Qijing Wang | Materials Science | Best Researcher Award

Assist. Prof. Dr. Qijing Wang | Materials Science | Best Researcher Award

Assistant Professor from Nanjing University, China

Dr. Qijing Wang is a dedicated and rapidly emerging scholar in the field of organic electronics. Currently serving as an Assistant Professor at the School of Integrated Circuits, Nanjing University, he has quickly built a reputation for impactful research in charge transport and device physics, particularly in organic field-effect transistors (OFETs). His academic journey has been marked by continuous excellence, with all degrees obtained from the prestigious Nanjing University. Dr. Wang’s scholarly work reflects a deep understanding of electronic science and its applications in advanced materials and device engineering. He has authored several high-impact publications in internationally recognized journals such as Advanced Functional Materials, Small Methods, and ACS Applied Materials & Interfaces. Additionally, his commitment to international collaboration was evident through his postdoctoral research at the University of Cambridge, where he worked under Prof. Henning Sirringhaus. Dr. Wang’s achievements have been recognized through competitive fellowships and national awards, making him a strong candidate for research excellence honors. His career reflects a balanced blend of theoretical knowledge, experimental proficiency, and innovation. As a young academic, Dr. Wang exemplifies the qualities of a future leader in his field, contributing meaningfully to both the academic community and technological advancement in integrated circuits.

Professional Profile

Education

Dr. Qijing Wang received his formal education entirely at Nanjing University, one of China’s premier institutions for science and engineering. He earned his Bachelor of Science degree in Physics in 2012, laying a robust foundational understanding of physical principles that later supported his advanced research in electronics. Building upon his undergraduate education, he pursued a doctoral degree in Electronic Science and Technology at the same university, completing his Ph.D. in 2018. His doctoral studies focused on charge transport mechanisms and the performance enhancement of organic field-effect transistors (OFETs), a research area that positioned him to contribute to cutting-edge developments in organic electronics. Throughout his education, Dr. Wang demonstrated not only academic excellence but also an ability to integrate theoretical physics with practical device engineering. His time as a student at Nanjing University allowed him access to state-of-the-art laboratories, advanced instrumentation, and renowned faculty mentors. These resources equipped him with the skills necessary for conducting high-quality research and developing independent scientific thought. His educational background provides a strong interdisciplinary framework, combining elements of physics, materials science, and electronics, which continues to underpin his professional and academic accomplishments today.

Professional Experience

Dr. Qijing Wang currently serves as an Assistant Professor at the School of Integrated Circuits, Nanjing University. His academic appointment follows a successful tenure as a postdoctoral researcher, during which he significantly contributed to projects on the charge transport and structural optimization of organic semiconductors. As a postdoctoral fellow at Nanjing University, he was selected for the Postdoctoral Innovative Talent Support Program Grant—a highly competitive national program recognizing early-career researchers with exceptional promise. This achievement underscores his ability to undertake independent, innovative research in electronic materials. Further expanding his academic horizon, Dr. Wang spent a period as a visiting postdoctoral researcher at the University of Cambridge, collaborating with Prof. Henning Sirringhaus, a global authority in organic electronics. This international experience enhanced his expertise and enabled cross-border academic engagement. In his current role, Dr. Wang is involved in both teaching and research, mentoring undergraduate and graduate students while leading projects that address challenges in next-generation transistor design. His professional experience reflects a clear progression from student to postdoctoral scholar to independent academic, marked by increasing responsibility, international collaboration, and recognized contributions to the scientific community.

Research Interests

Dr. Qijing Wang’s research interests lie primarily in the field of organic electronics, with a specific focus on charge transport and device physics in organic field-effect transistors (OFETs). He is deeply engaged in exploring the fundamental physical mechanisms that govern the performance of organic semiconductors, aiming to enhance their electronic properties for real-world applications. His work bridges the gap between materials science and circuit-level engineering, addressing both theoretical and experimental challenges. Dr. Wang is particularly interested in the molecular engineering of organic materials to improve charge mobility, stability, and environmental compatibility of OFETs. Additionally, his research encompasses the interface physics between organic materials and metal contacts, dielectric engineering, and nanoscale fabrication techniques. With a growing interest in flexible and wearable electronics, Dr. Wang’s work is increasingly interdisciplinary, contributing to the development of next-generation electronics with applications in healthcare, consumer electronics, and energy devices. His research trajectory demonstrates a commitment to pushing the boundaries of what is possible in organic semiconductors, offering valuable insights into material-device correlations and design strategies. This integrated approach has enabled him to publish in top-tier journals and positions him as a key contributor to the evolution of high-performance, low-cost electronic devices.

Research Skills

Dr. Qijing Wang possesses a comprehensive set of research skills that enable him to excel in the field of organic electronics. His expertise spans both experimental and theoretical domains, particularly in charge transport phenomena, thin-film transistor fabrication, and organic material characterization. He is skilled in using advanced characterization techniques such as atomic force microscopy (AFM), scanning electron microscopy (SEM), and X-ray diffraction (XRD) to analyze material morphology and structure. In terms of electrical performance, he is proficient in using probe stations and semiconductor parameter analyzers for the precise evaluation of transistor characteristics. Dr. Wang also demonstrates strong competencies in molecular design and solution processing techniques, including spin-coating and inkjet printing, which are essential for developing high-performance OFETs. During his postdoctoral research, he honed his ability to conduct independent experiments, manage collaborative projects, and analyze complex data sets. His international research experience at the University of Cambridge also strengthened his adaptability, scientific communication, and teamwork abilities. Furthermore, he is well-versed in using software tools for data modeling, statistical analysis, and device simulation. These technical proficiencies, combined with his innovative mindset, make him a versatile researcher capable of addressing diverse challenges in materials science and device engineering.

Awards and Honors

Dr. Qijing Wang has received notable recognition for his academic and research excellence early in his career. Among his most prestigious honors is the Postdoctoral Innovative Talent Support Program Grant, awarded during his tenure as a postdoctoral fellow at Nanjing University. This national-level fellowship is one of the most competitive and selective programs in China, aimed at identifying and supporting highly promising early-career researchers. Receiving this grant not only highlights Dr. Wang’s research potential but also affirms his capacity to drive independent and impactful scientific inquiries. His selection for a Visiting Postdoctoral Researcher position at the University of Cambridge further underscores his standing in the academic community. This opportunity allowed him to collaborate with leading researchers in organic electronics and broaden his research capabilities in an international environment. In addition to these distinctions, Dr. Wang’s work has been featured in high-impact journals, signaling peer recognition and scholarly merit. These awards and honors are not only commendations of past achievements but also indicators of his future contributions to science and technology. They reflect his ongoing dedication to innovation, academic excellence, and leadership in the field of organic electronic devices.

Conclusion

In summary, Dr. Qijing Wang stands out as an accomplished and innovative researcher in the domain of organic electronics. His academic foundation, built at Nanjing University, has been enriched through nationally and internationally recognized research experiences. With a focus on organic field-effect transistors, he has made significant strides in understanding and optimizing charge transport mechanisms, contributing valuable knowledge to both academia and industry. His achievements, including high-impact publications and prestigious fellowships, highlight his commitment to scientific rigor and originality. Dr. Wang combines deep technical expertise with a collaborative and forward-thinking approach, evidenced by his research visit to the University of Cambridge and active engagement in interdisciplinary projects. While still early in his academic career, he has shown the qualities of a future leader—innovative thinking, strong communication skills, and a clear vision for advancing technology. Continued emphasis on research leadership roles, mentorship, and broader application of his findings will further enhance his impact. Overall, Dr. Wang is a highly deserving candidate for the Best Researcher Award, with demonstrated excellence and the potential for continued breakthroughs in electronic materials and device research.

Publications Top Notes

  • Additive-assisted “metal-wire-gap” process for N-type two-dimensional organic crystalline films
    Authors: Yang, C.; Qian, J.; Wang, Q.; Jiang, S.; Duan, Y.; Wang, H.; Dai, H.; Li, Y.
    Year: 2019

  • PJ-Level Energy-Consuming, Low-Voltage Ferroelectric Organic Field-Effect Transistor Memories
    Authors: Pei, M.; Qian, J.; Jiang, S.; Guo, J.; Yang, C.; Pan, D.; Wang, Q.; Wang, X.; Shi, Y.; Li, Y.
    Year: 2019

  • Two-dimensional organic materials and their electronic applications
    Authors: Wang, H.; Wang, Q.; Li, Y.
    Year: 2019

  • Interfacial Flat-Lying Molecular Monolayers for Performance Enhancement in Organic Field-Effect Transistors
    Authors: Wang, Q.; Jiang, S.; Qiu, L.; Qian, J.; Ono, L.K.; Leyden, M.R.; Wang, X.; Shi, Y.; Zheng, Y.; Qi, Y. et al.
    Year: 2018

  • Millimeter-Sized Two-Dimensional Molecular Crystalline Semiconductors with Precisely Defined Molecular Layers via Interfacial-Interaction-Modulated Self-Assembly
    Authors: Jiang, S.; Qian, J.; Duan, Y.; Wang, H.; Guo, J.; Guo, Y.; Liu, X.; Wang, Q.; Shi, Y.; Li, Y.
    Year: 2018

  • Spin-Coated Crystalline Molecular Monolayers for Performance Enhancement in Organic Field-Effect Transistors
    Authors: Wang, Q.; Juarez-Perez, E.J.; Jiang, S.; Qiu, L.; Ono, L.K.; Sasaki, T.; Wang, X.; Shi, Y.; Zheng, Y.; Qi, Y. et al.
    Year: 2018

  • Temperature dependence of piezo- and ferroelectricity in ultrathin P(VDF-TrFE) films
    Authors: Qian, J.; Jiang, S.; Wang, Q.; Yang, C.; Duan, Y.; Wang, H.; Guo, J.; Shi, Y.; Li, Y.
    Year: 2018

  • Unveiling the piezoelectric nature of polar α-phase P(VDF-TrFE) at quasi-two-dimensional limit
    Authors: Qian, J.; Jiang, S.; Wang, Q.; Zheng, S.; Guo, S.; Yi, C.; Wang, J.; Wang, X.; Tsukagoshi, K.; Shi, Y. et al.
    Year: 2018

  • Directly writing 2D organic semiconducting crystals for high-performance field-effect transistors
    Authors: Zhang, Y.; Guo, Y.; Song, L.; Qian, J.; Jiang, S.; Wang, Q.; Wang, X.; Shi, Y.; Wang, X.; Li, Y.
    Year: 2017

  • Low-voltage, High-performance Organic Field-Effect Transistors Based on 2D Crystalline Molecular Semiconductors
    Authors: Wang, Q.; Jiang, S.; Qian, J.; Song, L.; Zhang, L.; Zhang, Y.; Zhang, Y.; Wang, Y.; Wang, X.; Shi, Y. et al.
    Year: 2017

Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Dr. Tarek Naadia | Materials Science | Sustainable Engineering Leadership Award

Lecturer researcher from Polytechnic School of Architecture and Urban Planning EPAU, Algeria

Dr. NAADIA Tarek is an accomplished Associate Professor in Civil Engineering with a specialization in the mechanics and rheology of self-compacting concrete. Holding a University Habilitation awarded in 2021 from USTHB, she is a respected teacher-researcher affiliated with the Polytechnic School of Architecture and Urbanism (EPAU) and a key member of the Civil Engineering Laboratory (LBE). Her work focuses on advancing sustainable construction materials, particularly optimizing the performance and flow properties of steel fiber reinforced self-compacting concrete using innovative experimental design techniques. Dr. Tarek’s research outputs have been published in high-impact journals, emphasizing both the mechanical and rheological characteristics of eco-friendly concrete formulations incorporating industrial by-products such as tuff and marble powders. She combines rigorous scientific methodology with practical applications that support the development of greener, more durable building materials. Throughout her academic career, Dr. Tarek has demonstrated a commitment to excellence in research, teaching, and collaborative innovation within the civil engineering community. Her expertise aligns well with global efforts to promote sustainability in infrastructure development and materials science. Dr. Tarek’s contributions position her as a valuable leader in sustainable engineering research, with a growing impact on both regional and international levels.

