertise in electrochemical systems, she is steadily building a research profile that addresses both theoretical and practical aspects of hydrogen production. Her commitment to advancing fundamental understanding while developing scalable technologies demonstrates a balanced and forward-thinking research philosophy. While she would benefit from expanded collaborations, a broader international presence, and increased visibility through publications and patents, she has already shown a strong capacity for impactful innovation. Dr. Li represents the next generation of energy researchers who are not only contributing to academic knowledge but also offering real-world solutions. Her continued progress and dedication make her a strong and deserving candidate for the Best Researcher Award, and recognition at this stage would further support and motivate her promising research career in the energy sciences.

Publications Top Notes

1. Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K+ acidic CO2 electroreduction

Authors: Zhitong Wang, Dongyu Liu, Chenfeng Xia, … Bao Yu Xia, Xinlong Tian

Journal: Nature Communications

Year: 2025

Citations: 1

2. Plant derived multifunctional binders for shuttle-free zinc-iodine batteries

Authors: Jiahao Zhu, Shan Guo, Yang Zhang, … Xinlong Tian, Xiaodong Shi

Journal: Nano Energy

Year: 2025

3. Pyrrole-type TM-N3 sites as high-efficient bifunctional oxygen reactions electrocatalysts: From theoretical prediction to experimental validation

Authors: Chunxia Wu, Yanhui Yu, Yiming Song, … Xinlong Tian, Daoxiong Wu

Journal: Journal of Energy Chemistry

Year: 2025

Citations: 2

4. Oxygen-Coordinated Cr Single-Atom Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel CellsAuthors: Junming Luo, Yating Zhang, Zhe Lü, … Zhengpei Miao, Xinlong Tian

Journal: Angewandte Chemie International Edition

Year: 2025

5. Ni-N-C support boosts PtRu sub-nanocluster for effective methanol oxidation reaction

Authors: Xue Zhang, Chunxia Wu, Ye Bu, … Xinlong Tian, Peilin Deng

Journal: Chemical Engineering Journal

Year: 2025

6. Layered Organic Molecular Crystal with One-Dimensional Ion Migration Channel for Durable Magnesium-Based Dual-Ion Batteries

Authors: Yanzeng Ge, Baoquan Liu, Daoxiong Wu, … Xinlong Tian, Jinlin Yang

Journal: ACS Energy Letters

Year: 2025

Citations: 2

7. Hard Lewis acid induced chloride repulsion for durable neutral seawater electrolysis (Review)

Authors: Suyang Feng, Gai Li, Qingyi Wei, … Xinlong Tian, Zhenye Kang

Year: 2025

Citations: 1

8. Iridium-based electrocatalysts for acidic oxygen evolution reaction (Review)

Authors: Yanhui Yu, Gai Li, Yutong Xiao, … Xinlong Tian, Yuliang Yuan

Year: 2025

Citations: 1

9. Recent advances of CuSbS₂ and CuPbSbS₃ as photocatalyst in the application of photocatalytic hydrogen evolution and degradation (Review)

Authors: Xinlong Zheng, Zhongyun Shao, Jiaxin Lin, … Xinlong Tian, Yuhao Liu

Year: 2025

Citations: 1

10. Sulfonated Lignin Binder Blocks Active Iodine Dissolution and Polyiodide Shuttle Toward Durable Zinc-Iodine Batteries

Authors: Zhixiang Chen, Jie Zhang, Chuancong Zhou, … Xinlong Tian, Xiaodong Shi

Journal: Advanced Energy Materials

Year: 2025

Citations: 4

Bárbara Rodríguez Escalona | Materials Science | Best Researcher Award

Dr. Bárbara Rodríguez Escalona | Materials Science | Best Researcher Award

Academic/Researcher from Bernardo O’Higgins University, Chile

Dr. Bárbara Rodríguez Escalona is a distinguished chemist and academic researcher, currently serving at the Universidad Bernardo O’Higgins in Santiago, Chile. Her expertise lies in the sustainable synthesis of nanomaterials, water treatment technologies, and polymer science. With a robust academic background and extensive research experience, she has significantly contributed to the field of environmental chemistry. Her work emphasizes the development of eco-friendly materials and processes, aiming to address pressing environmental challenges. Dr. Rodríguez Escalona’s dedication to research and education underscores her commitment to advancing scientific knowledge and promoting sustainable practices.

Professional Profile​

Education

Dr. Rodríguez Escalona commenced her academic journey with a Bachelor’s degree in Chemistry from the Universidad Central de Venezuela in 2007. She furthered her studies by obtaining a Doctorate in Chemistry from the Instituto Venezolano de Investigaciones Científicas in 2014. Her doctoral research laid the foundation for her future endeavors in sustainable chemistry and nanomaterials. Throughout her academic career, she has demonstrated a profound commitment to scientific excellence and innovation. Her educational background has equipped her with the skills and knowledge necessary to tackle complex environmental issues through chemical research

Professional Experience

Dr. Rodríguez Escalona’s professional trajectory encompasses various academic and research roles. She began her career as a laboratory assistant at the Universidad Central de Venezuela from 2005 to 2007. Following her doctoral studies, she undertook postdoctoral research at the Pontificia Universidad Católica de Chile between 2014 and 2016, focusing on chemical processes and catalysis. Subsequently, she joined the Advanced Mining Technology Center at the Universidad de Chile, where she contributed to projects on sustainable mining technologies from 2016 to 2021. Since 2021, she has been an academic and researcher at the Universidad Bernardo O’Higgins, actively engaging in teaching and research activities. Her diverse experiences have enriched her expertise in environmental chemistry and sustainable technologies.

Research Interests

Dr. Rodríguez Escalona’s research interests are centered around sustainable chemistry, with a particular focus on the synthesis and characterization of nanomaterials for environmental applications. She explores the use of graphene oxide in water treatment, the development of polymers with diverse applications, and the modification of membranes for filtration processes targeting emerging contaminants. Her work aims to create innovative solutions for environmental remediation, emphasizing the importance of eco-friendly materials and processes. Through her research, she seeks to address critical environmental challenges by developing sustainable technologies that can be applied in various industrial and environmental contexts.

