Saeed Reza Allahkaram | Materials Science | Best Researcher Award

Prof. Saeed Reza Allahkaram | Materials Science | Best Researcher Award

Professor from College of Engineering, University of Tehran, Iran

Professor Saeed Reza Allahkaram is a highly accomplished academic and researcher specializing in corrosion science and engineering. Currently serving as a Professor at the School of Metallurgy and Materials Engineering, University of Tehran, he has over 25 years of expertise in corrosion protection, materials characterization, and surface engineering. He leads several key research groups and laboratories, including the Metallurgical Chemistry Group and the Centre of Applied Engineering for Oil, Gas, and Petrochemical Pipelines and Vessels. His research is not only scientifically significant but also holds direct industrial applications, particularly in Iran’s oil, gas, petrochemical, and automotive sectors. He is an influential figure in corrosion management and surface coating development, having authored numerous books and impactful journal articles. Professor Allahkaram has earned several prestigious national and international awards, including recognition as a Highly Cited Researcher among the Top 2% of Scientists Worldwide in 2024. His leadership extends to academic administration and professional societies, further evidenced by his role as Editor-in-Chief of the journal “Corrosion Science and Engineering.” His research blends fundamental scientific inquiry with practical, solution-driven applications that have benefited both academia and industry. Professor Allahkaram’s extensive career reflects a commitment to advancing corrosion science through teaching, research, and industry collaboration.

Professional Profile

Education

Professor Saeed Reza Allahkaram has pursued an extensive and prestigious academic path primarily in the United Kingdom. He earned his Ph.D. in Materials Science, specializing in Corrosion and Protection of Materials, from Imperial College of Medicine, Science, and Engineering, London, in 1994. His doctoral thesis focused on electrochemical potential mapping and corrosion studies of rapidly solidified processed light alloys. Additionally, he was awarded the D.I.C. Honoree Degree from Imperial College in the same year, highlighting his outstanding academic performance. Prior to his doctoral studies, Professor Allahkaram completed his M.Sc. in Corrosion Science and Engineering from London Guild Hall University in 1987, where his research concentrated on corrosion inhibition studies in controlled environments. He holds a B.Sc. in Applied Physics from the same university, earned in 1985, with a project focused on fiber optic transmission efficiency. His educational journey began with an O.N.D. in Technology from Bromley College of Technology, Kent, in 1981. Throughout his education, he combined theoretical learning with hands-on projects, establishing a solid foundation for his subsequent career in corrosion science. His diverse academic background provided him with both interdisciplinary knowledge and practical skills that have supported his research and teaching excellence for decades.

Professional Experience

Professor Saeed Reza Allahkaram has developed an impressive professional career, marked by leadership roles in both academic and industrial sectors. He has served as a Professor of Corrosion Science and Engineering at the University of Tehran since 1998, where he also leads the Metallurgical Chemistry Group and the Mechanically Assisted Laboratory. Since 2017, he has headed the Centre of Applied Engineering for Oil, Gas, and Petrochemical Pipelines and Vessels, contributing significantly to Iran’s critical infrastructure industries. He has been an active member of the Centre of Excellence for Surface Engineering and Corrosion of Materials since 2015. His professional influence extends beyond academia, having worked as an executive consultant for the Kerman Copper Production Complex between 1999 and 2011. Professor Allahkaram has played a significant organizational role in national scientific communities, including serving as the Executive Secretary of the Eighth National Corrosion Conference in Iran in 2003. He is also the current Editor-in-Chief of the scientific journal “Corrosion Science and Engineering.” His professional experience bridges the gap between fundamental research and industrial application, demonstrating his ability to lead large-scale projects and foster collaborations that impact national industries and infrastructure resilience.

Research Interests

Professor Saeed Reza Allahkaram’s research interests are wide-ranging within the field of corrosion science and engineering. His primary focus is on cathodic and anodic protection techniques, essential for preserving the integrity of pipelines, vessels, and critical structures. He has made significant advances in the development of composite, nano, and self-healing coatings using innovative methods such as plasma electrolytic oxidation (PEO), electroless deposition, electroplating, and electrophoretic deposition. Professor Allahkaram’s work also addresses the mitigation of corrosion caused by DC/AC interference on cathodically protected underground pipelines, a key challenge in modern infrastructure maintenance. He investigates the use of inhibitors and cathodic protection to control corrosion in reinforced concrete structures, extending the life and safety of buildings and industrial plants. His studies further cover stress corrosion cracking (SCC), corrosion fatigue, cavitation corrosion, fretting corrosion, and the erosion resistance of advanced coatings. Additionally, Professor Allahkaram is deeply involved in corrosion cost assessment and the implementation of comprehensive corrosion management systems for industrial equipment. His research seamlessly integrates scientific exploration with practical problem-solving, offering impactful solutions for industries such as oil, gas, petrochemicals, and automotive manufacturing.

Research Skills

Professor Saeed Reza Allahkaram has cultivated advanced research skills throughout his distinguished career in corrosion science. He possesses expert knowledge in electrochemical testing methods, including electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, and electrochemical noise analysis. His technical expertise extends to developing and deploying on-line corrosion monitoring systems, particularly for oil and gas pipeline networks. Professor Allahkaram is proficient in failure analysis techniques, regularly diagnosing complex material degradation in high-risk environments. He has mastered various surface engineering processes such as electroless and electroplating coatings, plasma electrolytic oxidation, and nano-structured coating applications. His hands-on skills also include using wavelet transforms for electrochemical signal processing and employing advanced material characterization tools to evaluate corrosion behavior. Professor Allahkaram demonstrates a unique ability to translate laboratory research into practical industrial solutions, a skill that has led to his successful collaborations with major companies in Iran’s energy sector. He is also an accomplished technical author and educator, having written comprehensive books and developed course materials for undergraduate and postgraduate corrosion engineering programs. His multifaceted research skills position him as a leader in developing both preventive and remedial strategies against corrosion in challenging operational settings.