Professional Profile

Education

Dr. NAADIA Tarek completed her highest academic qualification with a University Habilitation in Civil Engineering, awarded on January 21, 2021, at the University of Science and Technology Houari Boumediene (USTHB). This qualification represents a significant academic milestone, signifying her capability to conduct independent research, supervise doctoral students, and contribute original knowledge to her field. Her educational journey has been deeply rooted in civil engineering, with a particular focus on materials science and mechanics. Although specific earlier degrees are not listed, the habilitation level indicates advanced expertise beyond the doctoral level, underscoring her extensive research experience and academic maturity. The habilitation also reflects a comprehensive understanding of both theoretical foundations and applied techniques related to concrete rheology, material optimization, and sustainable construction technology. Her educational background equips her with the tools necessary to drive innovation in civil engineering and to influence the development of sustainable materials that address modern construction challenges. The advanced training and scholarship involved in attaining the habilitation have prepared her for a leading role in academia and research, enabling her to contribute effectively to the scientific community and to mentor future engineers.

Professional Experience

Dr. NAADIA Tarek currently serves as an Associate Professor (Class A) and a Teacher-Researcher at the Polytechnic School of Architecture and Urbanism (EPAU). She is also an active member of the Civil Engineering Laboratory (LBE) at USTHB, where she engages in research on the mechanics of materials, focusing particularly on self-compacting concrete. Her professional role involves a blend of teaching, laboratory research, and project management. As a lecturer, she contributes to civil engineering curricula, imparting knowledge on construction materials, experimental techniques, and sustainability concepts. Within the laboratory, she conducts experimental research that integrates mechanical testing and rheological measurement methods to optimize concrete formulations. Dr. Tarek’s work includes the development of new procedures for measuring concrete flow behavior and the application of design of experiments (DOE) methodologies to fine-tune mix designs for performance and environmental benefits. Her position requires collaboration with fellow researchers, students, and industry stakeholders to ensure practical relevance and innovation. Over time, she has established herself as a key figure in her department, contributing to research projects and academic advancements that enhance sustainable engineering practices in Algeria and beyond.

Research Interests

Dr. NAADIA Tarek’s primary research interests lie at the intersection of civil engineering materials, rheology, and sustainability. She specializes in the study and optimization of self-compacting concrete (SCC), focusing on both its rheological (flow) properties and mechanical performance. Her work emphasizes the development of sustainable concrete formulations that incorporate industrial by-products such as marble and tuff powders, which serve as partial replacements for traditional cement or aggregates. This approach not only improves the environmental footprint of concrete but also enhances its durability and functionality. A significant aspect of her research involves applying the design of experiments (DOE) methodology to systematically optimize the composition and performance of steel fiber reinforced self-compacting concrete (SFRSCC). This method allows for efficient exploration of multiple variables and their interactions, facilitating robust improvements in concrete quality. Dr. Tarek also investigates the rheological behavior of concrete mixtures, developing new measurement procedures to better understand their flow characteristics under various conditions. Her research contributes to sustainable construction practices by promoting materials that reduce resource consumption, waste, and energy use while improving structural integrity and longevity.

Research Skills

Dr. NAADIA Tarek possesses a comprehensive skill set tailored to experimental civil engineering research, particularly in concrete materials science. She is proficient in rheological testing methods for assessing the flow behavior of self-compacting concrete, including the design and implementation of novel measurement procedures. Her expertise extends to mechanical characterization techniques for fiber-reinforced composites, enabling detailed analysis of strength, durability, and deformation properties. She employs advanced statistical tools, notably the design of experiments (DOE) approach, to optimize material formulations systematically, which enhances research efficiency and reliability. This methodological rigor allows her to manage complex variables and interactions within concrete mix designs, leading to reproducible and scalable results. Additionally, Dr. Tarek is skilled in interpreting data to improve concrete sustainability by integrating alternative materials such as marble and tuff powders. Her laboratory experience is complemented by academic teaching, where she applies her research skills to train future engineers in experimental and analytical techniques. Collectively, these competencies support her ability to innovate within sustainable engineering and to drive research that meets both academic standards and practical industry needs.

Awards and Honors

While the CV provided does not specify particular awards or honors received by Dr. NAADIA Tarek, her attainment of the University Habilitation itself represents a prestigious academic recognition. The habilitation is a significant scholarly achievement that acknowledges her capability for independent research and academic leadership. This advanced qualification is often regarded as a benchmark of excellence within many academic systems, highlighting her contributions to civil engineering research and education. Furthermore, Dr. Tarek’s publications in high-impact journals reflect peer recognition of the quality and relevance of her work. Her growing portfolio of research articles and her position as an Associate Professor at a leading institution further attest to her professional esteem and influence within her field. For future career development, formal awards for sustainable engineering or leadership in research could complement her credentials and enhance her profile internationally. Participation in academic societies, editorial boards, or conference leadership roles may also lead to additional honors, reinforcing her position as a research leader.

Conclusion

Dr. NAADIA Tarek is a promising and dedicated civil engineering researcher with a clear focus on sustainable construction materials. Her expertise in the rheology and optimization of self-compacting concrete, combined with her use of innovative experimental design methods, positions her at the forefront of sustainable materials research. Her academic qualifications, including a University Habilitation, and her role as an Associate Professor underscore her capability for independent research and leadership within academia. Although further international collaboration and formal recognition through awards could strengthen her profile, her existing contributions demonstrate significant potential for advancing sustainable engineering practices. Dr. Tarek’s work is particularly relevant to the global imperative of reducing environmental impacts in construction, supporting the development of eco-friendly materials that are both durable and efficient. With continued research productivity and expanded engagement with the international engineering community, she is well positioned to become a leading figure in sustainable engineering research and innovation.

Publications Top Notes

  • Rheological and mechanical optimization of a steel fiber reinforced self-compacting concrete using the design of experiments method
    Authors: D Gueciouer, G Youcef, N Tarek
    Journal: European Journal of Environmental and Civil Engineering, Volume 26, Issue 3, Pages 1097-1117
    Year: 2022
    Citations: 28

  • Development of a measuring procedure of rheological behavior for self compacting concrete
    Authors: T Naadia, Y Ghernouti, D Gueciouer
    Journal: Journal of Advanced Concrete Technology, Volume 18, Issue 6, Pages 328-338
    Year: 2020
    Citations: 4

  • Rheology-compactness-granularity correlations of self-compacting concretes
    Author: T Naadia
    Year: 2014
    Citations: 1

  • Optimization of Steel Fiber-Reinforced Self-Compacting Concrete with Tuff Powder
    Authors: T Naadia, D Gueciouer
    Journal: Construction and Building Materials, Volume 474, Article 140759
    Year: 2025

  • Formulation and characterization of steel fiber reinforced self-compacting concrete (SFRSCC) based on marble powder
    Authors: T Naadia, D Gueciouer, Y Ghernouti
    Journal: Selected Scientific Paper – Journal of Civil Engineering
    Year: 2025

  • Effect of the aggregates size on the rheological behaviour of the self compacting concrete
    Authors: T Naadia, F Kharchi
    Journal: International Review of Civil Engineering (IRECE), Volume 4, Issue 2, Pages 92-97
    Year: 2013


Bin Lu | Materials Science | Best Innovator Award

Assist. Prof. Dr. Bin Lu | Materials Science | Best Innovator Award

Associate Professor from Ningbo University, China

Dr. Bin Lu is an Associate Professor at the School of Materials Science and Chemical Engineering, Ningbo University, China. Since earning his Ph.D. in Materials Science and Engineering from the University of Tsukuba, Japan, in 2015, Dr. Lu has made significant contributions to the fields of optical functional ceramics, luminescent materials, and gas-sensing materials. He currently serves as a backbone researcher at Ningbo University and is affiliated with the Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province. Dr. Lu’s research career is marked by a robust portfolio of over 50 peer-reviewed publications and 11 patents, which highlight his innovative approaches to material development and characterization. He has successfully led 10 funded research projects, focusing on advanced ceramics with applications in optics and electronics. His contributions have been recognized with the prestigious “Zhejiang Provincial Qianjiang Talent” title in 2017. Dr. Lu is highly regarded for his expertise in structural and photoluminescent analysis of ceramic materials and is a leading innovator in the development of transparent ceramics and magneto-optical devices. His academic excellence and research productivity make him a strong candidate for prestigious research and innovation awards, especially those honoring groundbreaking contributions in materials science and engineering.

Professional Profile

Education

Dr. Bin Lu holds a Ph.D. in Materials Science and Engineering from the University of Tsukuba, Japan, where he completed advanced training in ceramic materials and their optical properties. His doctoral work laid the foundation for his career-long interest in optical functional ceramics and luminescent materials. Prior to that, he obtained his Master of Science degree from Northeastern University in China, where he focused on fundamental principles of materials engineering, including crystallography, thermodynamics, and sintering processes. The strong academic foundation acquired through his undergraduate and postgraduate studies enabled him to pursue innovative research in materials science. His education across top-tier institutions in China and Japan provided a diverse and interdisciplinary approach to scientific inquiry, encouraging a blend of theoretical and practical perspectives in his research. During his academic training, Dr. Lu actively engaged in laboratory research, experimental material synthesis, and characterization techniques. This background empowered him with the analytical tools necessary for pioneering work in the design of ceramic materials for advanced functional applications. His academic credentials demonstrate a solid understanding of both the foundational and applied aspects of materials science, making him well-equipped to lead research initiatives in advanced ceramic development and optoelectronic material innovation.

Professional Experience

Dr. Bin Lu began his professional career in 2016 as a backbone researcher at the School of Materials Science and Chemical Engineering, Ningbo University, China. His position placed him at the core of several interdisciplinary research initiatives focused on the development of optical ceramics and luminescent materials. As a recognized expert in the field, Dr. Lu was entrusted with overseeing material design, characterization, and synthesis projects, contributing both to academic research and industrial applications. His affiliation with the Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province further positioned him at the forefront of regional scientific advancement. As an Associate Professor, Dr. Lu has led numerous research projects supported by national and provincial funding bodies, with a strong focus on high-transparency ceramics, magneto-optical materials, and gas-sensing systems. Under his supervision, many of these projects have yielded patents and publications in high-impact journals, confirming his contributions to the scientific community. Dr. Lu also plays an active role in mentoring graduate students, coordinating laboratory experiments, and developing new research directions aligned with industry trends. His ongoing collaborations with leading researchers in China and abroad reflect his reputation as a dependable and forward-thinking materials scientist with a focus on practical innovation.

Research Interests

Dr. Bin Lu’s research is centered on the development and application of advanced ceramic materials with specialized optical and luminescent properties. His primary research interests include optical functional ceramics such as transparent ceramics, magneto-optical ceramics, and ceramic scintillators, which are integral to applications in laser technologies, radiation detection, and photonic devices. He is also deeply engaged in the design of luminescent materials and ceramic phosphors, focusing on mechanisms of upconversion, downconversion, and energy transfer for lighting and display technologies. In addition, Dr. Lu explores the synthesis and optimization of gas-sensing materials, particularly semiconductive ceramics, that offer high sensitivity and stability for environmental monitoring. His work integrates solid-state chemistry, crystallographic analysis, and materials processing techniques to achieve high-performance ceramic systems with tunable optical characteristics. Dr. Lu is especially interested in the role of additives and dopants in tailoring ceramic microstructures and enhancing material functionalities. His comprehensive approach—combining theoretical modeling, material fabrication, and property evaluation—allows for the innovation of multifunctional ceramic systems. These research pursuits not only contribute to academic knowledge but also meet practical demands in sectors such as energy, defense, healthcare, and smart sensing technologies.