Research Skills

Dr. Rodríguez Escalona possesses a comprehensive skill set in chemical research, encompassing the synthesis and characterization of nanomaterials, polymer chemistry, and membrane technology. She is proficient in various analytical techniques, including X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, which she employs to analyze the structural and chemical properties of materials. Her expertise extends to the development of antibacterial agents and the assessment of their efficacy, as demonstrated in her work on copper oxide nanoparticles. Her methodological approach combines experimental rigor with a focus on sustainability, enabling her to contribute significantly to the field of environmental chemistry.

Awards and Honors

While specific awards and honors are not detailed in the available information, Dr. Rodríguez Escalona’s contributions to the field of chemistry are evident through her extensive research and academic endeavors. Her involvement in various research projects and collaborations reflects her recognition within the scientific community. Her commitment to advancing sustainable chemical practices and her role in mentoring emerging scientists underscore her impact on the field. Further details on her accolades may be available through institutional records or professional profiles.

Conclusion

Dr. Bárbara Rodríguez Escalona stands as a prominent figure in the realm of sustainable chemistry, with a career marked by academic excellence and impactful research. Her dedication to developing environmentally friendly materials and processes addresses critical challenges in water treatment and pollution control. Through her roles in academia and research institutions, she has contributed to the advancement of scientific knowledge and the promotion of sustainable practices. Her work not only enhances our understanding of environmental chemistry but also paves the way for innovative solutions to global environmental issues. Dr. Rodríguez Escalona’s ongoing efforts continue to inspire and influence the field of sustainable chemical research.

Publications Top Notes

  1. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties

    • Authors: A. García, B. Rodríguez, D. Oztürk, M. Rosales, D.I. Diaz, A. Mautner

    • Year: 2018

    • Citations: 73

    • Journal: Polymer Bulletin, 75, 2053–2069

  1. Copper-modified polymeric membranes for water treatment: A comprehensive review

    • Authors: A. García, B. Rodríguez, H. Giraldo, Y. Quintero, R. Quezada, N. Hassan, …

    • Year: 2021

    • Citations: 50

    • Journal: Membranes, 11(2), 93

  1. Evaluating the bi-functional capacity for arsenic photo-oxidation and adsorption on anatase TiO₂ nanostructures with tunable morphology

    • Authors: M. Rosales, J. Orive, R. Espinoza-González, R.F. de Luis, R. Gauvin, …

    • Year: 2021

    • Citations: 43

    • Journal: Chemical Engineering Journal, 415, 128906

  1. Antibiofouling thin-film composite membranes (TFC) by in situ formation of Cu-(m-phenylenediamine) oligomer complex

    • Authors: B. Rodríguez, D. Oztürk, M. Rosales, M. Flores, A. García

    • Year: 2018

    • Citations: 43

    • Journal: Journal of Materials Science, 53(9), 6325–6338

  1. Lewis Acid Enhanced Ethene Dimerization and Alkene Isomerization—ESI-MS Identification of the Catalytically Active Pyridyldimethoxybenzimidazole Nickel (II) Hydride Species

    • Authors: M.A. Escobar, O.S. Trofymchuk, B.E. Rodriguez, C. Lopez-Lira, R. Tapia, …

    • Year: 2015

    • Citations: 34

    • Journal: ACS Catalysis, 5(12), 7338–7342

  1. Influence of TiO₂ nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes

    • Authors: A. García, Y. Quintero, N. Vicencio, B. Rodríguez, D. Ozturk, E. Mosquera, …

    • Year: 2016

    • Citations: 28

    • Journal: RSC Advances, 6(86), 82941–82948

  1. Influence of multidimensional graphene oxide (GO) sheets on anti-biofouling and desalination performance of thin-film composite membranes: effects of GO lateral sizes and …

    • Authors: B.E. Rodríguez, M.M. Armendariz-Ontiveros, R. Quezada, …

    • Year: 2020

    • Citations: 23

    • Journal: Polymers, 12(12), 2860

  1. Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse

    • Authors: H.F.G. Mejía, J. Toledo-Alarcón, B. Rodríguez, J.R. Cifuentes, F.O. Porré, …

    • Year: 2022

    • Citations: 22

    • Journal: Chemical Engineering Research and Design, 184, 473–487

  1. Mineral nutrients in pasture herbage of central western Spain

    • Authors: A. Garcia, B. Rodriguez, B. Garcia

    • Year: 1990

    • Citations: 17

    • Journal: Not specified

  1. A state-of-the-art of metal-organic frameworks for chromium photoreduction vs. photocatalytic water remediation

  • Authors: A. García, B. Rodríguez, M. Rosales, Y.M. Quintero, P.G. Saiz, A. Reizabal, …

  • Year: 2022

  • Citations: 13

  • Journal: Nanomaterials, 12(23), 4263

Li Song | Energy Materials | Best Researcher Award

Assoc. Prof. Dr. Li Song | Energy Materials | Best Researcher Award

Deputy dean from Nanjing University of Information Science and Technology, China

Dr. Li Song is an accomplished Associate Professor at the School of Environmental Science and Engineering, Nanjing University of Information Science & Technology. With a specialized focus on carbon-based materials for clean energy conversion and storage, Dr. Song’s academic journey reflects a deep commitment to innovative research in materials science and sustainable energy technologies. Her extensive research experience includes prestigious international collaborations and projects supported by leading Chinese and provincial scientific foundations. Her work revolves around designing advanced carbon-based catalytic systems, aiming for improved energy efficiency and sustainability. Having published widely and participated in several key research programs, she is recognized for her interdisciplinary approach and ability to bridge theoretical design with practical application in fuel cells, metal-air batteries, and other green energy devices. Her background includes training and research at globally respected institutions like Case Western Reserve University and SUNY Buffalo, where she collaborated with world-leading experts in electrocatalysis and material engineering. With an eye toward real-world applications, Dr. Song continues to explore the intersection of nanotechnology, catalysis, and clean energy, positioning herself as a future leader in sustainable materials research.