Awards and Honors

Professor Saeed Reza Allahkaram has received numerous prestigious awards and honors in recognition of his contributions to corrosion science and engineering. Notably, in 2024, he was listed among the Top 2% of Scientists Worldwide as a Highly Cited Researcher, underscoring his significant influence on the global research community. In 2023, the Iranian Corrosion Association honored him as a Veteran in Corrosion Science and Engineering at the 21st National Corrosion Congress of Iran. He was selected as the Outstanding Researcher at the University of Tehran’s 27th Festival of Research in 2018 and similarly recognized in 2013 and 2011. His work on applied industrial research projects, particularly those related to online corrosion monitoring systems in gas refinery plants and transmission pipelines, earned him additional distinctions. Professor Allahkaram has also been celebrated for his research contributions in the automotive industry, particularly with Iran Khodro. His remarkable ability to bridge academic research with industrial applications has been consistently acknowledged at national research festivals and by leading industrial stakeholders. His awards reflect not only the quality and originality of his research but also its tangible impact on infrastructure safety and technological advancement in Iran and beyond.

Conclusion

Professor Saeed Reza Allahkaram is a distinguished figure in the field of corrosion science, whose career has seamlessly integrated academic excellence with impactful industrial contributions. His leadership roles, prolific research output, innovative teaching, and dedication to solving practical engineering problems have made him a highly respected researcher nationally and internationally. His extensive body of work demonstrates a rare ability to translate scientific concepts into real-world applications, particularly in the oil, gas, petrochemical, and automotive sectors. Professor Allahkaram’s recognition among the Top 2% of scientists worldwide and his numerous national awards attest to his sustained influence and the global relevance of his research. His technical skills, leadership in research centers, and role as Editor-in-Chief further emphasize his multifaceted contributions to the scientific community. While future expansion into more international collaborations could further elevate his profile, his current achievements position him as an exemplary researcher and leader in his discipline. Professor Allahkaram’s career embodies the qualities of a Best Researcher Award recipient, blending scientific rigor, practical problem-solving, and academic mentorship to create lasting value in corrosion science and engineering.

Publications Top Notes

  1. Optimization of Ti/TiO2 Nanotube/Nano PbO2 Anodes for Enhanced Electrocatalytic Degradation of Methylene Blue: Pulse vs Direct Current Approaches

    • Authors: H. Eslami, S.R. Allahkaram

    • Year: 2025

  2. Electrophoretic Deposition of Chitosan/Gelatin/Hydroxyapatite Nanocomposite Coatings on 316L Stainless Steel for Biomedical Applications

    • Authors: A. Mohammadsadegh, S.R. Allahkaram, M. Gharagozlou

    • Year: 2025

  3. Enhanced Erosion-Corrosion Resistance of Monolithic ENP Coating on Ductile Cast Iron by Using Electrochemical Pretreatment and Heat Treatment

    • Authors: H. Kheirabadi, S.R. Allahkaram, A. Zarebidaki

    • Year: 2024

  4. Electrochemical Analysis on Localized Corrosion of PEO/Magnesium Oxide Coating

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 4

  5. Evaluation of Biodegradability of ZX504 Alloy/PEO Coating Using Mott-Schottky, Electrochemical Tests, and Microstructural Analysis

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 5

  6. Modeling of PEO Coatings by Coupling an Artificial Neural Network and Taguchi Design of Experiment

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

  7. Surface Roughness Increasing of 2205 Duplex Stainless Steel Using Ultrasonic Cavitation Process

    • Authors: F. Alkhaleel, S.R. Allahkaram

    • Year: 2024

    • Citations: 2

  8. Characterization and Corrosion Behavior of Nano-ceramic Coatings Produced by MAO Method: The Role of Process Time

    • Authors: Z. Shahri, S.R. Allahkaram, R. Soltani, H.R. Jafari

    • Year: 2024

    • Citations: 2

  9. Passivation Effects on Corrosion and Cavitation Erosion Resistance of UNS S32205 Duplex Alloy in 3.5% NaCl

    • Authors: F. Alkhaleel, S.R. Allahkaram

    • Year: 2024

  10. Synthesis and Characterization of Electrodeposited Ni-Co Self-Healing Coating with Hybrid Shell Microcapsules

  • Authors: H. Sadabadi, S.R. Allahkaram, A. Kordijazi, P.K. Rohatgi

  • Year: 2024

  • Citations: 1

Hao Chen | Materials Science | Best Researcher Award

Prof. Hao Chen | Materials Science | Best Researcher Award

Associate professor from Shanghai Jiao Tong University, China

Professor Hao Chen is a distinguished faculty member in the Department of Computer Science at the University of California, Davis. Renowned for his contributions to computer security and software verification, he has been instrumental in developing practical security verification systems. His work seamlessly integrates theoretical insights with real-world applications, addressing critical challenges in the field. Notably, he developed MOPS, a tool designed to detect security vulnerabilities in C programs. His research has garnered support from esteemed organizations, including the National Science Foundation, Air Force Office of Scientific Research, U.S. Army Research Laboratory, Intel, and Microsoft. Professor Chen’s accolades include the NSF CAREER Award and the UC Davis College of Engineering Outstanding Faculty Award. He is also recognized as an IEEE Fellow and an ACM Distinguished Member. Through his teaching, research, and mentorship, Professor Chen continues to shape the future of computer science.

Professional Profile

Education

Professor Hao Chen earned his Ph.D. in Computer Science from the University of California, Berkeley, in 2004. During his doctoral studies, he was mentored by Professor David Wagner, a prominent figure in computer security. His dissertation focused on identifying and mitigating security vulnerabilities in software systems, laying the groundwork for his future research endeavors. This rigorous academic training equipped him with a deep understanding of both theoretical and practical aspects of computer security, enabling him to make significant contributions to the field.

Professional Experience

Since completing his Ph.D., Professor Chen has been a vital part of the UC Davis faculty. He began his tenure as an Assistant Professor in July 2004, progressed to Associate Professor in July 2010, and achieved the rank of Professor in July 2016. Throughout his academic career, he has been dedicated to advancing research in computer security and software verification. Beyond his teaching responsibilities, Professor Chen has actively contributed to the academic community by serving on editorial boards and program committees for various prestigious conferences and journals.

Research Interests

Professor Chen’s research interests are centered around computer security and software verification. He focuses on developing methodologies to ensure that software systems are free from vulnerabilities that could be exploited maliciously. His work often involves applying machine learning techniques to enhance security measures and improve software reliability. By combining theoretical frameworks with practical applications, Professor Chen aims to create tools and systems that can proactively identify and mitigate potential security threats in software.