Research Skills

Dr. Bin Lu is highly skilled in advanced materials synthesis and characterization techniques, particularly as they pertain to ceramic systems. He specializes in vacuum and pressure-assisted sintering, hot pressing, and solid-state reaction methods for producing high-purity, transparent, and luminescent ceramic materials. His expertise includes microstructural engineering of ceramics using rare-earth and transition metal dopants, aimed at optimizing optical and magneto-optical properties. Dr. Lu is proficient in utilizing a variety of analytical instruments such as X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM/TEM), photoluminescence spectroscopy, UV-vis-NIR spectroscopy, and Hall effect measurements for comprehensive material analysis. Additionally, he employs Judd-Ofelt theory and other spectroscopic models to quantify the optical performance of luminescent ceramics. His ability to tailor the electrical, thermal, and photonic characteristics of ceramics demonstrates a deep understanding of structure-property relationships in complex oxides. Dr. Lu’s methodological rigor is evident in his systematic study of the effects of compositional variation, processing conditions, and structural defects on material behavior. Furthermore, his strong project management skills and collaborative mindset allow him to effectively lead multidisciplinary research teams and coordinate with academic and industrial partners to translate laboratory findings into real-world applications.

Awards and Honors

Dr. Bin Lu’s contributions to materials science have been recognized with several prestigious awards, most notably the “Zhejiang Provincial Qianjiang Talent” title, which he received in 2017. This honor is awarded to promising researchers in Zhejiang Province who demonstrate outstanding potential in academic research and innovation. The Qianjiang Talent award underscores Dr. Lu’s impact and leadership in developing advanced optical materials with practical applications. His work has also been consistently supported through competitive grants from national and regional funding agencies, reflecting the scientific and societal value of his research. In addition to formal awards, Dr. Lu has achieved recognition through publication in top-tier journals such as Acta Materialia, Journal of the American Ceramic Society, and ACS Applied Electronic Materials. His inventions have led to the filing and granting of 11 patents, further evidencing his capability to innovate beyond the academic sphere. Dr. Lu’s collaborative work with international research institutions and his role in advancing photoelectric materials at the provincial level also serve as informal acknowledgments of his professional excellence. These achievements collectively highlight his suitability for accolades that honor scientific innovation and applied research contributions.

Conclusion

Dr. Bin Lu stands out as a strong candidate for the Best Innovator Award in Research due to his exceptional accomplishments in the field of optical functional ceramics and luminescent materials. His track record of high-impact publications, patents, and successful research projects demonstrates not only his deep scientific expertise but also his ability to translate research into practical innovations. He excels in integrating advanced synthesis techniques with comprehensive analytical approaches, leading to breakthroughs in transparent and magneto-optical ceramics. His research aligns well with global priorities in energy efficiency, sensing technology, and photonics. While his work is highly innovative, future improvements could include increased international collaboration and participation in interdisciplinary projects that address emerging challenges in environmental sustainability or biomedical applications. Nonetheless, Dr. Lu’s achievements in materials science research are outstanding and well-documented. His leadership, creativity, and dedication make him a role model for younger researchers and a valuable contributor to scientific advancement. Given his qualifications and sustained excellence, Dr. Lu is not only suitable but highly deserving of recognition through a prestigious award such as the Best Innovator Award in Research. His continued contributions are likely to shape the future of ceramic materials and their applications across various industries.

Publications Top Notes

  • First Realization of Transparency of Polycrystalline SrZrO₃ Perovskite Ceramics: Insights into Structural, Optical, and Dielectric Performances
    Advanced Optical Materials, 2025
    Contributors: Jiadong Liu, Hailin Ren, Xiaomin Wang, Zhongbin Pan, Bin Lu

  • Insights into the Roles of the MgO Additive in Crystal Structures, Sintering Behaviors, and Optical Properties of Transparent In₂O₃ Semiconductor Ceramics
    Journal of Materials Chemistry C, 2024
    Contributors: Bo You, Bin Lu, Dazhen Wu, Ruijie Pei

  • Polycrystalline Magneto-Optical Transparent Pr₂Zr₂O₇ Pyrochlore Ceramic for Faraday Rotation
    Optics Letters, 2024
    Contributors: Youren Dong, Bin Lu, Liangbin Hu, Yongxing Liu, Shixun Dai

  • Removal of Deep Traps in Lu₂O₃:Tm Phosphors via Formation of Continuous Solid Solutions with In₂O₃ Enabling Widely Tailorable Bandgap Energy
    Advanced Powder Technology, 2024
    Contributors: Bin Lu, Hanchen Shen, Yun Shi, Jiang Li, Oleg Shichalin, Eugeniy Papynov, Xuejiao Wang

  • First Highly Transparent Gd₂Sn₂O₇ Pyrochlore Ceramics with High Refractive Index: Al₂O₃ Additive Roles on Structural Features, Sintering Behaviors, and Optical Performances
    Acta Materialia, 2024
    Contributors: Ruijie Pei, Bin Lu, Youren Dong, Bo You

  • Nickel Element Doping Impacts on Structure Features and Faraday Effects of Magneto‐Optical Transparent Holmium Oxide Ceramics
    International Journal of Applied Ceramic Technology, 2024
    Contributors: Mengyao Wang, Bin Lu, Bo You, Ruijie Pei, Zhigang Sun, Ji‐Guang Li, Yoshio Sakka, Naifeng Zhuang

  • Crystal Structural Effects on Up/Down-Conversion Luminescence Properties of GdInO₃:Tm,Yb Perovskite Phosphors for Effective Dual-Mode Anti-Counterfeit Applications
    Optics Express, 2024
    Contributors: Xiao-min Wang, Kai Feng, Liang Shan, Jie Zou, Bin Lu

  • Optical Grade (Gd₀.₉₅₋ₓLuₓEu₀.₀₅)₃Al₅O₁₂ Ceramics with Near-Zero Optical Loss: Effects of Lu³⁺ Doping on Structural Feature, Microstructure Evolution, and Far-Red Luminescence
    Journal of Advanced Ceramics, 2024
    Contributors: Zhigang Sun, Ji-Guang Li, Huiyu Qian, Yoshio Sakka, Tohru S. Suzuki, Bin Lu

  • The Effect of Lu³⁺ Doping on the Structural Stability and Luminescence Performances of Gd₃Al₅O₁₂:Dy Phosphors
    Metals, 2023
    Contributors: Huiyu Qian, Zhigang Sun, Tuanjie Liang, Mengyao Wang, Bin Lu, Hongbing Chen, Linwen Jiang

  • Production and Characterization of Highly Transparent Novel Magneto-Optical Ho₂Zr₂O₇ Ceramics with Anion-Deficient Fluorite Structures
    Journal of Materials Science & Technology, 2023
    Contributors: Liangbin Hu, Bin Lu, Bowen Xue, Shixun Dai

 

Liang Wang | Materials Science | Young Scientist Award

Mr. Liang Wang | Materials Science | Young Scientist Award

Head of the Learning Department from Anhui University of Technology, China

Wang Liang is a highly motivated and innovative undergraduate student with a strong passion for energy materials research, particularly in the field of battery technology. His academic journey has been marked by a proactive approach toward scientific inquiry and a strong inclination for hands-on experimental work. Under the mentorship of experienced faculty members, Wang has immersed himself in laboratory research since his early undergraduate years, engaging in the preparation, analysis, and optimization of advanced electrode materials. He has consistently demonstrated leadership through his role in competitive innovation and entrepreneurship contests, securing numerous awards at national and provincial levels. Wang has also shown an ability to translate scientific ideas into practical research outcomes, applying for national-level innovation training programs and contributing to scientific publications and patent submissions. His strong academic standing is complemented by his organizational involvement, including roles such as study committee member and department vice minister. With a solid foundation in both theory and practice, Wang Liang represents a new generation of researchers who combine scientific curiosity with social responsibility. His early achievements signal great promise for a future in high-impact materials science research and sustainable energy solutions.

Professional Profile

Education

Wang Liang is currently an undergraduate student majoring in materials science and engineering. Since the beginning of his academic career in 2022, he has shown exceptional academic and extracurricular engagement. He was selected to work under the supervision of Dr. Junzhe Li through a mentor allocation system, beginning his scientific training by attending group meetings and following graduate students in laboratory work. His education combines a rigorous curriculum in materials synthesis, electrochemistry, and characterization methods with practical exposure to experimental research. Wang has undertaken academic coursework in energy storage systems, inorganic chemistry, and solid-state physics, while simultaneously gaining research experience through university-sponsored programs. He has successfully applied for and led a National Undergraduate Innovation and Entrepreneurship Training Project and is involved in writing and submitting academic papers to SCI-indexed journals. He has also completed national training programs in entrepreneurship and innovation offered by institutions such as Zhejiang Gongshang University and Anhui University of Technology. These educational experiences, paired with his drive for independent learning and innovation, have provided Wang with a solid and versatile foundation for further research-oriented graduate education in advanced energy materials and electrochemical technologies.

Professional Experience

Although still an undergraduate, Wang Liang has built an impressive portfolio of pre-professional experience through active participation in research and innovation initiatives. His early involvement in experimental laboratory work began in December 2022 under the mentorship of Dr. Junzhe Li. By the summer of 2023, Wang had already engaged in hands-on research on antimony-based sulfide anode materials for lithium-ion batteries. He remained on campus during summer breaks to continue his experiments, develop laboratory techniques, and deepen his understanding of scientific literature. In April 2024, he successfully applied for a national undergraduate innovation training project, and in May, he filed a national invention patent related to battery material design. His work has led to the preparation of a review article targeting the journal Materials Review and a research paper currently under review in an SCI Zone 2 journal. Wang also gained experience leading student innovation projects, serving as a team leader in several national and provincial entrepreneurship competitions. In addition to his research engagements, he has taken on roles such as counselor assistant and vice minister in the academic department, enhancing his organizational and leadership abilities. This combination of scientific and managerial experience has equipped him with a unique skill set for a future in academia or industry.

Research Interest

Wang Liang’s primary research interests lie in the development of novel anode materials for next-generation energy storage systems, particularly lithium-ion and sodium-ion batteries. He has focused on exploring the electrochemical performance and structural optimization of advanced materials such as antimony-based sulfides and Ni-doped FeSe@C composites. His academic curiosity extends to the interface chemistry, charge-discharge mechanisms, and cycling stability of these electrode materials. Wang is especially interested in how modifications at the nano and microstructural levels can lead to improvements in energy density, conductivity, and mechanical stability. He has demonstrated a strong interest in bridging the gap between theoretical modeling and practical application, often combining material characterization with electrochemical testing in his work. His long-term goal is to contribute to the development of high-performance, sustainable energy systems that support the global transition to renewable energy. As part of his undergraduate research, Wang is currently working on a project involving concentration gradient tuning in Ni-doped materials, aiming to enhance their functionality as sodium-ion battery anodes. His vision involves integrating fundamental research with real-world application, contributing to breakthroughs in energy efficiency, battery lifespan, and environmental sustainability through material innovation.

Research Skills

Wang Liang has developed a wide range of research skills relevant to the field of materials science and battery technology. Through his involvement in laboratory experiments and innovation projects, he has become proficient in the synthesis and characterization of electrode materials, including techniques such as ball milling, calcination, and hydrothermal synthesis. He is skilled in conducting electrochemical measurements such as cyclic voltammetry, galvanostatic charge-discharge testing, and electrochemical impedance spectroscopy. In addition, Wang has experience in using analytical tools like X-ray diffraction (XRD) and scanning electron microscopy (SEM) for structural and morphological analysis. He is adept at interpreting scientific literature and presenting research findings in both written and oral formats. Wang has also demonstrated competence in academic writing, having authored a Chinese review paper and contributed to an SCI journal manuscript currently under review. His ability to coordinate with team members and manage research timelines as a project leader shows strong project management and collaboration skills. Moreover, his familiarity with patent writing and innovation proposal drafting indicates maturity in scientific communication. These combined technical, analytical, and soft skills provide a strong foundation for advanced research and problem-solving in the energy materials domain.