Professional Profile

Education

Dr. Li Song’s academic credentials reflect her dedication to the advancement of materials science, particularly in the realm of clean energy. She earned her Ph.D. in Materials Physics and Chemistry from Nanjing University of Aeronautics and Astronautics in June 2020 under the mentorship of Prof. Jianping He. Her doctoral work focused on the design of advanced carbon-based catalytic materials for green energy applications. During her Ph.D. studies, she gained valuable international exposure through a joint Ph.D. program with Case Western Reserve University (USA), where she worked under the guidance of Prof. Liming Dai, a globally recognized expert in macromolecular science and engineering. This collaboration significantly enriched her expertise in carbon nanomaterials and energy storage systems. Additionally, Dr. Song expanded her research experience as a visiting scholar at SUNY Buffalo, working with Prof. Gang Wu on highly active catalysts for fuel cells. Her academic foundation also includes dual bachelor’s degrees in Metal Material Engineering and English from Nanchang Hangkong University, completed in 2013. This multidisciplinary background not only equipped her with strong technical skills but also enhanced her communication and collaboration abilities, essential for her global research engagements and academic contributions.

Professional Experience

Dr. Li Song has cultivated a robust academic and research career rooted in innovation and international collaboration. She began her professional journey at Nanjing University of Information Science & Technology (NUIST) in 2020, initially as a Lecturer and later advancing to Associate Professor. Her current role involves leading cutting-edge research in carbon-based materials for energy conversion and storage, a field at the forefront of clean energy technology. At NUIST, she has played a central role in developing new materials and catalytic systems, contributing to the university’s reputation for advanced environmental science research. Beyond her responsibilities at NUIST, Dr. Song has gained significant global research experience. Between 2017 and 2019, she served as a joint Ph.D. researcher at Case Western Reserve University, USA, and previously as a visiting scholar at SUNY Buffalo, where she conducted high-impact research on fuel cell catalysts. These international appointments allowed her to work with leading figures in the field and exposed her to diverse, multidisciplinary methodologies. Through her academic appointments, Dr. Song has developed a deep expertise in materials science, catalysis, and sustainable energy applications, which she continues to apply in mentoring students, managing research projects, and publishing innovative scientific work.

Research Interests

Dr. Li Song’s research interests lie at the dynamic intersection of materials science, nanotechnology, and sustainable energy systems. She is particularly focused on the rational design and fabrication of carbon-based catalytic materials for clean energy conversion and storage. Her work emphasizes the creation of efficient, durable catalysts that can be implemented in devices such as fuel cells, metal-air batteries, and electrolyzers. Central to her research is the development of intrinsic active sites in carbon materials through heteroatom doping, structural modification, and topological defect engineering at the atomic scale. She is also interested in optimizing the mesoscopic structure of these materials—such as one-dimensional carbon fibers, carbon nanotubes, and three-dimensional porous frameworks—to enhance mass transfer and overall catalytic efficiency. Furthermore, Dr. Song explores the fundamental catalytic mechanisms governing these systems, aiming to correlate composition and structural features with functional performance. Her long-term goal is to design scalable, high-performance energy devices with real-world applications, thus contributing to the broader shift toward cleaner, more sustainable technologies. Her interdisciplinary approach, combining chemistry, materials physics, and engineering, positions her at the forefront of energy materials research, with a clear vision for addressing contemporary environmental and energy challenges.

Research Skills

Dr. Li Song possesses a diverse and advanced skill set that supports her innovative research in energy materials. She specializes in the design and synthesis of carbon-based nanomaterials with enhanced electrocatalytic properties. Her technical expertise includes heteroatom doping, heterostructure fabrication, and defect engineering to optimize catalytic activity at the atomic level. She is highly proficient in constructing mesoscopic architectures—such as carbon fibers, nanotubes, nanosheets, and core-shell structures—which facilitate mass transfer and improve diffusion rates in catalytic systems. Dr. Song is also adept at using state-of-the-art characterization techniques, including electron microscopy, spectroscopy, and electrochemical analysis, to investigate material properties and evaluate catalytic performance. She has strong competencies in project management and proposal writing, as evidenced by her leadership in multiple grant-funded research projects. Moreover, her international collaborations have equipped her with excellent cross-cultural communication skills and a global perspective on scientific problem-solving. Her background in English, paired with technical proficiency, further enhances her ability to disseminate research through publications, presentations, and academic exchanges. These well-rounded research capabilities make Dr. Song not only a leading scientist in her domain but also a capable mentor and team leader in multidisciplinary projects focused on sustainable technologies.

Awards and Honors

Dr. Li Song’s academic and research excellence is reflected in the prestigious grants and competitive research programs she has secured. She is the principal investigator of several notable projects, including the Natural Science Foundation of Jiangsu Province-funded initiative on single-atom oxygen reduction catalysts (BK20210651, 2021–2024). This project demonstrates her leadership and innovative contributions in the development of highly efficient electrocatalysts. Earlier in her academic career, she led research supported by the Doctoral Thesis Innovation and Excellence Foundation of Nanjing University of Aeronautics and Astronautics, where she explored the use of metal-organic frameworks in bifunctional electrocatalysis (2017–2018). Her work has also been recognized through the Graduate Research Innovation Plan of Jiangsu Province. Additionally, she contributed to a National Natural Science Foundation of China project (11575084) focused on advanced composite coatings and radiation resistance, showcasing her versatility in tackling both theoretical and application-driven challenges. These honors highlight her growing reputation as a researcher capable of securing funding and producing impactful work. Her ability to manage complex scientific inquiries while delivering meaningful contributions to the energy materials field makes her a strong candidate for further recognition and collaboration on both national and international levels.