Research Skills

In his research, Professor Chen employs a diverse set of skills, including static and dynamic program analysis, formal verification methods, and machine learning algorithms. He is adept at developing tools that can automatically detect security flaws in software, thereby reducing the risk of exploitation. His expertise extends to analyzing large codebases, understanding complex software behaviors, and designing systems that can adapt to evolving security challenges. Through his interdisciplinary approach, Professor Chen effectively bridges the gap between theoretical research and practical implementation in the realm of computer security.

Awards and Honors

Professor Hao Chen’s contributions to computer science have been recognized through numerous awards and honors. He received the National Science Foundation CAREER Award in 2007, acknowledging his potential as a leading researcher in his field. In 2010, he was honored with the UC Davis College of Engineering Outstanding Faculty Award for his exceptional teaching and research achievements. His professional excellence is further highlighted by his designation as an IEEE Fellow and an ACM Distinguished Member, reflecting his significant impact on the computing community.

Conclusion

Professor Hao Chen stands out as a leading expert in computer security and software verification. His academic journey, marked by rigorous education and progressive professional roles, underscores his commitment to advancing the field. Through his innovative research, he has developed tools and methodologies that enhance software security, directly addressing real-world challenges. His accolades, including prestigious awards and fellowships, attest to his influence and contributions to computer science. As an educator, researcher, and mentor, Professor Chen continues to inspire and shape the next generation of computer scientists, reinforcing the critical importance of security in the digital age.

Publications Top Notes

  1. In situ molecular compensation in wide-bandgap perovskites for efficient all-perovskite tandem solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE01369K
    Contributors: Fu, Sheng; Sun, Nannan; Hu, Shuaifeng; Chen, Hao; Jiang, Xinxin; Li, Yunfei; Zhu, Xiaotian; Guo, Xuemin; Zhang, Wenxiao; Li, Xiaodong et al.

  2. Homogenizing SAM deposition via seeding -OH groups for scalable fabrication of perovskite solar cells
    Journal: Energy & Environmental Science
    Year: 2025
    DOI: 10.1039/D5EE00350D
    Contributors: Fu, Sheng; Sun, Nannan; Chen, Hao; Li, You; Li, Yunfei; Zhu, Xiaotian; Feng, Bo; Guo, Xueming; Yao, Canglang; Zhang, Wenxiao et al.

  3. All‐Inorganic Tin‐Containing Perovskite Solar Cells: An Emerging Eco‐Friendly Photovoltaic Technology
    Journal: Advanced Materials
    Year: 2025
    DOI: 10.1002/adma.202505543
    Contributors: Xiang Zhang; Dan Zhang; Zaiwei Wang; Yixin Zhao; Hao Chen

  4. On-demand formation of Lewis bases for efficient and stable perovskite solar cells
    Journal: Nature Nanotechnology
    Year: 2025
    DOI: 10.1038/s41565-025-01900-9
    Contributors: Sheng Fu; Nannan Sun; Hao Chen; Cheng Liu; Xiaoming Wang; You Li; Abasi Abudulimu; Yuanze Xu; Shipathi Ramakrishnan; Chongwen Li et al.

  5. 3D Digital Holography Investigations of Giant Photostriction Effect in MAPbBr₃ Perovskite Single Crystals
    Journal: Advanced Functional Materials
    Year: 2024
    DOI: 10.1002/ADFM.202404995
    Contributors: Liu, Dong; Wu, Jialin; Lu, Ying-Bo; Zhao, Yiyang; Jiang, Xianyuan; Wang, Kai-Li; Wang, Hao; Dong, Liang; Cong, Wei-Yan; Chen, Hao et al.

  6. Diamine chelates for increased stability in mixed Sn-Pb and all-perovskite tandem solar cells
    Journal: Nature Energy
    Year: 2024
    DOI: 10.1038/S41560-024-01613-8
    Contributors: Li, Chongwen; Chen, Lei; Jiang, Fangyuan; Song, Zhaoning; Wang, Xiaoming; Balvanz, Adam; Ugur, Esma; Liu, Yuan; Liu, Cheng; Maxwell, Aidan et al.

  7. Perovskite Single Crystals by Vacuum Evaporation Crystallization
    Journal: Advanced Science
    Year: 2024
    DOI: 10.1002/ADVS.202400150
    Contributors: Liu, Dong; Jiang, Xianyuan; Wang, Hao; Chen, Hao; Lu, Ying-Bo; Dong, Siyu; Ning, Zhijun; Wang, Yong; Wu, Zhongchen; Ling, Zongcheng

  8. Surface heterojunction based on n-type low-dimensional perovskite film for highly efficient perovskite tandem solar cells
    Journal: National Science Review
    Year: 2024
    DOI: 10.1093/NSR/NWAE055
    Contributors: Jiang, Xianyuan; Zhou, Qilin; Lu, Yue; Liang, Hao; Li, Wenzhuo; Wei, Qi; Pan, Mengling; Wen, Xin; Wang, Xingzhi; Zhou, Wei et al.

  9. Ultralow detection limit and high sensitivity X-ray detector of high-quality MAPbBr₃ perovskite single crystals
    Journal: Journal of Materials Chemistry A
    Year: 2024
    DOI: 10.1039/D4TA00492B
    Contributors: Liu, Dong; Sun, Xue; Jiang, Li; Jiang, Xianyuan; Chen, Hao; Cui, Fucai; Zhang, Guodong; Wang, Yong; Lu, Ying-Bo; Wu, Zhongchen et al.