Awards and Honors

Wang Liang has been recognized with a diverse array of awards and honors that reflect both his academic excellence and innovation potential. In 2024 alone, he secured the Silver Prize in the Chizhou Guichi Entrepreneurship Top Ten Team Selection Competition and another Silver Award at the China International College Student Innovation Competition as a team leader. He also won a First Prize at the China Youth College Student Innovation Environmental Competition and a Third Prize at the Deep Blue Cup National Innovation and Entrepreneurship Competition. Earlier achievements include a National Silver Award at the 2023 Jinglian Cup Innovation Contest and a First Prize at the National College Innovation Project Presentation Contest. His personal academic accolades include the 2024 National Encouragement Scholarship, Excellent Class Cadre Award, and Three Good Student Award in 2023. Wang also holds certifications in core professional competencies (CVCC), emergency response, and has completed multiple national training programs in innovation and entrepreneurship. His leadership roles in academic departments and as counselor assistant further highlight his balanced development in academics and student affairs. These awards not only validate his academic rigor but also his problem-solving, creativity, and leadership in research and innovation activities.

Conclusion

In conclusion, Wang Liang is a standout candidate for recognition as an emerging researcher in the field of energy materials and battery technology. At just 21 years of age, he has already demonstrated the qualities of a future scientific leader—innovation, diligence, technical proficiency, and academic maturity. His strong foundation in materials science, coupled with practical research experience and an impressive track record in national competitions, sets him apart among his peers. Wang’s commitment to linking theory with experimental practice is evident in his ongoing research projects, published works, and patent filings. His ability to work collaboratively, manage research projects, and communicate complex ideas effectively makes him highly suited for continued academic research or professional R&D roles. While he is still in the early phase of his scientific career, his accomplishments and potential clearly align with the values recognized by awards that celebrate research excellence. With further opportunities for graduate-level research and international exposure, Wang Liang is poised to make meaningful contributions to sustainable energy technologies and advanced functional materials in the near future. He is highly deserving of encouragement, mentorship, and recognition on platforms dedicated to celebrating young scientific talent.

Hao Chen | Materials Science | Best Researcher Award

Prof. Hao Chen | Materials Science | Best Researcher Award

Associate professor from Shanghai Jiao Tong University, China

Professor Hao Chen is a distinguished faculty member in the Department of Computer Science at the University of California, Davis. Renowned for his contributions to computer security and software verification, he has been instrumental in developing practical security verification systems. His work seamlessly integrates theoretical insights with real-world applications, addressing critical challenges in the field. Notably, he developed MOPS, a tool designed to detect security vulnerabilities in C programs. His research has garnered support from esteemed organizations, including the National Science Foundation, Air Force Office of Scientific Research, U.S. Army Research Laboratory, Intel, and Microsoft. Professor Chen’s accolades include the NSF CAREER Award and the UC Davis College of Engineering Outstanding Faculty Award. He is also recognized as an IEEE Fellow and an ACM Distinguished Member. Through his teaching, research, and mentorship, Professor Chen continues to shape the future of computer science.

Professional Profile

Education

Professor Hao Chen earned his Ph.D. in Computer Science from the University of California, Berkeley, in 2004. During his doctoral studies, he was mentored by Professor David Wagner, a prominent figure in computer security. His dissertation focused on identifying and mitigating security vulnerabilities in software systems, laying the groundwork for his future research endeavors. This rigorous academic training equipped him with a deep understanding of both theoretical and practical aspects of computer security, enabling him to make significant contributions to the field.

Professional Experience

Since completing his Ph.D., Professor Chen has been a vital part of the UC Davis faculty. He began his tenure as an Assistant Professor in July 2004, progressed to Associate Professor in July 2010, and achieved the rank of Professor in July 2016. Throughout his academic career, he has been dedicated to advancing research in computer security and software verification. Beyond his teaching responsibilities, Professor Chen has actively contributed to the academic community by serving on editorial boards and program committees for various prestigious conferences and journals.

Research Interests

Professor Chen’s research interests are centered around computer security and software verification. He focuses on developing methodologies to ensure that software systems are free from vulnerabilities that could be exploited maliciously. His work often involves applying machine learning techniques to enhance security measures and improve software reliability. By combining theoretical frameworks with practical applications, Professor Chen aims to create tools and systems that can proactively identify and mitigate potential security threats in software.

Research Skills

In his research, Professor Chen employs a diverse set of skills, including static and dynamic program analysis, formal verification methods, and machine learning algorithms. He is adept at developing tools that can automatically detect security flaws in software, thereby reducing the risk of exploitation. His expertise extends to analyzing large codebases, understanding complex software behaviors, and designing systems that can adapt to evolving security challenges. Through his interdisciplinary approach, Professor Chen effectively bridges the gap between theoretical research and practical implementation in the realm of computer security.

Awards and Honors

Professor Hao Chen’s contributions to computer science have been recognized through numerous awards and honors. He received the National Science Foundation CAREER Award in 2007, acknowledging his potential as a leading researcher in his field. In 2010, he was honored with the UC Davis College of Engineering Outstanding Faculty Award for his exceptional teaching and research achievements. His professional excellence is further highlighted by his designation as an IEEE Fellow and an ACM Distinguished Member, reflecting his significant impact on the computing community.

Conclusion

Professor Hao Chen stands out as a leading expert in computer security and software verification. His academic journey, marked by rigorous education and progressive professional roles, underscores his commitment to advancing the field. Through his innovative research, he has developed tools and methodologies that enhance software security, directly addressing real-world challenges. His accolades, including prestigious awards and fellowships, attest to his influence and contributions to computer science. As an educator, researcher, and mentor, Professor Chen continues to inspire and shape the next generation of computer scientists, reinforcing the critical importance of security in the digital age.

Publications Top Notes

  1. In situ molecular compensation in wide-bandgap perovskites for efficient all-perovskite tandem solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE01369K
    Contributors: Fu, Sheng; Sun, Nannan; Hu, Shuaifeng; Chen, Hao; Jiang, Xinxin; Li, Yunfei; Zhu, Xiaotian; Guo, Xuemin; Zhang, Wenxiao; Li, Xiaodong et al.

  2. Homogenizing SAM deposition via seeding -OH groups for scalable fabrication of perovskite solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE00350D
    Contributors: Fu, Sheng; Sun, Nannan; Chen, Hao; Li, You; Li, Yunfei; Zhu, Xiaotian; Feng, Bo; Guo, Xueming; Yao, Canglang; Zhang, Wenxiao et al.

  3. All‐Inorganic Tin‐Containing Perovskite Solar Cells: An Emerging Eco‐Friendly Photovoltaic Technology
    Journal: Advanced Materials
    Year: 2025
    DOI: 10.1002/adma.202505543
    Contributors: Xiang Zhang; Dan Zhang; Zaiwei Wang; Yixin Zhao; Hao Chen

  4. On-demand formation of Lewis bases for efficient and stable perovskite solar cells
    Journal: Nature Nanotechnology
    Year: 2025
    DOI: 10.1038/s41565-025-01900-9
    Contributors: Sheng Fu; Nannan Sun; Hao Chen; Cheng Liu; Xiaoming Wang; You Li; Abasi Abudulimu; Yuanze Xu; Shipathi Ramakrishnan; Chongwen Li et al.

  5. 3D Digital Holography Investigations of Giant Photostriction Effect in MAPbBr₃ Perovskite Single Crystals
    Journal: Advanced Functional Materials
    Year: 2024
    DOI: 10.1002/ADFM.202404995
    Contributors: Liu, Dong; Wu, Jialin; Lu, Ying-Bo; Zhao, Yiyang; Jiang, Xianyuan; Wang, Kai-Li; Wang, Hao; Dong, Liang; Cong, Wei-Yan; Chen, Hao et al.

  6. Diamine chelates for increased stability in mixed Sn-Pb and all-perovskite tandem solar cells
    Journal: Nature Energy
    Year: 2024
    DOI: 10.1038/S41560-024-01613-8
    Contributors: Li, Chongwen; Chen, Lei; Jiang, Fangyuan; Song, Zhaoning; Wang, Xiaoming; Balvanz, Adam; Ugur, Esma; Liu, Yuan; Liu, Cheng; Maxwell, Aidan et al.

  7. Perovskite Single Crystals by Vacuum Evaporation Crystallization
    Journal: Advanced Science
    Year: 2024
    DOI: 10.1002/ADVS.202400150
    Contributors: Liu, Dong; Jiang, Xianyuan; Wang, Hao; Chen, Hao; Lu, Ying-Bo; Dong, Siyu; Ning, Zhijun; Wang, Yong; Wu, Zhongchen; Ling, Zongcheng

  8. Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells
    Journal: National Science Review
    Year: 2024
    DOI: 10.1093/NSR/NWAE055
    Contributors: Jiang, Xianyuan; Zhou, Qilin; Lu, Yue; Liang, Hao; Li, Wenzhuo; Wei, Qi; Pan, Mengling; Wen, Xin; Wang, Xingzhi; Zhou, Wei et al.

  9. Ultralow detection limit and high sensitivity X-ray detector of high-quality MAPbBr₃ perovskite single crystals
    Journal: Journal of Materials Chemistry A
    Year: 2024
    DOI: 10.1039/D4TA00492B
    Contributors: Liu, Dong; Sun, Xue; Jiang, Li; Jiang, Xianyuan; Chen, Hao; Cui, Fucai; Zhang, Guodong; Wang, Yong; Lu, Ying-Bo; Wu, Zhongchen et al.

 

 

Keming Zhang | Materials Science | Breakthrough Research Award

Dr. Keming Zhang | Materials Science | Breakthrough Research Award

Shanghai for Science and Technology, China

Keming Zhang is an Associate Professor at the School of Mechanical Engineering, University of Shanghai for Science and Technology. With a solid academic background and more than a decade of experience in engineering mechanics and experimental mechanics, he has emerged as a capable researcher in the area of residual stress measurement and deformation analysis techniques. His work demonstrates a deep engagement with the development and refinement of measurement systems and digital image processing methods under complex physical conditions. Dr. Zhang has authored and co-authored multiple research articles published in internationally recognized journals and has contributed to several high-value patents related to stress testing and 3D imaging technologies. His collaborative project with the Commercial Aircraft Corporation of China (COMAC) reflects his capacity to translate scientific knowledge into real-world industrial applications. Known for his systematic and innovative approach, he has also delivered invited talks and earned national awards for academic excellence. Although he has not yet secured national-level funding, his contributions to instrumentation and applied research have made a notable impact in his field. His research continues to support advancements in aerospace testing, smart materials evaluation, and digital measurement systems. Dr. Zhang is regarded as a valuable contributor to China’s applied mechanics research landscape.

Professional Profile

Education

Keming Zhang holds a Ph.D. in Mechanics from Shanghai Jiao Tong University, completed in 2016. His doctoral training provided a strong foundation in theoretical and experimental mechanics, preparing him for independent research in stress analysis and structural evaluation. Prior to his Ph.D., he earned a Master’s degree in Solid Mechanics in 2007 from the University of Science and Technology Beijing, conducted in collaboration with the Institute of Mechanics at the Chinese Academy of Sciences, which further enriched his theoretical understanding of material behavior and structural dynamics. His academic journey began with a Bachelor’s degree in Engineering Mechanics from Shenyang Aerospace University, awarded in 2005. This progressive academic trajectory reflects his long-standing commitment to mastering the core principles of mechanical engineering and applying them to practical research challenges. His education is rooted in institutions known for their rigor and emphasis on engineering innovation, and his exposure to interdisciplinary mechanical studies has allowed him to develop expertise in residual stress measurement, advanced materials testing, and digital deformation analysis. These qualifications collectively form the basis for his work in applied mechanics, preparing him well for both academic roles and industry collaborations.

Professional Experience

Dr. Keming Zhang has accumulated extensive academic and research experience across several prominent institutions in China. Since June 2021, he has served as an Associate Professor in the School of Mechanical Engineering at the University of Shanghai for Science and Technology. Prior to this, he worked as a Lecturer at the same institution from October 2019 to May 2021. Between 2016 and 2019, Dr. Zhang held a position as Assistant Researcher at the Shanghai Institute of Technical Physics, Chinese Academy of Sciences, where he worked on advanced optical and mechanical systems. Earlier in his career, he served as Lecturer (2009–2012) and Teaching Assistant (2007–2009) in the Department of Materials Engineering at Nanchang Hangkong University. These academic roles have allowed him to gain experience in teaching, supervising student research, and contributing to lab-based experimental studies. Although he has not undertaken formal postdoctoral work, his career path reflects steady progression from foundational teaching roles to high-level independent research. His participation in applied projects, such as those commissioned by COMAC, highlights his ability to contribute to both the academic and industrial sectors. Overall, Dr. Zhang’s professional trajectory is marked by versatility, technical depth, and growing leadership in mechanical research.