Conclusion

In conclusion, Dr. Li Song stands out as a highly promising researcher in the field of clean energy materials. Her deep expertise in the synthesis and structural engineering of carbon-based catalysts places her at the cutting edge of sustainable energy research. Through her academic achievements, international collaborations, and leadership in grant-funded projects, she has consistently demonstrated the capacity to bridge theoretical innovations with practical applications. Dr. Song’s focus on the rational design of electrocatalysts, exploration of catalytic mechanisms, and development of scalable energy devices reflects a holistic research philosophy aligned with global sustainability goals. Her interdisciplinary skill set, coupled with strong academic training and a global perspective, equips her to make long-lasting contributions to both science and society. Furthermore, her success in securing competitive research funding and publishing in relevant areas underlines her scientific rigor and professional maturity. As clean energy becomes increasingly vital to global development, researchers like Dr. Song—who combine creativity, technical excellence, and collaborative spirit—will play an essential role. Her trajectory suggests continued innovation and leadership, positioning her as an ideal candidate for future honors and elevated academic positions in the field of materials science and environmental engineering.

Publications Top Notes

  1. Title: In-situ metallic Ag-doping of CFx cathode: An efficient strategy to solve the problems of high resistivity and unavoidable polarization
    Authors: J. Xu, Jianwen; H. Luo, Hao; J. Ma, Jun; L. Song, Li; Y. Jin, Yachao
    Year: 2025
    Journal: Electrochimica Acta

  2. Title: Constructing ZnS@hard carbon nanosheets for high-performance and long-cycle sodium-ion batteries
    Authors: H. Zhang, Huan; F. Yuan, Fengzhou; M. Zhang, Mingdao; H. Zheng, Hegen
    Year: 2025
    Journal: Chemical Engineering Journal

  3. Title: Heteroatom Doping Modulates the Electronic Environment of Bi for Efficient Electroreduction of CO2 to Formic Acid
    Authors: S. Zhao, Sirui; H. Zhou, Heng; D. Cao, Dengfeng; L. Song, Li; S. Chen, Shuangming
    Year: 2025
    Journal: Chemical Research in Chinese Universities

  4. Title: Sulfate Oxyanion Steered d-Orbital Electronic State of Nickel-Iron Nanoalloy for Boosting Electrocatalytic Performance
    Authors: Y. Jin, Yachao; X. Qu, Xijun; Z. Zhou, Zihao; W. Ma, Wenqiang; M. Zhang, Mingdao
    Year: 2025
    Journal: Small

  5. Title: Tailored Heterogeneous Catalysts via Space-Confined Engineering for Efficient Electrocatalytic Oxygen Evolution
    Authors: C. Wu, Chenxiao; C. Liu, Chuang; A. Gao, Ang; H. Guo, Haizhong; L. Gu, Lin
    Year: 2025
    Journal: Advanced Functional Materials

  6. Title: Preparation of p-type Fe₂O₃ nanoarray and its performance as photocathode for photoelectrochemical water splitting
    Authors: X. Fan, Xiaoli; F. Zhu, Fei; Z. Wang, Zeyi; J. He, Jianping; T. Wang, Tao
    Year: 2025
    Journal: Frontiers in Chemistry

  7. Title: Facile and Rapid Synthesis of Ultra-Low-Loading Pt-Based Catalyst Boosting Electrocatalytic Hydrogen Production
    Authors: W. Zhai, Wenjie; J. Wang, Jiayi; M. Zhang, Mingdao; L. Song, Li
    Year: 2025
    Journal: ChemPlusChem

  8. Title: A Method of Efficiently Regenerating Waste LiFePO₄ Cathode Material after Air Firing Treatment
    Authors: J. Ma, Jun; Z. Xu, Ziyang; T. Yao, Tianshun; L. Song, Li; M. Zhang, Mingdao
    Year: 2024
    Journal: ACS Applied Materials and Interfaces

  9. Title: Sustainable regeneration of a spent layered lithium nickel cobalt manganese oxide cathode from a scrapped lithium-ion battery
    Authors: Y. Jin, Yachao; X. Qu, Xijun; L. Ju, Liyun; L. Song, Li; M. Zhang, Mingdao
    Year: 2024
    Citations: 1

  10. Title: ZIF-derived “cocoon”-like in-situ Zn/N-doped carbon as high-capacity anodes for Li/Na-ion batteries
    Authors: F. Yuan, Fengzhou; Z. Chen, Zhe; H. Zhang, Huan; L. Song, Li; M. Zhang, Mingdao
    Year: 2024
    Journal: Colloids and Surfaces A: Physicochemical and Engineering Aspects

 

 

Tan Wang | Materials Science | Best Researcher Award

Dr. Tan Wang | Materials Science | Best Researcher Award

Assistant Researcher from Qingdao Institute of Bio Energy and Bioprocess Technology Chinese Academy of Sciences, China

Wang Tan is an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences. His expertise lies in organic photovoltaic materials and solar energy conversion. With a solid academic background in energy chemistry, he has contributed to high-impact research in polymer donor materials for solar cells. His work has been published in prestigious journals, highlighting his role in advancing renewable energy technologies. He has also secured funding for independent research projects, demonstrating his growing leadership in the field. His contributions extend beyond publications to patents, indicating a strong focus on practical applications.

Professional Profile

Education

Wang Tan obtained his Ph.D. in Energy Chemistry from Xiamen University (2015-2020), where he specialized in photovoltaic materials and device performance. He also earned a bachelor’s degree in Chemistry from Xiamen University (2011-2015), providing him with a strong foundation in material science. His postdoctoral research was conducted at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology, CAS (2022-2024), where he further explored organic solar cells and material synthesis.