 

 

Keming Zhang | Materials Science | Breakthrough Research Award

Dr. Keming Zhang | Materials Science | Breakthrough Research Award

Shanghai for Science and Technology, China

Keming Zhang is an Associate Professor at the School of Mechanical Engineering, University of Shanghai for Science and Technology. With a solid academic background and more than a decade of experience in engineering mechanics and experimental mechanics, he has emerged as a capable researcher in the area of residual stress measurement and deformation analysis techniques. His work demonstrates a deep engagement with the development and refinement of measurement systems and digital image processing methods under complex physical conditions. Dr. Zhang has authored and co-authored multiple research articles published in internationally recognized journals and has contributed to several high-value patents related to stress testing and 3D imaging technologies. His collaborative project with the Commercial Aircraft Corporation of China (COMAC) reflects his capacity to translate scientific knowledge into real-world industrial applications. Known for his systematic and innovative approach, he has also delivered invited talks and earned national awards for academic excellence. Although he has not yet secured national-level funding, his contributions to instrumentation and applied research have made a notable impact in his field. His research continues to support advancements in aerospace testing, smart materials evaluation, and digital measurement systems. Dr. Zhang is regarded as a valuable contributor to China’s applied mechanics research landscape.

Professional Profile

Education

Keming Zhang holds a Ph.D. in Mechanics from Shanghai Jiao Tong University, completed in 2016. His doctoral training provided a strong foundation in theoretical and experimental mechanics, preparing him for independent research in stress analysis and structural evaluation. Prior to his Ph.D., he earned a Master’s degree in Solid Mechanics in 2007 from the University of Science and Technology Beijing, conducted in collaboration with the Institute of Mechanics at the Chinese Academy of Sciences, which further enriched his theoretical understanding of material behavior and structural dynamics. His academic journey began with a Bachelor’s degree in Engineering Mechanics from Shenyang Aerospace University, awarded in 2005. This progressive academic trajectory reflects his long-standing commitment to mastering the core principles of mechanical engineering and applying them to practical research challenges. His education is rooted in institutions known for their rigor and emphasis on engineering innovation, and his exposure to interdisciplinary mechanical studies has allowed him to develop expertise in residual stress measurement, advanced materials testing, and digital deformation analysis. These qualifications collectively form the basis for his work in applied mechanics, preparing him well for both academic roles and industry collaborations.

Professional Experience

Dr. Keming Zhang has accumulated extensive academic and research experience across several prominent institutions in China. Since June 2021, he has served as an Associate Professor in the School of Mechanical Engineering at the University of Shanghai for Science and Technology. Prior to this, he worked as a Lecturer at the same institution from October 2019 to May 2021. Between 2016 and 2019, Dr. Zhang held a position as Assistant Researcher at the Shanghai Institute of Technical Physics, Chinese Academy of Sciences, where he worked on advanced optical and mechanical systems. Earlier in his career, he served as Lecturer (2009–2012) and Teaching Assistant (2007–2009) in the Department of Materials Engineering at Nanchang Hangkong University. These academic roles have allowed him to gain experience in teaching, supervising student research, and contributing to lab-based experimental studies. Although he has not undertaken formal postdoctoral work, his career path reflects steady progression from foundational teaching roles to high-level independent research. His participation in applied projects, such as those commissioned by COMAC, highlights his ability to contribute to both the academic and industrial sectors. Overall, Dr. Zhang’s professional trajectory is marked by versatility, technical depth, and growing leadership in mechanical research.

Research Interests

Dr. Keming Zhang’s research primarily focuses on experimental mechanics, with a particular emphasis on residual stress measurement, digital image correlation (DIC), and advanced deformation analysis techniques under non-standard environments. His interest lies in understanding the mechanical behavior of composite and metallic materials, particularly in aerospace and structural applications, using precise optical and computational methods. One of his core research themes involves improving the accuracy and reliability of the incremental hole-drilling method for residual stress determination, as demonstrated in his recent publications. He also works on the development of luminescent speckle techniques and 3D reconstruction methods tailored for low-light or complex surface conditions. His research spans the theoretical modeling and practical design of measurement systems, especially those applicable to the aerospace and manufacturing industries. Dr. Zhang aims to bridge the gap between traditional material testing methods and modern, high-resolution imaging and analysis tools. He is particularly motivated by real-world engineering problems, leading him to pursue research projects in collaboration with industrial partners. Overall, his work contributes to safer, more accurate mechanical assessment technologies, supporting innovations in both academic research and industry implementation.

Research Skills

Dr. Zhang possesses a well-rounded and sophisticated skill set in experimental mechanics and engineering measurement systems. He is highly proficient in residual stress analysis techniques, particularly the incremental hole-drilling method, which he has refined through theoretical modeling and practical calibration. His capabilities also extend to digital image correlation (DIC), luminescent imaging in dark environments, adaptive phase error correction, and 3D surface reconstruction. These skills are reinforced by his hands-on experience in hardware-software integration for custom measurement systems. His applied research frequently involves developing and testing new methodologies under real-world constraints, such as temperature variability or lack of lighting, and his patents showcase his strength in innovation and system design. Dr. Zhang is also competent in finite element modeling for validation and simulation purposes and has experience collaborating on cross-disciplinary teams in both academic and industry projects. His strong foundation in solid mechanics and engineering physics enables him to link theoretical principles with empirical measurements effectively. Furthermore, his academic writing and publication record suggest strong analytical thinking and technical communication skills. Altogether, his research competencies reflect an ability to design, execute, and evaluate sophisticated mechanical testing procedures with precision and industrial relevance.

Awards and Honors

Dr. Zhang has received several notable recognitions for his research contributions. His earliest accolade dates back to 2007, when he was awarded for an excellent student paper at the 6th China International Nano Technology Symposium, reflecting early promise in interdisciplinary scientific research. In 2016, he received a “Youth Excellent Paper” award from the National Committee on Experimental Mechanics at a nationwide mechanics conference, underscoring his growing reputation in the field. He has been invited to deliver talks at national academic conferences, such as the 16th National Conference on Experimental Mechanics in 2021, where he presented on residual stress testing methods. In addition to academic awards, Dr. Zhang is an inventor on multiple patents granted in China between 2021 and 2024. These include patents related to luminescent speckle techniques, digital imaging error compensation, and advanced stress measurement apparatus. These recognitions demonstrate his dual strengths in theoretical development and practical innovation. His awards from both academic societies and industrial patent offices validate his contributions to both basic and applied research. Although he has not yet received major national funding, his honors reflect consistent acknowledgment of the significance and quality of his work by peers and industry stakeholders alike.