Research Interests

Dr. Keming Zhang’s research primarily focuses on experimental mechanics, with a particular emphasis on residual stress measurement, digital image correlation (DIC), and advanced deformation analysis techniques under non-standard environments. His interest lies in understanding the mechanical behavior of composite and metallic materials, particularly in aerospace and structural applications, using precise optical and computational methods. One of his core research themes involves improving the accuracy and reliability of the incremental hole-drilling method for residual stress determination, as demonstrated in his recent publications. He also works on the development of luminescent speckle techniques and 3D reconstruction methods tailored for low-light or complex surface conditions. His research spans the theoretical modeling and practical design of measurement systems, especially those applicable to the aerospace and manufacturing industries. Dr. Zhang aims to bridge the gap between traditional material testing methods and modern, high-resolution imaging and analysis tools. He is particularly motivated by real-world engineering problems, leading him to pursue research projects in collaboration with industrial partners. Overall, his work contributes to safer, more accurate mechanical assessment technologies, supporting innovations in both academic research and industry implementation.

Research Skills

Dr. Zhang possesses a well-rounded and sophisticated skill set in experimental mechanics and engineering measurement systems. He is highly proficient in residual stress analysis techniques, particularly the incremental hole-drilling method, which he has refined through theoretical modeling and practical calibration. His capabilities also extend to digital image correlation (DIC), luminescent imaging in dark environments, adaptive phase error correction, and 3D surface reconstruction. These skills are reinforced by his hands-on experience in hardware-software integration for custom measurement systems. His applied research frequently involves developing and testing new methodologies under real-world constraints, such as temperature variability or lack of lighting, and his patents showcase his strength in innovation and system design. Dr. Zhang is also competent in finite element modeling for validation and simulation purposes and has experience collaborating on cross-disciplinary teams in both academic and industry projects. His strong foundation in solid mechanics and engineering physics enables him to link theoretical principles with empirical measurements effectively. Furthermore, his academic writing and publication record suggest strong analytical thinking and technical communication skills. Altogether, his research competencies reflect an ability to design, execute, and evaluate sophisticated mechanical testing procedures with precision and industrial relevance.

Awards and Honors

Dr. Zhang has received several notable recognitions for his research contributions. His earliest accolade dates back to 2007, when he was awarded for an excellent student paper at the 6th China International Nano Technology Symposium, reflecting early promise in interdisciplinary scientific research. In 2016, he received a “Youth Excellent Paper” award from the National Committee on Experimental Mechanics at a nationwide mechanics conference, underscoring his growing reputation in the field. He has been invited to deliver talks at national academic conferences, such as the 16th National Conference on Experimental Mechanics in 2021, where he presented on residual stress testing methods. In addition to academic awards, Dr. Zhang is an inventor on multiple patents granted in China between 2021 and 2024. These include patents related to luminescent speckle techniques, digital imaging error compensation, and advanced stress measurement apparatus. These recognitions demonstrate his dual strengths in theoretical development and practical innovation. His awards from both academic societies and industrial patent offices validate his contributions to both basic and applied research. Although he has not yet received major national funding, his honors reflect consistent acknowledgment of the significance and quality of his work by peers and industry stakeholders alike.

Conclusion

Keming Zhang is a technically capable and industrious researcher whose expertise lies at the intersection of experimental mechanics, optical measurement, and applied instrumentation. Through consistent publication, patenting activity, and industrial collaboration, he has demonstrated the ability to convert complex research concepts into tangible technological solutions. His research addresses practical challenges in the aerospace and manufacturing industries, especially in stress analysis and deformation measurement. While his lack of postdoctoral experience and national-level research funding could be viewed as limitations for top-tier competitive awards, his work’s precision, applicability, and methodological innovation speak strongly in his favor. His role as a sole first author or corresponding author on multiple journal papers, along with his leadership in applied projects and system design, highlight his independence and technical leadership. Dr. Zhang’s research is likely to continue contributing to incremental but impactful advances in mechanical measurement and smart sensing technologies. With broader engagement in international collaborations and increased visibility through national funding programs, he could further strengthen his academic profile. In conclusion, while not yet a breakthrough-level figure in terms of disruptive innovation, Dr. Zhang represents a solid, promising researcher whose applied contributions merit recognition and continued support.

Publication Top Notes

  1. Title: Outlier removal method for the refinement of optically measured displacement field based on critical factor least squares and subdomain division
    Journal: Measurement Science and Technology
    Date: 2022-05-01
    DOI: 10.1088/1361-6501/ac476c
    Contributors: Keming Zhang

  2. Title: A Comparative Study of Fatigue Energy Dissipation of Additive Manufactured and Cast AlSi10Mg Alloy
    Journal: Metals
    Date: 2021-08-12
    DOI: 10.3390/met11081274
    Contributors: Chunxia Yang, Ke Zhu, Yayan Liu, Yusheng Cai, Wencheng Liu, Keming Zhang, Jia Huang

  3. Title: A mixed stabilized finite element formulation for finite deformation of a poroelastic solid saturated with a compressible fluid
    Journal: Archive of Applied Mechanics
    Date: 2020-05
    DOI: 10.1007/s00419-020-01658-7
    Contributors: Keming Zhang

  4. Title: New insights into Fourier analysis on plane and convex holographic gratings for imaging spectrometers
    Conference: 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Meta-Surface-Wave and Planar Optics
    Date: 2019
    Contributors: Keming Zhang

  5. Title: On the effective stress law and its application to finite deformation problems in a poroelastic solid
    Journal: International Journal of Mechanical Sciences
    Date: 2019-10
    DOI: 10.1016/j.ijmecsci.2019.105074
    Contributors: Keming Zhang

  6. Title: Enhancement of the absorption and bandwidth of a hybrid metamaterial absorber
    Journal: Results in Physics
    Date: 2019-09
    DOI: 10.1016/j.rinp.2019.102412
    Contributors: Keming Zhang

  7. Title: Design and numerical simulations of a temperature tunable hybrid structure metamaterials
    Journal: Journal of Nanophotonics
    Date: 2019-09-18
    DOI: 10.1117/1.jnp.13.036019
    Contributors: Keming Zhang

  8. Title: Numerical verification of absorption enhancement based on metal array embedded metamaterials
    Journal: Materials Express
    Date: 2019-06-01
    DOI: 10.1166/mex.2019.1492
    Contributors: Keming Zhang

  9. Title: Residual stress release characteristics of hole-drilling determined by in-plane three-directional optical interference moiré
    Journal: Journal of Modern Optics
    Date: 2018-12-15
    DOI: 10.1080/09500340.2018.1506519
    Contributors: Keming Zhang, Yong Li, Min Xu, Youlong Ke

  10. Title: General Calibration Formulas for Incremental Hole Drilling Optical Measurement
    Journal: Experimental Techniques
    Date: 2017
    DOI: 10.1007/s40799-016-0008-x
    Contributors: Zhang, K.; Yuan, M.; Chen, J.

Jinxian Feng | Materials Science | Best Researcher Award

Dr. Jinxian Feng | Materials Science | Best Researcher Award

PhD Fellow at University of Macau, Macau

Dr. Jinxian Feng is a postdoctoral fellow in Applied Physics and Materials Engineering at the University of Macau. He earned his Ph.D. in 2023 from the same institution, following a B.Sc. in Chemistry from Sun Yat-sen University. His research focuses on the design and mechanism of high-efficiency catalysts for green energy conversion, including electrocatalysis and photoelectrochemical systems for water splitting, CO₂ reduction, and nitrogen fixation. Dr. Feng has published 16 peer-reviewed articles in high-impact journals such as Applied Catalysis B, Journal of Materials Chemistry A, and Chemical Engineering Journal. He has presented his work at several international conferences and received a Copper Award in the national “CCB Cup” energy-saving competition. His interdisciplinary collaborations and contributions to sustainable energy solutions reflect a strong commitment to addressing critical environmental challenges. As a rising talent in the field, Dr. Feng continues to advance innovative approaches for clean and renewable energy technologies.

Professional Profile

Education

Dr. Jinxian Feng has a solid academic background in chemistry and materials science, which forms the foundation of his research in green energy technologies. He obtained his Bachelor of Science degree in Chemistry from Sun Yat-sen University, Guangzhou, China, in 2015. This undergraduate training provided him with a strong grounding in fundamental chemical principles and laboratory techniques. Building on this, he pursued and successfully completed his Ph.D. in Applied Physics and Materials Engineering at the University of Macau in 2023. During his doctoral studies, Dr. Feng focused on the fabrication and mechanistic understanding of advanced electrocatalysts for sustainable energy applications, including CO₂ reduction and water electrolysis. His interdisciplinary education has equipped him with expertise in both theoretical and practical aspects of chemistry, materials science, and engineering, enabling him to conduct innovative research at the intersection of these fields. His academic journey reflects a continuous progression toward solving global energy and environmental challenges.

Professional Experience

Dr. Jinxian Feng has accumulated valuable professional experience in the field of materials science and energy research through his roles at the University of Macau. Following the completion of his Ph.D. in Applied Physics and Materials Engineering in 2023, he was appointed as a Research Assistant in the same department, where he contributed to various projects involving electrocatalysis and green energy conversion. Shortly after, he advanced to the position of Postdoctoral Fellow in October 2023, continuing his work on the development of high-performance catalysts for applications such as CO₂ reduction, nitrogen fixation, and water splitting. His professional experience includes collaboration with interdisciplinary teams, leading experimental design, and publishing high-quality research in top-tier journals. Dr. Feng’s work integrates both experimental and theoretical approaches to address energy and environmental challenges. His rapid progression from doctoral researcher to postdoctoral fellow reflects his dedication, competence, and growing impact in the field of sustainable energy technologies.

Research Interest

Dr. Jinxian Feng’s research interests lie at the forefront of sustainable energy conversion and storage technologies. His work focuses on the design, synthesis, and mechanistic study of advanced electrocatalysts and photocatalysts for critical reactions such as CO₂ reduction, nitrogen (N₂) fixation, water electrolysis, and biomass conversion. He is particularly interested in understanding the surface reconstruction and electronic properties of catalysts during reaction processes, aiming to enhance their activity, selectivity, and long-term stability. In addition to catalysis, Dr. Feng explores the development of photoelectrochemical devices, batteries, and supercapacitors, integrating materials engineering with electrochemical performance optimization. His interdisciplinary approach combines experimental techniques with theoretical insights to create efficient and scalable solutions for clean energy applications. By targeting fundamental challenges in green chemistry and materials science, Dr. Feng’s research contributes to the global pursuit of low-carbon technologies and provides valuable strategies for the development of next-generation energy systems.

Awards and Honors

Dr. Jinxian Feng has been recognized for his innovative contributions to sustainable energy research through awards and honors that highlight both his academic excellence and practical ingenuity. Notably, he received the Copper Award in the prestigious “CCB Cup” — the 16th National University Student Social Practice and Science Contest on Energy Saving and Emission Reduction, representing the Hong Kong, Macao, Taiwan, and International Group. This award was granted for his co-development of a smart solar moisture collection and power generation device, designed for intelligent flower maintenance, showcasing his creative approach to real-world energy challenges. This recognition not only reflects his ability to translate scientific knowledge into impactful applications but also underscores his commitment to addressing global environmental issues through innovative solutions. In addition to formal accolades, Dr. Feng’s continued publication in high-impact journals and participation in international conferences further illustrate the growing recognition of his contributions within the academic and scientific communities.