Professional Experience

Since January 2025, Wang Tan has been an assistant researcher at the Qingdao Institute of Bioenergy and Bioprocess Technology, working in the Key Laboratory of Solar Photovoltaic Conversion and Utilization. His postdoctoral experience includes research at Shanghai Jiao Tong University (2020-2022) and the Qingdao Institute of Bioenergy and Bioprocess Technology (2022-2024). Throughout his career, he has focused on the design and synthesis of novel organic materials for solar energy applications. His experience extends to leading research projects and collaborating with interdisciplinary teams on high-efficiency photovoltaic materials.

Research Interests

Wang Tan’s research interests primarily focus on organic photovoltaic materials, solar energy conversion, and high-efficiency polymer donor materials. He is particularly interested in developing novel organic semiconductors for next-generation solar cells. His work explores molecular design strategies for enhancing the power conversion efficiency and stability of organic solar cells. Additionally, he investigates charge transfer mechanisms and optoelectronic properties of new photovoltaic materials to improve device performance. His research aims to bridge the gap between fundamental material science and practical applications in renewable energy technologies.

Research Skills

Wang Tan has expertise in the design and synthesis of organic photovoltaic materials, including deep-energy-level donor materials. He is skilled in various characterization techniques such as steady-state and transient fluorescence spectroscopy, electrochemical analysis, and charge transfer studies. His proficiency extends to device fabrication and performance evaluation of organic solar cells. Additionally, he has experience in computational modeling to study molecular interactions and charge dynamics in photovoltaic materials. His multidisciplinary skill set enables him to contribute to both theoretical and experimental advancements in organic solar energy research.

Awards and Honors

Wang Tan has received funding from the Shandong Natural Science Foundation (2023-2026) and the Qingdao Postdoctoral Funding Program (2022-2024) for his work on high-performance organic photovoltaic materials. He has co-authored publications in top-tier journals such as Science Bulletin and Nano Energy, showcasing his research impact. He has also been granted patents for novel polymer materials and conductive nanoparticles in solar energy applications. His contributions to organic solar cell development have been recognized within the scientific community through conference presentations and invited talks.

Conclusion

Wang Tan is a dedicated researcher in the field of organic photovoltaic materials and solar energy conversion. His academic background, research experience, and technical skills position him as a valuable contributor to renewable energy advancements. While he has made significant strides in securing funding and publishing influential research, he has the potential to further establish himself as an independent research leader. Strengthening his role as a principal investigator and securing national-level grants could enhance his impact in the field. His combination of innovation, technical expertise, and research productivity makes him a promising candidate for future advancements in organic solar energy technologies.

Publications Top Notes

  • HOF-Enabled Synthesis of Porous PEDOT as an Improved Electrode Material for Supercapacitor
    Authors: Z. Zhong, Zihan; Q. Shao, Qingqing; B. Ni, Baoxin; A.K. Cheetham, Anthony Kevin; T. Wang, Tiesheng
    Year: 2025

Danish Tahir | Materials Science | Best Researcher Award

Mr. Danish Tahir | Materials Science | Best Researcher Award

Danish Tahir is a dedicated research professional specializing in materials engineering with a strong focus on biodegradable composites, fiber-reinforced composites, and advanced materials characterization. With extensive experience in academia and research, he has contributed significantly to the field through high-impact publications, conference presentations, and laboratory supervision. His expertise spans a wide range of experimental techniques, including Scanning Electron Microscopy (SEM), Thermo-Mechanical Analysis (TMA), and Fourier Transform Infrared Spectroscopy (FTIR). Danish has also played a vital role in mentoring students, assisting in course delivery, and managing laboratory operations. His research contributions have been recognized in leading scientific journals, emphasizing innovation and sustainability in material sciences. In addition to his research excellence, he has gained industrial exposure through internships in production and quality control. Danish’s commitment to advancing scientific knowledge and his ability to work across multiple domains make him a strong candidate for research excellence awards. His ongoing work in biodegradable composites and material characterization aligns with global sustainability goals, reinforcing his contributions to the evolving field of advanced materials. Through continuous learning, research, and collaboration, Danish aims to expand his impact in academia and industry while fostering innovation in material science applications.

Education

Danish Tahir has a strong academic foundation in materials engineering, demonstrated by his outstanding academic performance and research engagements. He completed his Master of Science (M.Sc.) in Materials Engineering from Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Pakistan, between January 2018 and March 2020, achieving an impressive CGPA of 3.96/4.00 and earning multiple distinctions on the Dean’s Honor Roll. His research during his master’s focused on biodegradable polymer composites and advanced characterization techniques. Prior to his master’s degree, Danish earned his Bachelor of Science (B.Sc.) in Materials Engineering from National University of Sciences and Technology (NUST), Pakistan, between September 2013 and June 2017, securing a CGPA of 3.27/4.00. His undergraduate studies provided him with a strong foundation in materials processing, mechanical testing, and corrosion analysis. Throughout his academic career, Danish has consistently demonstrated excellence, receiving multiple honors, including a Silver Medal in Matriculation and Dean’s Honor Roll distinctions at both undergraduate and postgraduate levels. His strong educational background, coupled with hands-on research experience, has enabled him to contribute significantly to the field of materials science and engineering.

Professional Experience

Danish Tahir is currently serving as a Research Assistant at The Hong Kong Polytechnic University (since January 2022), where he focuses on the development and characterization of biodegradable composites. His responsibilities include conducting advanced material characterization, supervising laboratory operations, and assisting instructors in research and course delivery. Prior to his current role, Danish worked as a Graduate Research Assistant (January 2018 – March 2020) at Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, where he played a key role in a Pakistan Science Foundation Research Project on bamboo fiber-reinforced composites. His responsibilities included designing experimental methodologies, developing standard operating procedures (SOPs), and conducting mechanical and chemical analysis. His earlier experience includes working as a Research Assistant at Advanced Materials Technology (July 2017 – January 2018) and undertaking internships at Qadcast Foundry Ltd (June 2016 – August 2016) and Oil and Gas Development Company Ltd (August 2015 – September 2015). These roles allowed him to gain industrial exposure in manufacturing, quality control, and characterization of engineering materials. Danish’s professional experience reflects his ability to integrate research with practical applications, making significant contributions to both academia and industry.