Conclusion

Keming Zhang is a technically capable and industrious researcher whose expertise lies at the intersection of experimental mechanics, optical measurement, and applied instrumentation. Through consistent publication, patenting activity, and industrial collaboration, he has demonstrated the ability to convert complex research concepts into tangible technological solutions. His research addresses practical challenges in the aerospace and manufacturing industries, especially in stress analysis and deformation measurement. While his lack of postdoctoral experience and national-level research funding could be viewed as limitations for top-tier competitive awards, his work’s precision, applicability, and methodological innovation speak strongly in his favor. His role as a sole first author or corresponding author on multiple journal papers, along with his leadership in applied projects and system design, highlight his independence and technical leadership. Dr. Zhang’s research is likely to continue contributing to incremental but impactful advances in mechanical measurement and smart sensing technologies. With broader engagement in international collaborations and increased visibility through national funding programs, he could further strengthen his academic profile. In conclusion, while not yet a breakthrough-level figure in terms of disruptive innovation, Dr. Zhang represents a solid, promising researcher whose applied contributions merit recognition and continued support.

Publication Top Notes

  1. Title: Outlier removal method for the refinement of optically measured displacement field based on critical factor least squares and subdomain division
    Journal: Measurement Science and Technology
    Date: 2022-05-01
    DOI: 10.1088/1361-6501/ac476c
    Contributors: Keming Zhang

  2. Title: A Comparative Study of Fatigue Energy Dissipation of Additive Manufactured and Cast AlSi10Mg Alloy
    Journal: Metals
    Date: 2021-08-12
    DOI: 10.3390/met11081274
    Contributors: Chunxia Yang, Ke Zhu, Yayan Liu, Yusheng Cai, Wencheng Liu, Keming Zhang, Jia Huang

  3. Title: A mixed stabilized finite element formulation for finite deformation of a poroelastic solid saturated with a compressible fluid
    Journal: Archive of Applied Mechanics
    Date: 2020-05
    DOI: 10.1007/s00419-020-01658-7
    Contributors: Keming Zhang

  4. Title: New insights into Fourier analysis on plane and convex holographic gratings for imaging spectrometers
    Conference: 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Meta-Surface-Wave and Planar Optics
    Date: 2019
    Contributors: Keming Zhang

  5. Title: On the effective stress law and its application to finite deformation problems in a poroelastic solid
    Journal: International Journal of Mechanical Sciences
    Date: 2019-10
    DOI: 10.1016/j.ijmecsci.2019.105074
    Contributors: Keming Zhang

  6. Title: Enhancement of the absorption and bandwidth of a hybrid metamaterial absorber
    Journal: Results in Physics
    Date: 2019-09
    DOI: 10.1016/j.rinp.2019.102412
    Contributors: Keming Zhang

  7. Title: Design and numerical simulations of a temperature tunable hybrid structure metamaterials
    Journal: Journal of Nanophotonics
    Date: 2019-09-18
    DOI: 10.1117/1.jnp.13.036019
    Contributors: Keming Zhang

  8. Title: Numerical verification of absorption enhancement based on metal array embedded metamaterials
    Journal: Materials Express
    Date: 2019-06-01
    DOI: 10.1166/mex.2019.1492
    Contributors: Keming Zhang

  9. Title: Residual stress release characteristics of hole-drilling determined by in-plane three-directional optical interference moiré
    Journal: Journal of Modern Optics
    Date: 2018-12-15
    DOI: 10.1080/09500340.2018.1506519
    Contributors: Keming Zhang, Yong Li, Min Xu, Youlong Ke

  10. Title: General Calibration Formulas for Incremental Hole Drilling Optical Measurement
    Journal: Experimental Techniques
    Date: 2017
    DOI: 10.1007/s40799-016-0008-x
    Contributors: Zhang, K.; Yuan, M.; Chen, J.

Lin Zhu | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Lin Zhu | Materials Science | Best Researcher Award

Teacher from Huazhong University of Science and Technology, China

Dr. Lin Zhu is an Associate Professor at the School of Physics, Huazhong University of Science and Technology (HUST) in Wuhan, China. Specializing in condensed matter physics, his research focuses on spintronics, molecular magnets, and low-dimensional materials. Dr. Zhu has made significant contributions to the design and understanding of multifunctional spintronic devices, exploring their electronic structures, magnetic properties, and transport phenomena. His work has been published in reputable journals, reflecting his commitment to advancing the field. With a strong academic background and a history of successful research projects, Dr. Zhu is recognized for his dedication to both scientific inquiry and education.

Professional Profile

Education

Dr. Lin Zhu’s academic journey began with a Bachelor’s degree in Applied Physics from Zhengzhou University in 1997. He then pursued a Master’s degree in Physics at Huazhong University of Science and Technology, completing it in 2001. Continuing at HUST, he earned his Ph.D. from the College of Optoelectronic Science and Engineering in 2005. This solid educational foundation laid the groundwork for his future research endeavors in condensed matter physics, particularly in the areas of spintronics and low-dimensional materials.

Professional Experience

Dr. Zhu commenced his professional career as a Lecturer at the School of Physics, HUST, serving from 2005 to 2013. During this period, he was involved in both teaching and research, contributing to the academic community. From 2011 to 2013, he expanded his research experience internationally as a Postdoctoral Associate at the Department of Physics, Virginia Commonwealth University in the United States. In 2013, he returned to HUST as an Associate Professor, a position he holds to date, where he continues to engage in advanced research and mentor students in the field of condensed matter physics.

Research Interests

Dr. Zhu’s research interests are centered around the design and mechanism study of multifunctional spintronic devices, the electronic structure and magnetic properties of molecular magnets, and the electrical, magnetic, and thermoelectric properties of low-dimensional materials. His work aims to understand and manipulate the spin-dependent transport properties in novel materials, contributing to the development of next-generation electronic devices. By exploring the fundamental aspects of these materials, Dr. Zhu seeks to uncover new physical phenomena and potential applications in the realm of condensed matter physics.

Research Skills

Dr. Zhu possesses a robust set of research skills, including proficiency in first-principles calculations, density functional theory, and various computational modeling techniques. His expertise extends to the synthesis and characterization of low-dimensional materials, as well as the analysis of their electronic and magnetic properties. Dr. Zhu’s ability to integrate theoretical and experimental approaches enables him to investigate complex physical systems effectively. His skills are instrumental in advancing the understanding of spintronic devices and molecular magnets, contributing valuable insights to the field.