Research Skills

Dr. Jinxian Feng possesses a comprehensive set of research skills that span the fields of chemistry, materials science, and applied physics, with a strong emphasis on green energy technologies. He is highly skilled in the design and synthesis of nanomaterials for electrocatalysis and photocatalysis, including CO₂ reduction, nitrogen fixation, and water splitting. His expertise extends to advanced material characterization techniques such as XRD, SEM, TEM, and XPS, which he uses to analyze the structural and electronic properties of catalysts. Dr. Feng is also proficient in electrochemical testing methods, including linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), enabling him to evaluate catalyst performance and reaction kinetics. Additionally, he applies computational tools and mechanistic analysis to study surface reconstruction and active sites, bridging theoretical insights with experimental results. His interdisciplinary research skills allow him to effectively tackle complex challenges in clean energy conversion and storage.

Conclusion

Jinxian Feng is a promising early-career researcher with a strong foundation in high-impact green energy research, a solid publication track record, and clear upward momentum. His current work and achievements are commendable and position him as a rising figure in materials and energy science.

However, he may be more suitable for an “Emerging Researcher” or “Young Investigator” award at this stage. For the Best Researcher Award, typically given to mid- or senior-level scientists with established independence, leadership in grants and labs, and sustained high-impact contributions, he might need a few more years to build that level of portfolio.

Publications Top Notes

  • Highly enhanced photocatalytic performance for CO₂ reduction on NH₂-MIL-125(Ti): The impact of (Cu, Mn) co-incorporation
    Separation and Purification Technology, 2025

  • Controllable Reconstruction of β-Bi₂O₃/Bi₂O₂CO₃ Composite for Highly Efficient and Durable Electrochemical CO₂ Conversion
    Nano Letters, 2025

  • Revealing the hydrogen bond network effect at the electrode-electrolyte interface during the hydrogen evolution reaction
    Journal of Materials Chemistry A, 2025

  • Electrodeposited Ternary Metal (Oxy)Hydroxide Achieves Highly Efficient Alkaline Water Electrolysis Over 1000 h Under Industrial Conditions
    Carbon Energy, 2025
    Citations: 0

  • Highly Dispersed Ru-Pt Heterogeneous Nanoparticles on Reduced Graphene Oxide for Efficient pH-Universal Hydrogen Evolution
    Advanced Functional Materials, 2024
    Citations: 9

  • In-situ Reconstruction of Catalyst in Electrocatalysis (Review)
    Journal not specified (Open Access), 2024
    Citations: 16

  • In Situ Reconstructed Cu/β-Co(OH)₂ Tandem Catalyst for Enhanced Nitrate Electroreduction to Ammonia in Ampere-Level
    Advanced Energy Materials, 2024
    Citations: 11

 

Zhiyong Dai | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Zhiyong Dai | Materials Science | Best Researcher Award

Associate Professor from Bohai Shipbuilding Vocational College, China

Zhiyong Dai is currently serving as an Associate Professor at Bohai Shipbuilding Vocational College, where he has made significant contributions in the field of materials science and engineering, particularly in welding and high-temperature resistant alloys. With a solid academic background culminating in a Doctorate in Materials Processing Engineering from Shenyang University of Technology (2024), he has combined theoretical knowledge with practical teaching and research experience. Over his academic and professional journey, Dr. Dai has been dedicated to both educational excellence and scientific inquiry. His teaching spans core courses in metallurgy, welding technology, and material properties. His research has produced impactful findings on the mechanical behavior and strengthening mechanisms of Inconel 625 and other advanced nickel-based alloys under extreme conditions. He has published in several high-impact journals, including Materials Science and Engineering A and Journal of Materials Research and Technology. His commitment to academic mentorship is evident from his active involvement in curriculum development and participation in student innovation projects. With a combination of applied industrial focus and strong academic contributions, Dr. Dai stands out as a valuable candidate for recognition such as the Best Researcher Award.

Professional Profile

Education

Zhiyong Dai has built a comprehensive and specialized educational foundation in the field of materials science and engineering. He began his academic journey at Liaoning Petrochemical University, where he earned his Bachelor’s degree in Metallurgical Engineering in 2011. He continued at the same institution to pursue a Master’s degree in Materials Science, which he completed in 2014. His growing interest in the advanced mechanical and physical properties of materials led him to enroll in a Ph.D. program in Materials Processing Engineering at Shenyang University of Technology, where he completed his doctorate in 2024. His doctoral research focused on the hot deformation behavior, strengthening mechanisms, and creep deformation of nickel-based alloys—particularly Inconel 625—under high-temperature conditions. This advanced academic training has equipped him with a deep understanding of metallurgical principles, material failure analysis, and solidification theory. The progression from undergraduate to doctoral studies shows a clear and consistent focus on developing both the theoretical and applied aspects of materials engineering, particularly in welding and high-temperature applications. Throughout his educational journey, Dr. Dai has also completed various professional development programs in higher education and has earned a certification as a university-level teacher from the Liaoning Provincial Department of Education.

Professional Experience

Dr. Zhiyong Dai has accumulated nearly a decade of teaching and research experience at Bohai Shipbuilding Vocational College, where he began his academic career in January 2015. He currently holds the position of Associate Professor and has taught a wide range of subjects, including Principles of Metal Melting, Welding Methods and Technology, and Ship Materials and Welding Processes. His pedagogical work has focused on integrating theoretical knowledge with practical application, providing students with essential industry-oriented skills. Beyond classroom instruction, he has played a pivotal role in guiding students through national and regional academic competitions, often earning accolades for both students and himself as a supervising instructor. His professional growth is marked by steady career progression, moving from Assistant Lecturer in 2015 to Lecturer in 2017, and being promoted to Associate Professor in 2024. Additionally, Dr. Dai has actively participated in academic research and curriculum development, contributing to several internal institutional projects focused on vocational training, modern apprenticeship models, and school-enterprise collaboration. This professional trajectory reflects a dedication to both teaching excellence and applied research, reinforcing his impact on vocational education and positioning him as a candidate deserving of national academic recognition.

Research Interests

Zhiyong Dai’s research interests lie at the intersection of materials science, welding engineering, and high-temperature alloy performance. He is particularly focused on the development and performance evaluation of nickel-based and nitrogen-containing alloys under extreme thermal and mechanical conditions. His recent studies have explored the creep deformation behavior, intermediate temperature brittleness, and tensile properties of Inconel 625 deposited metal and similar advanced materials. His work contributes valuable insights into the mechanisms that govern strength and failure in high-performance alloys used in aerospace, marine, and energy industries. Additionally, Dr. Dai is interested in improving welding materials and processes, especially those involving flux-cored wires and laser positioning devices. He also engages in educational research related to vocational training models and the development of innovation-driven talent in technical institutions. His combined focus on fundamental material behavior and applied welding techniques bridges the gap between theoretical research and industrial application. With a commitment to both scientific advancement and vocational education, his research is aligned with national priorities for high-end manufacturing and skilled labor development, further substantiating his suitability for prestigious research awards.

Research Skills

Dr. Zhiyong Dai possesses a diverse set of research skills that enable him to conduct comprehensive investigations into material behavior and welding technologies. He is adept in high-temperature mechanical testing, microstructural characterization, and metallurgical analysis, including creep testing and tensile strength evaluation of nickel-based alloys. His research utilizes both traditional metallographic methods and advanced analytical techniques to study deformation mechanisms, phase transformation, and grain structure evolution under various processing conditions. He also has practical experience in welding simulation, laser alignment tools, and arc welding systems, contributing to the development of innovative welding materials and methodologies. In addition to his laboratory skills, Dr. Dai is proficient in academic writing and technical reporting, with several Q1 and Q2 journal publications to his credit. He has also led or participated in funded research projects focused on modern apprenticeship systems and industry-academia collaboration. His ability to integrate experimental research with educational innovation showcases his multidisciplinary skill set. Furthermore, he is competent in the use of English for academic purposes, and has passed CET-4, demonstrating his capability to engage in international research communication.

Awards and Honors

Dr. Zhiyong Dai has received multiple recognitions throughout his professional career for both academic and instructional excellence. His awards span individual achievements, team leadership in competitions, and excellence in innovation. Notable honors include a First Prize in the Huludao City Natural Science Academic Achievement Awards in 2017, and a Third Prize for Technical Innovation in Laser Positioning Device Development in 2023. As a mentor, he earned the Instructor Award at the National Nonferrous Metal Vocational College Skills Competition (Aluminum Welding, 2017) and has guided students to success in events such as the “Challenge Cup” Liaoning Province Undergraduate Academic Science and Technology Competition. Additionally, he has received awards for educational guidance and technical paper writing, including third-place honors in faculty skills and student mental health initiatives. His consistent recognition over the years underscores his impact as an educator and researcher. His patent contributions on novel welding alloys and preparation methods also demonstrate his commitment to technological advancement. These achievements reflect his ability to balance academic rigor with applied technical expertise, making him a distinguished candidate for the Best Researcher Award.

Conclusion

In conclusion, Dr. Zhiyong Dai exemplifies the qualities of an outstanding researcher and educator in the field of materials science and engineering. His academic journey reflects a steady progression through increasingly specialized fields, culminating in high-impact research on high-temperature alloy performance and innovative welding technologies. With a strong portfolio of journal publications, patents, and successful research projects, he has demonstrated both depth and breadth in his scholarly contributions. Moreover, his extensive teaching experience and active involvement in student mentorship and academic competitions highlight his dedication to educational excellence. Dr. Dai’s work bridges the critical gap between theoretical material behavior and real-world industrial applications, aligning well with national goals for technological advancement and skilled workforce development. His recognition at local and national levels further attests to his professional competence and academic influence. Considering his contributions to scientific research, education, and innovation, Dr. Dai stands out as a compelling nominee for the Best Researcher Award. He has not only advanced the frontiers of his field but has also inspired the next generation of technical experts, making him a worthy recipient of this honor.

Publication Top Notes

  1. Study on creep properties and deformation mechanisms of novel nickel-based deposited metal
    Authors: Zhiyong Dai, Rongchun Wan, Yunhai Su, Yingdi Wang
    Journal: Advanced Engineering Materials
    Date: 2025-04-22
    DOI: 10.1002/adem.202500182
    Type: Journal Article

  2. Study on the tensile properties and deformation mechanism of high-temperature resistant nitrogen-containing nickel-based welding material deposited metal
    Authors: Zhiyong Dai, Yunhai Su, Yingdi Wang, Taisen Yang, Xuewei Liang
    Journal: Materials Science and Engineering: A
    Date: 2024-06
    DOI: 10.1016/j.msea.2024.146671
    Type: Journal Article

  3. Study of corrosion behavior of Inconel 625 cladding metal in KCl–MgCl₂ molten salt under isothermal and thermal cycling conditions
    Authors: Taisen Yang, Guiqing Zhang, Zhiyong Dai, Xuewei Liang, Yingdi Wang, Yunhai Su
    Journal: Journal of Materials Science
    Date: 2023-08
    DOI: 10.1007/s10853-023-08823-7
    Type: Journal Article

 

Xiangyang Zhou | Materials Science | Best Researcher Award

Prof. Dr. Xiangyang Zhou | Materials Science | Best Researcher Award

Professor from University of Miami, United States

Dr. Xiangyang Zhou is a seasoned Professor of Materials Science and Engineering at the University of Miami, with a distinguished academic and research career spanning over three decades. His work is recognized internationally, particularly for his contributions to the development of advanced materials for solid-state energy storage systems. With a research emphasis on supercapacitors, polymer electrolytes, and mediator-enhanced energy storage devices, Dr. Zhou has played a pivotal role in advancing the understanding and application of electrochemical energy conversion technologies. His academic journey began in China and continued in the United Kingdom, culminating in a Ph.D. in Materials Science and Engineering. Over the years, he has published extensively in reputed peer-reviewed journals and collaborated on interdisciplinary projects that blend experimental techniques with computational modeling. Dr. Zhou has held prominent positions in academia and research institutes, contributing not only as a scholar but also as a mentor to emerging scientists. His current work focuses on the development of novel composite materials for high-performance, low-temperature solid-state supercapacitors. Known for his methodical and innovative research approach, Dr. Zhou continues to influence the direction of materials science with his commitment to both fundamental studies and applied research.