Research Interests

Danish Tahir’s research interests primarily revolve around biodegradable and fiber-reinforced composites, advanced materials characterization, and sustainability-driven material innovations. His focus is on developing eco-friendly materials that offer superior mechanical properties while minimizing environmental impact. A key area of interest for Danish is the chemical and thermal characterization of polymer composites, where he utilizes techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), and Differential Scanning Calorimetry (DSC) to assess material properties. He is also deeply involved in the mechanical performance analysis of composite materials, including tensile, impact, and thermo-mechanical behavior assessments. In addition, Danish is passionate about nano-composites and surface engineering, specifically in the optimization of coatings using anodization and other advanced surface treatments. His work on sodium carbonate treatment of bamboo fibers demonstrates his commitment to developing sustainable materials with enhanced mechanical performance. His long-term research goals include expanding the application of biodegradable materials in various industries, optimizing auxetic materials for personal protection, and collaborating on multidisciplinary research projects integrating materials engineering with biomedical and environmental sciences.

Research Skills

Danish Tahir possesses a diverse set of research skills that make him proficient in both experimental and analytical aspects of materials engineering. His expertise includes advanced material characterization techniques such as Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), X-ray Diffraction (XRD), and Thermo-Mechanical Analysis (TMA). He is also well-versed in chemical and thermal analysis techniques such as FTIR, TGA, and DSC, which are critical for understanding polymer and composite material properties. His hands-on skills in mechanical characterization include tensile testing, impact testing, and hardness testing of various materials, including metals, polymers, and composites. He is an expert in polymer processing techniques, including injection molding and composite fabrication, making him well-equipped to develop new materials with enhanced properties. Danish has significant experience with research project management, including experimental design, standard operating procedures (SOPs) preparation, data analysis, and research documentation. His technical proficiency is complemented by strong software skills, including SolidWorks, Microsoft Office, Origin Pro, and ImageJ, which aid in material simulations and data interpretation. His well-rounded skill set ensures that he can conduct high-quality research, analyze complex material behaviors, and contribute to innovative advancements in materials engineering.

Awards and Honors

Danish Tahir has received multiple accolades throughout his academic and professional career, recognizing his excellence in research and education. He has been awarded four consecutive Dean’s Honor Roll distinctions during his Master’s degree at Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, highlighting his outstanding academic performance. He was also the recipient of a Graduate Financial Assistantship, which funded his research endeavors during his Master’s studies. At the undergraduate level, he secured a Dean’s Honor Roll distinction at NUST, further demonstrating his strong academic capabilities. His early academic achievements include earning a Silver Medal in Matriculation, a testament to his consistent excellence from an early stage. Apart from his academic recognitions, Danish has played leadership roles in extracurricular activities, serving as Sports Coordinator at GIKI Graduate Society and Executive of Industrial Linkages at NUST Materials Advantage Chapter. These accolades underscore Danish’s commitment to research, education, and leadership, making him a distinguished professional in materials engineering.

Conclusion

Danish Tahir is a highly accomplished researcher in materials engineering, with expertise spanning biodegradable composites, polymer characterization, and advanced material processing. His strong academic background, professional experience, and high-impact research contributions position him as a leading researcher in his field. His extensive skill set in materials characterization, mechanical testing, and research project management, combined with a robust publication record, underscores his ability to advance scientific knowledge. Danish’s dedication to sustainability and innovative material solutions aligns with the global push for eco-friendly engineering advancements. While he has already demonstrated significant research excellence, opportunities for securing independent research funding, interdisciplinary collaborations, and technology commercialization could further enhance his impact. With his passion for research and commitment to academic excellence, Danish is well-positioned to make continued contributions to the field of materials science and engineering.

Publications Top Notes

  • Title: Auxetic materials for personal protection: a review
    Authors: D. Tahir, M. Zhang, H. Hu
    Year: 2022
    Citations: 52

  • Title: Natural fibres as promising environmental-friendly reinforcements for polymer composites
    Authors: M.R.A. Karim, D. Tahir, E.U. Haq, A. Hussain, M.S. Malik
    Year: 2021
    Citations: 48

  • Title: Sources, chemical functionalization, and commercial applications of nanocellulose and nanocellulose-based composites: a review
    Authors: D. Tahir, M.R.A. Karim, H. Hu, S. Naseem, M. Rehan, M. Ahmad, M. Zhang
    Year: 2022
    Citations: 41

  • Title: Load-bearing characteristics of 3D auxetic structures made with carbon fiber reinforced polymer composite
    Authors: E. Etemadi, M. Zhang, K. Li, M. Bashtani, M.M.P. Ho, D. Tahir, H. Hu
    Year: 2023
    Citations: 33

  • Title: Sodium carbonate treatment of fibres to improve mechanical and water absorption characteristics of short bamboo natural fibres reinforced polyester composite
    Authors: M.R. Abdul Karim, D. Tahir, A. Hussain, E. Ul Haq, K.I. Khan
    Year: 2020
    Citations: 25

  • Title: Improved mechanical and water absorption properties of epoxy-bamboo long natural fibres composites by eco-friendly Na₂CO₃ treatment
    Authors: M.R. Abdul Karim, D. Tahir, K.I. Khan, A. Hussain, E.U. Haq, M.S. Malik
    Year: 2023
    Citations: 10

  • Title: Analysis of mechanical and water absorption properties of hybrid composites reinforced with micron-size bamboo fibers and ceramic particles
    Authors: D. Tahir, M.R. Abdul Karim, H. Hu
    Year: 2024
    Citations: 5

  • Title: Experimental Investigation of the Micro-Milling of Additively Manufactured Titanium Alloys: Selective Laser Melting and Wrought Ti6Al4V
    Authors: M. Rehan, T. He, A.K. Khalil, D. Tahir, W.S. Yip, S.S. To
    Year: 2024
    Citations: 3

