Mr. Seyed Sepehr Mohseni | Engineering | Best Researcher Award
University of Tehran from Switzerland.
Seyed Sepehr Mohseni is a biomedical engineer specializing in microfluidics, microfabrication, and biomechanics. With a keen interest in developing innovative microfluidic platforms for biological and clinical applications, his research addresses vital issues in cell sorting, cancer diagnostics, and organ-on-a-chip technologies. Having completed both his Bachelor’s and Master’s degrees with distinction in biomedical engineering, he has already contributed to several high-impact journal articles and conference presentations. His master’s thesis focused on the separation of circulating tumor cells (CTCs) using a novel arc-shaped microfluidic channel, which showcases his strength in problem-solving and innovation. Beyond academia, he has volunteered as a technical expert in the medical device field and worked on collaborative research projects involving cell culture and biosensor development. Seyed Sepehr’s combined academic excellence, laboratory expertise, and interdisciplinary research experience reflect his deep commitment to advancing biomedical technologies. His work not only aligns with current trends in healthcare engineering but also holds significant potential for clinical impact. As a young researcher with a growing international presence, he demonstrates strong potential for leadership in biomedical research. He is well-positioned for prestigious recognitions such as the Best Researcher Award, owing to his innovative contributions and academic accomplishments in a relatively short span.
Professional Profile
Education
Seyed Sepehr Mohseni holds a Master of Science in Biomedical Engineering with a specialization in Biomechanics from the University of Tehran, Iran. He pursued his postgraduate studies at the Faculty of New Sciences and Technologies, completing his degree in July 2021. His master’s thesis, titled “CTCs separation by an obstacles-embedded arc-shaped microfluidic channel”, was awarded an excellent grade of 20/20, under the supervision of Dr. Ali Abouei Mehrizi. He graduated with a total GPA of 18.03/20, reflecting consistent academic performance across advanced engineering courses, including finite element methods, continuum mechanics, and biological modeling. Prior to that, he earned his Bachelor of Science in Biomedical Engineering, also in Biomechanics, from the Science and Research Branch of Islamic Azad University in Tehran, graduating in 2017. He maintained a strong GPA of 18.51/20 and ranked second among his cohort. Throughout both degrees, Seyed Sepehr showed an aptitude for interdisciplinary learning, bridging biology with engineering fundamentals. His academic record is supported by top national rankings in university entrance examinations, highlighting his early dedication to academic excellence and biomedical innovation. These achievements laid the foundation for his advanced research in microfluidics and device development for healthcare applications.
Professional Experience
Seyed Sepehr Mohseni has amassed a diverse portfolio of professional and research-oriented experiences that complement his academic training. During his postgraduate studies, he actively contributed to laboratory-based research at the Bio-Microfluidics Lab at the University of Tehran. His responsibilities included hands-on work with microfluidic device fabrication, droplet generators, cell sorting platforms, and fluorescence microscopy. He also served as a teaching assistant across multiple core engineering courses, including finite element methods, biomechanics, and biological system simulations, under the mentorship of Dr. Ali Abouei Mehrizi. In addition to his academic roles, Seyed Sepehr has gained industry-relevant experience. From 2019 to 2023, he worked as a technical expert at Setareh Kimia Persian Engineering Company, where he specialized in calibrating medical and laboratory devices. He also served as a technical supervisor for medical equipment importers and manufacturers with the General Directorate of Medical Equipment in Iran. In 2023, he joined a project at Iran University of Medical Sciences, focusing on the isolation of circulating tumor cells from blood samples, further integrating clinical applications with his engineering expertise. This breadth of experience reflects his ability to bridge research, industry, and healthcare regulation—key elements of a well-rounded biomedical professional.
Research Interest
Seyed Sepehr Mohseni’s research interests are centered around the development and application of microfluidic technologies in biomedical engineering. He is particularly focused on microfabrication, organ-on-a-chip systems, and cell culture platforms, aiming to address challenges in diagnostics, therapeutic monitoring, and disease modeling. His graduate thesis on CTC separation using an arc-shaped deterministic lateral displacement microchannel highlights his interest in cancer research and lab-on-a-chip solutions for non-invasive diagnostics. His scientific curiosity extends to biosensing applications, including the use of porous silicon integrated microchannels and reflectometric interference Fourier transform spectroscopy. He is also interested in biomaterials and hydrogel-based tissue engineering, as demonstrated in collaborative projects involving VEGF delivery systems and bone regeneration scaffolds. Seyed Sepehr’s interdisciplinary perspective allows him to combine mechanical design principles with biological applications, making his research highly relevant to current needs in precision medicine. With a growing interest in organ-on-a-chip and microfluidics-enabled point-of-care testing, his long-term vision involves developing platforms that enhance personalized healthcare. His research is aligned with global trends in translational medicine, aiming to move scientific innovation from the lab bench to clinical practice. This strong alignment of technical knowledge with clinical relevance defines his growing impact in the biomedical field.