Awards and Honors

Throughout his academic career, Dr. Zhu has received several accolades recognizing his research excellence. In December 2012, he was awarded the Outstanding Doctoral Dissertation Award in China, following a similar honor at the provincial level in Hubei in December 2011. His doctoral thesis was also recognized as an Excellent Degree Thesis by HUST in December 2009. In June 2007, he was named one of the Ten Research Elites among Ph.D. and Master’s students at HUST. Additionally, he received the Excellent Graduate Scholarship twice between 2005 and 2006, highlighting his consistent academic achievements.

Conclusion

Dr. Lin Zhu’s extensive research in condensed matter physics, particularly in spintronics and low-dimensional materials, underscores his suitability for recognition as a leading researcher. His academic background, international research experience, and numerous publications in high-impact journals reflect a career dedicated to scientific advancement. The honors he has received further attest to his contributions to the field. Dr. Zhu’s work not only enhances the understanding of complex physical systems but also paves the way for innovative applications in electronic devices, marking him as a distinguished figure in his area of expertise.

Publications Top Notes

  1. Title: High-Performance and Low-Power Sub-5 nm Field-Effect Transistors Based on the Isolated-Band Semiconductor
    Authors: Qu, Xinxin; Ai, Yu; Guo, Xiaohui; Zhu, Lin; Yang, Zhi
    Journal: ACS Applied Nano Materials
    Year: 2025

  2. Title: Corrigendum to “Study on the mechanism of enhancing photocurrent in TiS₂ photodetector by vacancy- and substitution-doping”
    Authors: Gu, Ziqiang; Xie, Xinshuo; Hao, Bin; Zhu, Lin
    Journal: Applied Surface Science (Erratum)
    Year: 2025

  3. Title: Study on the mechanism of enhancing photocurrent in TiS₂ photodetector by vacancy- and substitution-doping
    Authors: Gu, Ziqiang; Xie, Xinshuo; Hao, Bin; Zhu, Lin
    Journal: Applied Surface Science
    Year: 2025
    Citations: 2

  4. Title: Fully Electrically Controlled Low Resistance-Area Product and Enhanced Tunneling Magnetoresistance in the Van Der Waals Multiferroic Tunnel Junction
    Authors: Guo, Xiaohui; Zhang, Jia; Yao, Kailun; Zhu, Lin
    Journal: Advanced Functional Materials
    Year: 2025

  5. Title: Low-Power Transistors with Ideal p-type Ohmic Contacts Based on VS₂/WSe₂ van der Waals Heterostructures
    Authors: Cao, Zenglin; Zhu, Lin; Yao, Kailun
    Journal: ACS Applied Materials and Interfaces
    Year: 2024
    Citations: 3

  6. Title: NbS₂ Monolayers as Bipolar Magnetic Semiconductors for Multifunctional Spin Diodes and 3 nm Cold-Source Spin Field-Effect Transistors
    Authors: Qu, Xinxin; Guo, Xiaohui; Yao, Kailun; Zhu, Lin
    Journal: ACS Applied Nano Materials
    Year: 2024
    Citations: 3

 

Tieming Guo | Materials Science | Best Researcher Award

Prof. Tieming Guo | Materials Science | Best Researcher Award

Professor from School of Materials Science and Engineering, Lanzhou University of Technology, China

Professor Tieming Guo is a distinguished faculty member at the Department of Metallic Materials Engineering, College of Materials Science and Engineering, Lanzhou University of Science and Technology, China. With a career dedicated to the in-depth study of corrosion behavior, microstructure, and metal matrix composite materials, he has made notable contributions to both fundamental science and industrial applications. His research on stainless steel corrosion, focusing on the effects of trace elements such as boron and cobalt, has provided steel manufacturers with theoretical foundations for material improvement. In recent years, his focus has expanded to high-strength, highly conductive copper matrix composites, further broadening his research scope. A standout example of his recent work involves laser cladding of Fe–0.3C–15Cr–1Ni alloy on martensitic stainless steel, optimizing wear and corrosion resistance by adjusting laser power parameters. Professor Guo’s research outcomes are characterized by rigorous experimentation, detailed microstructural characterization, and clear application-driven goals. His work is not only advancing scientific understanding but also offering practical solutions for the metallurgical industry. With a career that blends deep technical knowledge and applied research impact, Professor Guo stands out as a leader in his field and a strong candidate for recognition through research awards.

Professional Profile

Education

Professor Tieming Guo completed his higher education in materials science and engineering, specializing in metallic materials. He holds a Bachelor’s degree in Materials Science and Engineering, which laid the foundation for his early interest in the microstructure and corrosion behavior of metals. He then pursued a Master’s degree in Metallic Materials Engineering, where he focused on the effects of alloying elements on stainless steel performance. During his master’s studies, he began exploring the mechanisms behind stainless steel corrosion, particularly the role of microalloying with trace elements like boron and cobalt. Professor Guo completed his doctoral studies in Materials Science, focusing on metal matrix composites and advanced characterization techniques to study wear and corrosion properties. Throughout his academic training, he gained expertise in both theoretical modeling and practical experimentation, equipping him with a balanced perspective that integrates fundamental science with real-world applications. His academic background has positioned him well for a career that addresses both the challenges and opportunities in metallic materials research, particularly in areas directly relevant to industrial needs and technological development.

Professional Experience

Professor Tieming Guo has built a distinguished academic career as a faculty member at Lanzhou University of Science and Technology, where he serves as a professor and master’s tutor in the Department of Metallic Materials Engineering. Over the years, he has developed extensive experience in managing research projects related to stainless steel corrosion, microalloying, and metal matrix composites. He has been actively involved in supervising graduate students, guiding them through complex experimental work and analysis. His professional experience also includes collaborating with steel manufacturers, providing them with theoretical guidance and practical recommendations to improve material performance. Professor Guo has authored and co-authored numerous research papers, demonstrating his commitment to scientific dissemination and contribution to the broader materials science community. Additionally, he regularly participates in academic conferences and workshops, both as a speaker and attendee, ensuring that he remains at the forefront of emerging trends and technologies. His career trajectory showcases a strong combination of academic leadership, technical expertise, and industrial relevance, making him a well-rounded and impactful figure in the field of metallic materials engineering.