Professional Profile

Education

Dr. Xiangyang Zhou has a solid educational foundation in physics and materials science, having completed his academic training across some of the most respected institutions in China and the United Kingdom. He earned his Bachelor of Science in Physics from Wuhan University in Hubei, China in July 1984. This early training laid a strong foundation in the physical sciences, providing a gateway to more specialized research in materials engineering. Following his undergraduate education, Dr. Zhou pursued a Master of Science in Materials Science and Engineering at the Institute of Corrosion and Protection of Metals, part of the Academy of Science in Shenyang, China, completing it in July 1988. His graduate work focused on the corrosion behavior of metals, a critical issue in materials durability. To further his expertise, Dr. Zhou undertook doctoral studies at the University of Newcastle Upon Tyne in the United Kingdom, where he received his Ph.D. in Materials Science and Engineering in April 1996. His doctoral research provided him with in-depth knowledge of material behavior at both the micro and macro scales, preparing him for a successful and impactful research career in advanced materials and energy systems.

Professional Experience

Dr. Zhou has a rich and varied professional background in academic and applied research settings. Since 2005, he has served as a Professor at the University of Miami in Coral Gables, Florida, where he leads research initiatives in materials science and electrochemical energy storage systems. His long-standing tenure at the University of Miami reflects his sustained contributions to education, mentorship, and research excellence. Prior to his current position, he held concurrent roles between 2002 and 2005 as a Senior Scientist at the Applied Research Institute and a Research Scientist at the Applied Research Center at Florida International University. These roles allowed him to engage in application-driven research projects and collaborate with industry and governmental stakeholders. From 1996 to 2002, Dr. Zhou worked as a Research Associate at Pennsylvania State University’s Center of Advanced Materials, where he focused on pioneering materials simulation and experimental validation. His early career included a role as an Assistant Researcher at the Institute of Corrosion and Protection of Metals under the Academy of Science in Shenyang, China. Throughout his career, Dr. Zhou has integrated academic excellence with real-world research experience, positioning him as a leader in the development of innovative materials and energy technologies.

Research Interest

Dr. Xiangyang Zhou’s research interests lie at the intersection of materials science, electrochemistry, and energy storage technologies. He is particularly focused on the design, synthesis, and characterization of polymer-based solid-state electrolytes and mediator-enhanced supercapacitors. His work seeks to address critical challenges in energy storage systems, such as improving ionic conductivity, enhancing energy density, and ensuring operational stability at low temperatures. Dr. Zhou is also interested in the molecular mechanisms of proton transport in water and polymeric systems, and his investigations often bridge theoretical simulation with experimental methods. Over the years, he has developed novel polymer membranes, such as polyvinylidene fluoride/lithium trifluoromethanesulfonate systems, which show significant promise for next-generation energy devices. His research is deeply interdisciplinary, integrating principles from physics, chemistry, and materials engineering. In addition to applied device development, Dr. Zhou explores the fundamental electrochemical and spectroscopic properties of materials, employing in situ characterization methods to monitor changes during operation. This comprehensive approach enables him to tackle real-world challenges in energy conversion and storage, while also contributing to fundamental scientific understanding. His research continues to make meaningful contributions to the fields of nanomaterials, energy systems, and green technology.

Research Skills

Dr. Xiangyang Zhou possesses a wide range of technical and analytical research skills that have supported his extensive contributions to the field of materials science. He is adept at both experimental and computational techniques, including ab initio simulations, atomistic modeling, and X-ray absorption spectroscopy. These tools have enabled him to explore conduction and diffusion processes at the atomic level in various polymer electrolyte systems. Dr. Zhou also demonstrates expertise in electrochemical analysis, such as cyclic voltammetry and electrochemical impedance spectroscopy, which he uses to characterize the performance of solid-state supercapacitors and mediator-assisted devices. In terms of materials synthesis, he has experience with the fabrication of polymer composite membranes and the development of nanoporous electrodes. His skills further extend to in situ spectroscopic techniques that allow for real-time monitoring of material behavior under operating conditions. Dr. Zhou’s ability to integrate these skills within a coherent research framework has led to high-impact studies in reputable journals. His strong command of materials characterization tools and simulation software places him at the forefront of materials innovation, particularly in the rapidly evolving domain of energy storage technologies.

Awards and Honors

While the specific awards and honors received by Dr. Zhou are not listed in the biographical sketch provided, his long-standing professorship at the University of Miami and his extensive publication record suggest a career marked by academic excellence and recognition within the scientific community. His leadership in research on solid-state supercapacitors and polymer electrolytes has positioned him as a key contributor to the field, and his work has been published in top-tier journals such as the Journal of Power Sources, Journal of Electrochemical Society, and Journal of Membrane Science. These publications are often peer-reviewed by leading experts, reflecting the high quality and significance of his research. Moreover, his collaborative research with scientists such as A.N. Mansour and participation in interdisciplinary studies indicate a reputation of trust and respect in academic circles. It is likely that Dr. Zhou has also served on editorial boards, scientific committees, or as a reviewer for funding agencies, although these details are not specified. Overall, his enduring academic presence and influential research output highlight the esteem in which he is held by peers in materials science and engineering.

Conclusion

Dr. Xiangyang Zhou emerges as a highly qualified and impactful researcher whose contributions to materials science and energy storage technologies are both innovative and influential. His academic trajectory—from undergraduate studies in physics in China to doctoral work in the United Kingdom—reflects a global perspective on scientific inquiry. Throughout his professional journey, he has consistently advanced the frontier of polymer electrolytes and solid-state supercapacitors, combining theory, simulation, and experimental techniques. His ability to publish in high-impact journals and collaborate across disciplines underscores his effectiveness as a thought leader and innovator. Although formal recognitions and awards were not explicitly listed, his career accomplishments and scholarly output make a compelling case for his nomination for a Best Researcher Award. Dr. Zhou’s research continues to address pressing technological challenges related to clean energy and advanced materials, which are critical areas of global importance. His commitment to mentorship, interdisciplinary collaboration, and scientific rigor exemplifies the qualities of an outstanding researcher. He would be a deserving recipient of the award, and his selection would reinforce the value of sustained academic excellence and forward-thinking innovation in scientific research.

Publications Top Notes

  1. Application of GO anchored mediator in a polymer electrolyte membrane for high-rate solid-state supercapacitors
    Authors: Zhiwei Yan, Xiangyang Zhou, Yuchen Wang, Gordon Henry Waller, Zhijia Du
    Journal: Journal of Membrane Science
    Year: 2023
    Citations: 4

  2. Recent advances in solid-state supercapacitors: From emerging materials to advanced applications (Review)
    Authors: Mert Akin, Xiangyang Zhou
    Year: 2023
    Citations: 33

  3. In situ XAS investigation of K₄Fe(CN)₆·xH₂O and K₃Fe(CN)₆ redox activity in solid-state supercapacitors
    Authors: Azzam N. Mansour, Jonathan K. Ko, Xiangyang Zhou, Chen Zhang, Mahalingam Balasubramanian
    Journal: Journal of the Electrochemical Society
    Year: 2022
    Citations: 4

  4. Co-cured manufacturing of multi-cell composite box beam using vacuum assisted resin transfer molding
    Authors: Mert Akin, Cagri Y. Oztan, Rahmi Akin, Victoria L. Coverstone-Carroll, Xiangyang Zhou
    Journal: Journal of Composite Materials
    Year: 2021
    Citations: 4

  5. Structural analysis of K₄Fe(CN)₆·3H₂O, K₃Fe(CN)₆ and Prussian Blue (Open access)
    Authors: Azzam N. Mansour, Jonathan K. Ko, Gordon Henry Waller, Xiangyang Zhou, Mahalingam Balasubramanian
    Journal: ECS Journal of Solid State Science and Technology
    Year: 2021
    Citations: 17

  6. Electrochemical and in situ spectroscopic study of the effect of Prussian Blue as a mediator in a solid-state supercapacitor (Open access)
    Authors: Xiaoyao Qiao, Zhiwei Yan, Chen Zhang, Curtis A. Martin, Mahalingam Balasubramanian
    Journal: Journal of the Electrochemical Society
    Year: 2021
    Citations: 8

  7. Greatly enhanced energy density of all-solid-state rechargeable battery operating in high humidity environments (Open access)
    Authors: Yuchen Wang, Mert Akin, Xiaoyao Qiao, Zhiwei Yan, Xiangyang Zhou
    Journal: International Journal of Energy Research
    Year: 2021
    Citations: 3

Kun Lan | Materials Science | Best Researcher Award

Prof. Kun Lan | Materials Science | Best Researcher Award

Professor From Inner Mongolia University, China

Dr. Kun Lan is currently a Principal Investigator at the College of Energy Materials and Chemistry, Inner Mongolia University. With a research focus on crystalline mesoporous materials, Dr. Lan has contributed significantly to the field of materials chemistry, authoring over 70 peer-reviewed publications in top-tier journals such as Nature Chemistry, JACS, and Advanced Materials. His academic journey spans esteemed institutions including Lanzhou University, Fudan University, and the University of California, Riverside. His interdisciplinary work bridges chemistry, nanotechnology, and renewable energy applications. As head of the K Lab, he leads a team developing novel mesostructures with relevance to sustainable technologies and energy storage. Dr. Lan has earned multiple national and institutional recognitions for his research excellence, including the National Natural Science Foundation of China grants and the BTR New-Energy Scientific Contest Award. He is also an active member of the scientific community, serving on editorial boards and peer-review panels for international journals. Known for his strong mentorship, innovative approaches to porous material synthesis, and his deep engagement in academic collaboration, Dr. Lan is committed to advancing the frontiers of energy material science through both fundamental discoveries and practical innovations.

Professional Profile

Education

Dr. Kun Lan’s academic path began at Lanzhou University, where he earned his Bachelor of Science in Chemistry in 2013. During his undergraduate years, he developed a foundational understanding of chemical synthesis and material characterization, which sparked his lasting interest in functional materials. Motivated by his growing curiosity, Dr. Lan pursued his Ph.D. in Chemistry at Fudan University under the mentorship of Prof. Dongyuan Zhao, a globally recognized authority in mesoporous materials. He earned his doctorate in 2020, producing a highly cited body of work focused on the design and synthesis of crystalline mesostructures. His Ph.D. research addressed challenges in structural precision and functional integration in porous materials, contributing significantly to the understanding of mesophase control. In 2018–2019, he was a visiting doctoral student at the University of California, Riverside, where he expanded his research scope through international collaboration and exposure to cutting-edge laboratory techniques. These formative academic experiences equipped Dr. Lan with a robust scientific foundation and a global perspective, both of which continue to inform his research direction. His education has been instrumental in developing the skills and mindset necessary for tackling pressing challenges in materials chemistry and renewable technologies.

Professional Experience

Dr. Kun Lan’s professional journey is marked by a steady progression through prestigious academic and research institutions. From 2018 to 2019, he undertook a visiting research appointment at the University of California, Riverside, where he enhanced his understanding of nanomaterial assembly and characterization in an international setting. Following the completion of his Ph.D. in 2020, Dr. Lan served as a Postdoctoral Fellow at Fudan University, where he worked closely with Prof. Dongyuan Zhao. During this time, he deepened his expertise in the controlled synthesis of mesoporous materials and published extensively in high-impact journals. In June 2022, Dr. Lan joined the College of Energy Materials and Chemistry at Inner Mongolia University as a Principal Investigator, where he established the K Lab. As a PI, he leads interdisciplinary research focused on mesostructure design for energy-related applications. He mentors graduate and undergraduate students, secures competitive research funding, and actively contributes to the academic community through collaborations, peer reviews, and conference presentations. His leadership has propelled K Lab into a dynamic research environment known for innovation and academic rigor. Dr. Lan’s career reflects a dedication to scientific excellence, international collaboration, and the development of next-generation researchers in energy materials science.