Research Skills
Seyed Sepehr Mohseni brings a comprehensive set of research skills that span both computational and experimental domains in biomedical engineering. He is highly proficient in using simulation and modeling software such as COMSOL Multiphysics, MATLAB, ABAQUS, and Ansys Fluent, which he applies in the design and analysis of microfluidic devices and biomechanical systems. His academic background is strengthened by a deep understanding of finite element methods, continuum mechanics, and biological system simulations. In the laboratory, Seyed Sepehr has advanced expertise in microfabrication techniques such as photolithography and soft lithography. He has operated and analyzed microfluidic systems involving droplet generation, micromixing, and cell separation. His work is supported by imaging techniques, including fluorescence and confocal microscopy, as well as experience in 3D bioprinting and mammalian cell culture. These laboratory skills were honed through years of hands-on experience in the Bio-Microfluidics Lab at the University of Tehran. Additionally, he is adept in data visualization and analysis software such as Origin, Tracker, and ImageJ/Fiji, along with graphic design tools like Adobe Photoshop and Illustrator. His interdisciplinary competence allows him to transition smoothly from computational modeling to experimental implementation, which is essential for innovative research in biomedical device development.
Awards and Honors
Seyed Sepehr Mohseni has received multiple academic distinctions that reflect his high level of competence and commitment to biomedical engineering. In 2021, he was ranked first among the 2018 M.Sc. entrants in Biomedical Engineering at the Faculty of New Sciences and Technologies, University of Tehran. This recognition is a testament to his consistent academic excellence and outstanding performance in research-based coursework and laboratory activities. Earlier in his academic journey, he achieved second rank among all undergraduate entrants in Biomedical Engineering at Islamic Azad University in 2014. More notably, in the same year, he was ranked in the top 1% of participants in Iran’s highly competitive national university entrance exam for M.Sc. programs in Mechanical Engineering. These achievements highlight his intellectual rigor and early promise as a future leader in engineering research. His consistent high GPA throughout his academic career and the excellent grade for his master’s thesis further reinforce his qualifications. These honors, combined with his publication record in high-impact journals and active involvement in innovative research, make him a strong candidate for recognition through awards such as the Best Researcher Award. They confirm both his academic credibility and his potential to contribute significantly to the field.
Conclusion
In conclusion, Seyed Sepehr Mohseni stands out as a dedicated and innovative biomedical researcher with a strong foundation in both theory and practical application. His focused research on microfluidic systems, cell sorting technologies, and biosensing reflects a clear vision for solving contemporary challenges in healthcare engineering. He has already made meaningful contributions to the field through his publications, laboratory innovations, and cross-disciplinary collaborations. While his professional experience is still developing, it includes diverse roles in teaching, laboratory research, and clinical collaboration—all of which enrich his research profile. His ability to integrate engineering design with biological functionality demonstrates a maturity of thought uncommon in early-career researchers. Although he is yet to pursue a doctoral degree or lead large-scale independent projects, his current trajectory strongly suggests readiness for further academic advancement and leadership roles in biomedical research. Seyed Sepehr’s academic performance, technical expertise, and innovative outlook make him an ideal candidate for competitive research honors. The Best Researcher Award would not only recognize his current accomplishments but also encourage and support a promising career that is likely to yield significant impact in translational medicine and biomedical device development.
Publications Top Notes
-
Title: Preparation of microfluidic-based pectin microparticles loaded carbon dots conjugated with BMP-2 embedded in gelatin-elastin-hyaluronic acid hydrogel scaffold for bone tissue
Authors: F. Moztarzadeh, M. Farokhi, A.A. Mehrizi, H. Basiri, S.S. Mohseni
Journal: International Journal of Biological Macromolecules
Volume/Page: 184, 29–41
Year: 2021
Citations: 60 -
Title: Machine learning-aided microdroplets breakup characteristic prediction in flow-focusing microdevices by incorporating variations of cross-flow tilt angles
Authors: B. Talebjedi, A. Abouei Mehrizi, B. Talebjedi, S.S. Mohseni, N. Tasnim, …
Journal: Langmuir
Volume/Issue/Page: 38 (34), 10465–10477
Year: 2022
Citations: 14 -
Title: Microfluidic platforms for cell sorting
Authors: F. Mirakhorli, S.S. Mohseni, S.R. Bazaz, A.A. Mehrizi, P.J. Ralph, M.E. Warkiani
Journal: Sustainable Separation Engineering: Materials, Techniques and Process
Year: 2022
Citations: 12 -
Title: A Novel Strategy for Square-Wave Micromixers: A Survey of RBC Lysis for Further Biological Analysis
Authors: A.H. Hazeri, A. Abouei Mehrizi, S.S. Mohseni, M. Ebrahimi Warkiani, …
Journal: Industrial & Engineering Chemistry Research
Volume/Issue/Page: 62 (40), 16215–16224
Year: 2023
Citations: 6 -
Title: Composite Microgels for Imaging-Monitored Tracking of the Delivery of Vascular Endothelial Growth Factor to Ischemic Muscles
Authors: H. Basiri, S.S. Mohseni, A. Abouei Mehrizi, A. Rajabnejadkeleshteri, …
Journal: Biomacromolecules
Volume/Issue/Page: 22 (12), 5162–5172
Year: 2021
Citations: 4 -
Title: Flow rate controlling by capillary micropumps in open biomicrofluidic devices
Authors: S. Fathi, S.S. Mohseni, A.A. Mehrizi
Conference: 2020 27th National and 5th International Iranian Conference on Biomedical Engineering
Year: 2020
Citations: 4 -
Title: A novel microfluidic platform for MCF-7 separation: Arc-shaped deterministic lateral displacement microchannel
Authors: S.S. Mohseni, A.A. Mehrizi, S. Fathi
Journal: Microchemical Journal
Volume/Page: 211, 113076
Year: 2025