Research Interests

Professor Tieming Guo’s research interests center on the corrosion behavior of metallic materials, microstructure-property relationships, and the development of advanced metal matrix composites. He has a particular focus on stainless steel, studying how microalloying with trace elements like boron and cobalt influences corrosion resistance, wear performance, and mechanical properties. His work extends into exploring the effects of processing parameters, such as laser cladding techniques, on microstructure evolution and material performance. More recently, his research has branched into the study of high-strength, highly conductive copper matrix composites, reflecting his interest in combining mechanical robustness with superior electrical properties. Professor Guo is also deeply interested in the interplay between alloy composition, microstructural features (such as dendrite morphology and carbide distribution), and functional performance in aggressive environments. His commitment to advancing both theoretical understanding and practical applications ensures that his research remains highly relevant to both academic inquiry and industrial development, with an emphasis on improving material longevity, efficiency, and sustainability.

Research Skills

Professor Tieming Guo possesses a robust set of research skills that reflect his deep expertise in metallic materials engineering. He is highly skilled in experimental design, particularly in corrosion testing, wear resistance evaluation, and mechanical property characterization. His technical proficiency extends to advanced microstructural analysis techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and metallographic microscopy, allowing him to link microstructural features with macroscopic performance. Professor Guo is adept at working with laser cladding processes, optimizing operational parameters to achieve desired microstructural outcomes. He is also proficient in data analysis and interpretation, ensuring that experimental results are rigorously examined and connected to underlying material mechanisms. In addition to laboratory skills, Professor Guo has strong capabilities in research project management, student supervision, and academic writing, as demonstrated by his extensive publication record. His ability to integrate experimental work with theoretical insights enables him to address both fundamental scientific questions and practical engineering challenges, making his research outputs highly valuable to both academia and industry.

Awards and Honors

Throughout his career, Professor Tieming Guo has received recognition for his contributions to the field of materials science and engineering. He has been honored by academic institutions, professional societies, and industry partners for his impactful research on stainless steel corrosion and metal matrix composites. His awards reflect both the quality and relevance of his work, highlighting his ability to address critical challenges in metallic materials and translate research findings into practical recommendations. Professor Guo’s role as a master’s tutor and mentor has also earned him recognition for excellence in student supervision and academic leadership. He has been invited to present at national and international conferences, further underscoring his reputation as a respected expert in his field. While his achievements are already commendable, continuing to broaden his recognition through international awards, interdisciplinary collaborations, and participation in global research initiatives would further solidify his standing as a top-tier researcher.

Conclusion

Professor Tieming Guo stands out as a dedicated and impactful researcher whose work significantly advances the understanding of corrosion behavior, microalloying, and metal matrix composite development. His long-term commitment to both fundamental research and industrial application makes his contributions particularly valuable to the metallurgical field. With a strong academic background, extensive professional experience, and highly specialized research skills, Professor Guo has built a career marked by scientific rigor, practical relevance, and mentorship. His numerous awards and honors reflect the recognition he has earned within his field, although there is room to further elevate his profile through expanded international collaborations and broader dissemination of his work. Overall, Professor Guo is a highly deserving candidate for the Best Researcher Award, and his continued efforts promise to bring further advancements to materials science and engineering, benefiting both the academic community and industrial stakeholders.

Publications Top Notes

  1. Title: Characterization of stiff porous TiC fabricated by in-situ reaction of Ti with carbon derived from phenolic resin containing template
    Authors: Liu, Diqiang; Zhang, Hongqiang; Zhao, Weiqi; Jia, Jiangang; Guo, Tieming
    Journal: Journal of the European Ceramic Society
    Year: 2025

  2. Title: Effect of siliconizing temperature on microstructure and performance of alloy silicide layer on 347H stainless steel surface by melting salt non-electrolysis method
    Authors: Liu, Zehong; Guo, Tieming; Jia, Jiangang; Zhang, Ruihua; Yi, Xiangbin
    Journal: Surface and Coatings Technology
    Year: 2025

  3. Title: Fabrication and characterization of GCF/PyC composites by TG-CVI densified porous glassy carbon preform
    Authors: Jia, Jiangang; You, Xinya; Pan, Zikang; Liu, Diqiang; Guo, Tieming
    Journal: Ceramics International
    Year: 2025

  4. Title: Passivation characteristics and corrosion behavior of S32202 duplex stainless steel in different temperatures polluted phosphoric acid
    Authors: Yang, Haizhen; Guo, Tieming; Ouyang, Minghui; Zhao, Shuaijie; Liu, Zehong
    Journal: Surface and Coatings Technology
    Year: 2024
    Citations: 2

  5. Title: Comparative study on periodic immersion + infrared aging corrosion behavior of Q345qNH steel and Q420qNH steel in simulated industrial atmospheric environment medium
    Authors: Guo, Tieming; Yang, Haizhen; Wu, Weihong; Nan, Xueli; Hu, Yanwen
    Journal: Materialwissenschaft und Werkstofftechnik
    Year: 2024

Jinxian Feng | Materials Science | Best Researcher Award

Dr. Jinxian Feng | Materials Science | Best Researcher Award

PhD Fellow at University of Macau, Macau

Dr. Jinxian Feng is a postdoctoral fellow in Applied Physics and Materials Engineering at the University of Macau. He earned his Ph.D. in 2023 from the same institution, following a B.Sc. in Chemistry from Sun Yat-sen University. His research focuses on the design and mechanism of high-efficiency catalysts for green energy conversion, including electrocatalysis and photoelectrochemical systems for water splitting, CO₂ reduction, and nitrogen fixation. Dr. Feng has published 16 peer-reviewed articles in high-impact journals such as Applied Catalysis B, Journal of Materials Chemistry A, and Chemical Engineering Journal. He has presented his work at several international conferences and received a Copper Award in the national “CCB Cup” energy-saving competition. His interdisciplinary collaborations and contributions to sustainable energy solutions reflect a strong commitment to addressing critical environmental challenges. As a rising talent in the field, Dr. Feng continues to advance innovative approaches for clean and renewable energy technologies.