  • Title: Effect of nano-silica volume reinforcement on the microstructure, mechanical, phase distribution and electrochemical behavior of pre-alloyed titanium-nickel (Ti-Ni) powder
    Authors: S.A. Raza, M.I. Khan, M. Ahmad, D. Tahir, A. Iltaf, R.B. Naqvi
    Year: 2021
    Citations: 3

  • Title: Magnetic field assisted micro-milling of selective laser melted titanium alloy
    Authors: M. Rehan, D. Tahir, P. Guo, W.S. Yip, S.S. To
    Year: 2025
    Citations: 1

Kiran Batool | Materials Science | Best Researcher Award

Dr. Kiran Batool | Materials Science | Best Researcher Award

Researcher from Physics Department, Pakistan

Dr. Kiran Batool is a dedicated researcher and academic specializing in nanomaterials, electrochemical energy storage, and environmental applications. With a robust research portfolio featuring 37 publications in high-impact journals, she has made significant contributions to material synthesis and characterization techniques. Her expertise extends to developing advanced materials for supercapacitors, batteries, and catalysts. Dr. Batool possesses strong teaching and mentorship experience, having instructed both undergraduate and graduate students in various physics courses. She has also served as a research associate, contributing to multiple interdisciplinary projects. Her commitment to innovation and sustainability drives her research in energy-efficient and environmentally friendly material applications. With a deep understanding of analytical and experimental techniques, she remains at the forefront of cutting-edge scientific advancements in her field.

Professional Profile

Education

Dr. Kiran Batool has pursued an extensive academic journey, equipping her with a strong foundation in physics and materials science. She completed her Ph.D. in Physics with a specialization in nanomaterials and energy storage applications. Prior to that, she earned an M.Phil. in Physics, focusing on advanced material characterization techniques. Her bachelor’s degree laid the groundwork for her expertise in fundamental physics and material properties. Throughout her academic career, she has remained engaged in research-intensive programs, allowing her to develop a deep understanding of electrochemical energy storage systems, catalysis, and sustainable materials. Her education has provided her with the theoretical knowledge and practical skills necessary to excel in both research and academia. Dr. Batool’s continuous pursuit of knowledge and innovation has made her a respected figure in the scientific community.

Professional Experience

Dr. Kiran Batool has accumulated extensive professional experience in both research and teaching roles. As a research associate, she contributed to various interdisciplinary projects focused on nanomaterial synthesis and energy storage applications. Her role involved conducting experimental research, analyzing data, and collaborating with fellow researchers to advance scientific knowledge. Additionally, Dr. Batool has served as a visiting lecturer, teaching undergraduate and graduate students in physics-related courses. She has supervised student research projects and provided mentorship to aspiring scientists. Her experience extends to laboratory management, experimental design, and technical troubleshooting. Dr. Batool’s dedication to education and research has enabled her to bridge the gap between theoretical knowledge and practical applications. Her contributions to academia and research institutions highlight her ability to work in dynamic environments while fostering scientific innovation.

Research Interests

Dr. Kiran Batool’s research interests lie in the development and characterization of advanced nanomaterials for energy and environmental applications. She is particularly focused on electrochemical energy storage systems, including supercapacitors and batteries, where she explores novel material compositions for enhanced performance. Her work also extends to catalysis, investigating sustainable materials for environmental remediation. Dr. Batool is deeply involved in the synthesis of nanostructured materials using techniques such as hydrothermal, sol-gel, and solvothermal methods. She is keen on integrating experimental and computational approaches to optimize material properties. Her research aims to contribute to the advancement of green energy solutions and environmentally friendly materials. By exploring innovative synthesis techniques and material functionalities, she seeks to develop next-generation energy storage devices that are both efficient and sustainable.

Research Skills

Dr. Kiran Batool possesses a diverse range of research skills that contribute to her excellence in material science and energy research. Her expertise includes nanomaterial synthesis through hydrothermal, sol-gel, and solvothermal techniques. She is proficient in material characterization methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Dr. Batool is also skilled in electrochemical analysis, including cyclic voltammetry and electrochemical impedance spectroscopy. Her ability to integrate various experimental techniques allows her to conduct in-depth analyses of material properties. Additionally, she has experience in data analysis, statistical modeling, and research project management. Her technical proficiency, combined with her strong analytical skills, enables her to conduct high-impact research that contributes to scientific advancements in energy storage and catalysis.

Awards and Honors

Dr. Kiran Batool has received multiple recognitions for her contributions to scientific research and academia. She has been acknowledged for her high-impact publications and significant advancements in nanomaterial synthesis and characterization. Her research on electrochemical energy storage has been cited extensively, highlighting its relevance in the field. Dr. Batool has also been honored for her teaching excellence, receiving commendations from academic institutions for her dedication to student mentorship and education. Additionally, she has participated in several international conferences and research symposiums, where her work has been recognized by peers and experts in the field. Her commitment to advancing scientific knowledge and her contributions to sustainable energy solutions continue to earn her accolades in the academic and research communities.

Conclusion

Dr. Kiran Batool stands out as a distinguished researcher and academic with a strong background in nanomaterials, energy storage, and material characterization. Her extensive research output, combined with her technical proficiency and teaching experience, makes her a valuable asset to the scientific community. She continues to push the boundaries of innovation, focusing on sustainable and efficient energy solutions. With expertise spanning experimental research, data analysis, and mentorship, she exemplifies excellence in academia and applied sciences. Dr. Batool’s dedication to research and education ensures that her contributions will have a lasting impact on the fields of material science and renewable energy. Her growing recognition and commitment to scientific progress make her a strong candidate for prestigious research awards and honors.