Research Interests

Dr. Kun Lan’s research lies at the intersection of materials chemistry and sustainable technology, with a focus on the precision synthesis of crystalline mesoporous materials. He is particularly interested in controlling the atomic and mesostructural architecture of porous systems to enhance their performance in catalysis, energy storage, and separation technologies. His work explores the fundamental principles of assembly chemistry, aiming to understand and manipulate the self-organization of building blocks into ordered frameworks. A key objective of his research is to design novel mesostructures with high surface area, tunable porosity, and tailored functionality for renewable technology applications. These include advanced batteries, supercapacitors, and carbon capture materials. Dr. Lan is also committed to developing scalable synthetic routes that bridge the gap between laboratory innovation and industrial relevance. His interdisciplinary approach integrates concepts from solid-state chemistry, colloidal science, and nanotechnology, and often involves collaboration across chemistry, physics, and engineering domains. By addressing critical energy and environmental challenges through materials design, Dr. Lan’s research contributes to the development of sustainable technologies and green manufacturing processes. His work continues to push the boundaries of what is possible in the rational design of hierarchical and hybrid porous materials.

Research Skills

Dr. Kun Lan possesses a comprehensive skill set that spans advanced synthesis, structural characterization, and application testing of functional materials. He is an expert in templating strategies for constructing crystalline mesoporous materials, with extensive experience in sol–gel chemistry, surfactant-assisted assembly, and confined space synthesis. His lab proficiency includes a wide range of material characterization techniques, such as small-angle X-ray scattering (SAXS), high-resolution transmission electron microscopy (HRTEM), N₂ adsorption-desorption isotherms, and solid-state NMR, enabling him to thoroughly investigate structural and textural properties. Dr. Lan is adept at using advanced software tools for 3D structural modeling and diffraction analysis, as well as programming for data processing. He also has hands-on experience in electrochemical testing for batteries and supercapacitors, including cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and galvanostatic charge-discharge (GCD) measurements. In addition, Dr. Lan is skilled in project management, grant writing, and academic publishing, with over 70 peer-reviewed articles. He regularly collaborates with national and international research teams, and actively mentors graduate students, contributing to capacity building in materials research. His broad technical and leadership capabilities support the successful execution of interdisciplinary projects targeting energy, environmental, and catalytic applications.

Awards and Honors

Dr. Kun Lan has received numerous awards in recognition of his academic excellence and contributions to materials chemistry. His accolades began with the prestigious CSC State Scholarship Fund and the Tongji-Clearon Outstanding Academician Award in 2018. In 2019, he was honored with the Baosteel Excellent Student Award, followed by the title of Outstanding Graduate of Fudan University in 2020. His postdoctoral research earned him further distinction, including the 3rd Fudan Postdoctoral Venture Competition Award and the 1st BTR New-Energy Scientific Contest Award in 2021. In the same year, he won the Nano Research Oral Prize at the 21st Chinese Zeolite Conference and was recognized with the Excellent Doctoral Thesis Award by Fudan University in 2023. Dr. Lan has secured competitive funding from national and provincial bodies, such as the Fudan Super Postdoctoral Program, the 67th China Postdoctoral Science Foundation, and the National Natural Science Foundation of China (NSFC). He is also supported by regional talent programs including the “Junma” Program and the Grassland Talent Program. His leadership potential has been further recognized through appointments to editorial boards and invitations to review for top-tier journals like Angewandte Chemie, Advanced Materials, and Nature Protocols.

Conclusion

Dr. Kun Lan stands at the forefront of research in mesoporous materials and their applications in renewable energy technologies. With a robust academic background, diverse international experience, and a consistent record of impactful publications, he has established himself as a dynamic and influential scientist. Through the K Lab at Inner Mongolia University, Dr. Lan continues to pursue groundbreaking work in materials chemistry, fostering innovation and collaboration across disciplines. His efforts in mentorship and scientific outreach have inspired a new generation of researchers. The breadth of his research—from fundamental studies in self-assembly to practical solutions for energy storage—demonstrates his commitment to addressing global challenges through chemistry. His extensive publication record, awards, and ongoing participation in national research programs reflect a strong and growing impact in the field. As an educator, collaborator, and innovator, Dr. Kun Lan embodies the qualities of a future scientific leader in sustainable materials research. His continued work promises to deliver valuable insights and technologies that will shape the future of energy and materials science.

Publications Top Notes

  1. Metal-based mesoporous frameworks as high-performance platforms in energy storage and conversion
    Authors: Rongyao Li, Xu Wen, Yuqi Zhao, Sicheng Fan, Qiulong Wei, Kun Lan
    Year: 2025

  2. DFT-Guided Design of Dual Dopants in Anatase TiO2 for Boosted Sodium Storage
    Authors: Shuang Li, Xu Wen, Xin Miao, Rongyao Li, Wendi Wang, Xiaoyu Li, Ziyang Guo, Dongyuan Zhao, Kun Lan
    Year: 2024

  3. Conversion of Z-Scheme to type-II in dual-defective V2O5/C3N4 heterostructure for durable hydrogen evolution
    Authors: Jingyu Zhang, Jialong Li, Jinwei He, Yalin He, Zelin Wang, Shuang Li, Zhanli Chai, Kun Lan
    Year: 2024

  4. Lanthanum-Integrated Porous Adsorbent for Effective Phosphorus Removal
    Authors: Yalin He, Xingyue Qi, Jialong Li, Wendi Wang, Jingyu Zhang, Lanhao Yang, Mei Xue, Kun Lan
    Year: 2024

  5. Ordered Mesoporous Crystalline Frameworks Toward Promising Energy Applications
    Authors: Jialong Li, Rongyao Li, Wendi Wang, Kun Lan, Dongyuan Zhao
    Year: 2024

  6. Intrinsic Surface-Redox Sodium-Ion Storage Mechanism of Anatase Titanium Oxide toward High-Rate Capability
    Authors: Kun Lan (and team, unspecified here)
    Year: 2023

  7. Nanodroplet Remodeling Strategy for Synthesis of Hierarchical Multi-chambered Mesoporous Silica Nanoparticles
    Authors: Kun Lan (and team, unspecified here)
    Year: 2023

  8. Construction of Type-II Heterojunctions in Crystalline Carbon Nitride for Efficient Photocatalytic H2 Evolution
    Authors: Jingyu Zhang, Zhongliang Li, Jialong Li, Yalin He, Haojie Tong, Shuang Li, Zhanli Chai, Kun Lan
    Year: 2023

  9. Stepwise Monomicelle Assembly for Highly Ordered Mesoporous TiO2 Membranes with Precisely Tailored Mesophase and Porosity
    Authors: Kun Lan, Lu Liu, Jiayu Yu, Yuzhu Ma, Jun-Ye Zhang, Zirui Lv, Sixing Yin, Qiulong Wei, Dongyuan Zhao
    Year: 2023

  10. Constructing Unique Mesoporous Carbon Superstructures via Monomicelle Interface Confined Assembly
    Authors: Kun Lan
    Year: 2022

  11. Synthesis of Ni/NiO@MoO3-x Composite Nanoarrays for High Current Density Hydrogen Evolution Reaction
    Authors: Kun Lan
    Year: 2022

  12. Versatile Synthesis of Mesoporous Crystalline TiO2 Materials by Monomicelle Assembly
    Authors: Kun Lan
    Year: 2022

  13. Modular super-assembly of hierarchical superstructures from monomicelle building blocks
    Authors: Kun Lan
    Year: 2022

  14. Functional Ordered Mesoporous Materials: Present and Future
    Authors: Kun Lan
    Year: 2022

  15. Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance
    Authors: Kun Lan
    Year: 2021

  16. Streamlined Mesoporous Silica Nanoparticles with Tunable Curvature from Interfacial Dynamic-Migration Strategy for Nanomotors
    Authors: Kun Lan
    Year: 2021

  17. General Synthesis of Ultrafine Monodispersed Hybrid Nanoparticles from Highly Stable Monomicelles
    Authors: Kun Lan
    Year: 2021

  18. Precisely Controlled Vertical Alignment in Mesostructured Carbon Thin Films for Efficient Electrochemical Sensing
    Authors: Kun Lan
    Year: 2021

  19. Surface-Confined Winding Assembly of Mesoporous Nanorods
    Authors: Kun Lan
    Year: 2020

  20. Interfacial Assembly Directed Unique Mesoporous Architectures: From Symmetric to Asymmetric
    Authors: Kun Lan
    Year: 2020

  21. Stable Ti3+ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis
    Authors: Kun Lan, Ruicong Wang, Qiulong Wei, Yanxiang Wang, Anh Hong, Pingyun Feng, Dongyuan Zhao
    Year: 2020

  22. Branched Mesoporous TiO2 Mesocrystals by Epitaxial Assembly of Micelles for Photocatalysis
    Authors: Kun Lan
    Year: 2020

  23. Synthesis of uniform ordered mesoporous TiO2 microspheres with controllable phase junctions for efficient solar water splitting
    Authors: Kun Lan
    Year: 2019

  24. Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production
    Authors: Kun Lan
    Year: 2019

  25. Janus Mesoporous Sensor Devices for Simultaneous Multivariable Gases Detection
    Authors: Kun Lan
    Yar: 2019

  26. Two-Dimensional Mesoporous Heterostructure Delivering Superior Pseudocapacitive Sodium Storage via Bottom-Up Monomicelle Assembly
    Authors: Kun Lan
    Year: 2019

  27. Confined Interfacial Monomicelle Assembly for Precisely Controlled Coating of Single-Layered Titania Mesopores
    Authors: Kun Lan
    Year: 2019

  28. Confinement synthesis of hierarchical ordered macro-/mesoporous TiO2 nanostructures with high crystallization for photodegradation
    Authors: Kun Lan
    Year: 2019

  29. Fully printable hole-conductor-free mesoscopic perovskite solar cells based on mesoporous anatase single crystals
    Authors: Kun Lan
    Year: 2018

  30. Mesoporous TiO2 Microspheres with Precisely Controlled Crystallites and Architectures
    Authors: Kun Lan
    Year: 2018

  31. Mesoporous TiO2 /TiC@C Composite Membranes with Stable TiO2-C Interface for Robust Lithium Storage
    Authors: Kun Lan
    Year: 2018

  32. Uniform Ordered Two-Dimensional Mesoporous TiO2 Nanosheets from Hydrothermal-Induced Solvent-Confined Monomicelle Assembly
    Authors: Kun Lan, Yao Liu, Wei Zhang, Yong Liu, Ahmed Elzatahry, Ruicong Wang, Yongyao Xia, Dhaifallah Al-Dhayan, Nanfeng Zheng, Dongyuan Zhao
    Year: 2018

  33. Constructing Three-Dimensional Mesoporous Bouquet-Posy-like TiO2 Superstructures with Radially Oriented Mesochannels and Single-Crystal Walls
    Authors: Yong Liu, Kun Lan, Shushuang Li, Yongmei Liu, Biao Kong, Geng Wang, Pengfei Zhang, Ruicong Wang, Haili He, Yun Ling, et al.
    Year: 2016

  34. Template synthesis of metal tungsten nanowire bundles with high field electron emission performance
    Authors: Yong Liu, Kun Lan, Mahir H. Es-Saheb, Ahmed A. Elzatahry, Dongyuan Zhao
    Year: 2016

  35. Surfactant-templating strategy for ultrathin mesoporous TiO2 coating on flexible graphitized carbon supports for high-performance lithium-ion battery
    Authors: Kun Lan
    Year: 2016

  36. Ordered Macro/Mesoporous TiO2 Hollow Microspheres with Highly Crystalline Thin Shells for High-Efficiency Photoconversion
    Authors: Yong Liu, Kun Lan, Abdulaziz A. Bagabas, Pengfei Zhang, Wenjun Gao, Jingxiu Wang, Zhenkun Sun, Jianwei Fan, Ahmed A. Elzatahry, Dongyuan Zhao
    Year: 2015

  37. Mesoporous TiO2 Mesocrystals: Remarkable Defects-Induced Crystallite-Interface Reactivity and Their in Situ Conversion to Single Crystals
    Authors: Yong Liu, Yongfeng Luo, Ahmed A. Elzatahry, Wei Luo, Renchao Che, Jianwei Fan, Kun Lan, Abdullah M. Al-Enizi, Zhenkun Sun, Bin Li, et al.
    Year: 2015