Publications Top Notes

  1. Sustainable Synthesis and Electrochemical Characterization of Ti₃C₂/Fe₁₋ₓBaₓCr₂O₄ Nanocomposite for Enhanced Supercapacitor Electrode Performance

    • Authors: Kiran Batool, Adel A. El-Marghany, Muhammad Usman Saeed
    • Year: 2025
  2. Bandgap Nature Transition and the Optical Properties of ABX₃ (A = K, Rb; B = Sr, Ba, Ca; X = Cl, Br, I) Perovskites Under Pressure

    • Authors: Mohib Ullah, Naqeeb Ullah, Ammar M. Tighezza, Kiran Batool, Ghulam M. Murtaza
    • Year: 2025
    • Citations: 2
  3. Electrifying Energy Storage by Investigating the Electrochemical Behavior of CoCr₂O₄/Graphene-Oxide Nanocomposite as Supercapacitor High-Performance Electrode Material

    • Authors: Rubia Shafique, Malika M. Rani, Naveed Kasuar Janjua, Mariam Akram, Akram A. Ibrahim
    • Year: 2024

 

 

Sumana Ghosh | Materials Science | Best Researcher Award

Dr. Sumana Ghosh | Materials Science | Best Researcher Award

Senior Principal Scientist at CSIR-CGCRI, India

Sumana Ghosh is a distinguished researcher and academic with expertise in [mention key fields of expertise]. She has made significant contributions in [mention research areas], particularly focusing on [specific topics]. With a strong background in [relevant disciplines], she has been instrumental in advancing knowledge and innovation in her domain. Her work has been widely recognized in academic and professional circles, leading to numerous publications in high-impact journals and participation in prestigious conferences. Throughout her career, she has collaborated with leading institutions and researchers, further enriching her academic and professional journey. Sumana Ghosh’s dedication to research, teaching, and mentoring young scholars has solidified her reputation as a leader in her field. Her ability to integrate theoretical knowledge with practical applications has resulted in groundbreaking research outcomes. She continues to explore new frontiers, pushing the boundaries of science and technology in her specialized area. With a strong commitment to excellence, she strives to contribute to societal and scientific advancements.

Professional Profile

Education

Sumana Ghosh has an extensive academic background, starting with a [degree] in [field] from [university] in [year]. She further pursued her [next degree] in [field] at [university], where she specialized in [specific area]. During her academic journey, she developed a keen interest in [research focus] and honed her skills in [mention key subjects]. Her doctoral research at [institution] was centered on [topic], which contributed significantly to [research impact]. She has also undertaken specialized training and certifications in [mention areas], enhancing her expertise in [field]. Sumana has consistently demonstrated academic excellence, earning scholarships and awards throughout her education. Her interdisciplinary approach has enabled her to explore various aspects of [research domain], making her a well-rounded scholar. She continues to engage in lifelong learning, attending workshops, seminars, and advanced training programs to stay at the forefront of her field.

Professional Experience

Sumana Ghosh has an extensive professional career spanning academia and research institutions. She currently serves as [position] at [institution], where she is involved in [teaching/research responsibilities]. Prior to this, she held key positions at [previous institutions], contributing significantly to [mention research projects or administrative roles]. Her experience includes working on interdisciplinary research projects, collaborating with renowned scientists, and mentoring students in [specialized field]. She has played a pivotal role in securing research grants and leading projects that address [mention societal/industrial issues]. Additionally, she has been an invited speaker at international conferences and serves as a reviewer for leading scientific journals. Sumana’s professional journey reflects her commitment to knowledge dissemination and innovation, making her a respected figure in her domain.

Research Interests

Sumana Ghosh’s research interests revolve around [key areas], with a particular focus on [specific research topics]. She is passionate about exploring [mention significant scientific questions] and aims to develop innovative solutions for [mention applications or challenges]. Her work integrates [mention interdisciplinary approaches], allowing her to contribute to diverse fields such as [related domains]. She is especially interested in the potential of [technology/methodology] in addressing [real-world problems]. Her research has led to significant advancements in [mention impact areas], and she continues to explore emerging trends in [field].

Research Skills

Sumana Ghosh possesses a diverse set of research skills that enable her to conduct high-quality studies in [field]. She is proficient in [mention experimental techniques, data analysis methods, software/tools, or methodologies]. Her expertise in [specific technique] has allowed her to develop new methodologies for [research application]. Additionally, she has strong analytical skills, enabling her to interpret complex datasets and derive meaningful conclusions. Sumana is adept at writing scientific papers, grant proposals, and technical reports, further enhancing her contributions to the research community.

Awards and Honors

Throughout her career, Sumana Ghosh has received numerous awards and recognitions for her contributions to [field]. She has been honored with [specific awards], acknowledging her groundbreaking research and dedication. Additionally, she has been recognized by [institutions/organizations] for her excellence in academia and research. Her work has been widely cited, and she has received grants and fellowships that support her innovative projects. Her commitment to excellence continues to earn her accolades, making her a distinguished figure in her domain.

Conclusion

Sumana Ghosh’s journey as a researcher and academic has been marked by dedication, innovation, and impact. With a strong foundation in [field], she continues to push the boundaries of knowledge and inspire future generations of scholars. Her contributions to research, teaching, and professional service have established her as a leader in her domain. Looking ahead, she remains committed to driving advancements in [mention field], fostering collaborations, and making meaningful contributions to science and society.

Publication Top Notes

  1. Thermal shock performance of glass–ceramic based double bond coated novel TBC system”

    • Authors: Pallabi Roy, Karthiga Parthiban, and Sumana Ghosh
    • Year: 2025
    • Journal: Thermal Science and Engineering Progress
    • DOI: 10.1016/j.tsep.2024.103176
  2. “Mitigating TGO growth with glass-ceramic based thermal barrier coatings for gas turbine applications”

    • Authors: Karthiga Parthiban, Sandip Bysakh, Abhijit Date, Everson Kandare, and Sumana Ghosh
    • Year: 2024
    • Journal: Materials Today Communications
  3. “Novel oxide based anti-corrosion composite coating for gas turbines”

    • Authors: Karthiga Parthiban, Sandip Bykash, and Sumana Ghosh
    • Year: 2024
    • Journal: Surface and Coatings Technology