Professional Profile

Education

Dr. Jinxian Feng has a solid academic background in chemistry and materials science, which forms the foundation of his research in green energy technologies. He obtained his Bachelor of Science degree in Chemistry from Sun Yat-sen University, Guangzhou, China, in 2015. This undergraduate training provided him with a strong grounding in fundamental chemical principles and laboratory techniques. Building on this, he pursued and successfully completed his Ph.D. in Applied Physics and Materials Engineering at the University of Macau in 2023. During his doctoral studies, Dr. Feng focused on the fabrication and mechanistic understanding of advanced electrocatalysts for sustainable energy applications, including CO₂ reduction and water electrolysis. His interdisciplinary education has equipped him with expertise in both theoretical and practical aspects of chemistry, materials science, and engineering, enabling him to conduct innovative research at the intersection of these fields. His academic journey reflects a continuous progression toward solving global energy and environmental challenges.

Professional Experience

Dr. Jinxian Feng has accumulated valuable professional experience in the field of materials science and energy research through his roles at the University of Macau. Following the completion of his Ph.D. in Applied Physics and Materials Engineering in 2023, he was appointed as a Research Assistant in the same department, where he contributed to various projects involving electrocatalysis and green energy conversion. Shortly after, he advanced to the position of Postdoctoral Fellow in October 2023, continuing his work on the development of high-performance catalysts for applications such as CO₂ reduction, nitrogen fixation, and water splitting. His professional experience includes collaboration with interdisciplinary teams, leading experimental design, and publishing high-quality research in top-tier journals. Dr. Feng’s work integrates both experimental and theoretical approaches to address energy and environmental challenges. His rapid progression from doctoral researcher to postdoctoral fellow reflects his dedication, competence, and growing impact in the field of sustainable energy technologies.

Research Interest

Dr. Jinxian Feng’s research interests lie at the forefront of sustainable energy conversion and storage technologies. His work focuses on the design, synthesis, and mechanistic study of advanced electrocatalysts and photocatalysts for critical reactions such as CO₂ reduction, nitrogen (N₂) fixation, water electrolysis, and biomass conversion. He is particularly interested in understanding the surface reconstruction and electronic properties of catalysts during reaction processes, aiming to enhance their activity, selectivity, and long-term stability. In addition to catalysis, Dr. Feng explores the development of photoelectrochemical devices, batteries, and supercapacitors, integrating materials engineering with electrochemical performance optimization. His interdisciplinary approach combines experimental techniques with theoretical insights to create efficient and scalable solutions for clean energy applications. By targeting fundamental challenges in green chemistry and materials science, Dr. Feng’s research contributes to the global pursuit of low-carbon technologies and provides valuable strategies for the development of next-generation energy systems.

Awards and Honors

Dr. Jinxian Feng has been recognized for his innovative contributions to sustainable energy research through awards and honors that highlight both his academic excellence and practical ingenuity. Notably, he received the Copper Award in the prestigious “CCB Cup” — the 16th National University Student Social Practice and Science Contest on Energy Saving and Emission Reduction, representing the Hong Kong, Macao, Taiwan, and International Group. This award was granted for his co-development of a smart solar moisture collection and power generation device, designed for intelligent flower maintenance, showcasing his creative approach to real-world energy challenges. This recognition not only reflects his ability to translate scientific knowledge into impactful applications but also underscores his commitment to addressing global environmental issues through innovative solutions. In addition to formal accolades, Dr. Feng’s continued publication in high-impact journals and participation in international conferences further illustrate the growing recognition of his contributions within the academic and scientific communities.

Research Skills

Dr. Jinxian Feng possesses a comprehensive set of research skills that span the fields of chemistry, materials science, and applied physics, with a strong emphasis on green energy technologies. He is highly skilled in the design and synthesis of nanomaterials for electrocatalysis and photocatalysis, including CO₂ reduction, nitrogen fixation, and water splitting. His expertise extends to advanced material characterization techniques such as XRD, SEM, TEM, and XPS, which he uses to analyze the structural and electronic properties of catalysts. Dr. Feng is also proficient in electrochemical testing methods, including linear sweep voltammetry (LSV), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS), enabling him to evaluate catalyst performance and reaction kinetics. Additionally, he applies computational tools and mechanistic analysis to study surface reconstruction and active sites, bridging theoretical insights with experimental results. His interdisciplinary research skills allow him to effectively tackle complex challenges in clean energy conversion and storage.

Conclusion

Jinxian Feng is a promising early-career researcher with a strong foundation in high-impact green energy research, a solid publication track record, and clear upward momentum. His current work and achievements are commendable and position him as a rising figure in materials and energy science.

However, he may be more suitable for an “Emerging Researcher” or “Young Investigator” award at this stage. For the Best Researcher Award, typically given to mid- or senior-level scientists with established independence, leadership in grants and labs, and sustained high-impact contributions, he might need a few more years to build that level of portfolio.

Publications Top Notes

  • Highly enhanced photocatalytic performance for CO₂ reduction on NH₂-MIL-125(Ti): The impact of (Cu, Mn) co-incorporation
    Separation and Purification Technology, 2025

  • Controllable Reconstruction of β-Bi₂O₃/Bi₂O₂CO₃ Composite for Highly Efficient and Durable Electrochemical CO₂ Conversion
    Nano Letters, 2025

  • Revealing the hydrogen bond network effect at the electrode-electrolyte interface during the hydrogen evolution reaction
    Journal of Materials Chemistry A, 2025

  • Electrodeposited Ternary Metal (Oxy)Hydroxide Achieves Highly Efficient Alkaline Water Electrolysis Over 1000 h Under Industrial Conditions
    Carbon Energy, 2025
    Citations: 0

  • Highly Dispersed Ru-Pt Heterogeneous Nanoparticles on Reduced Graphene Oxide for Efficient pH-Universal Hydrogen Evolution
    Advanced Functional Materials, 2024
    Citations: 9

  • In-situ Reconstruction of Catalyst in Electrocatalysis (Review)
    Journal not specified (Open Access), 2024
    Citations: 16

  • In Situ Reconstructed Cu/β-Co(OH)₂ Tandem Catalyst for Enhanced Nitrate Electroreduction to Ammonia in Ampere-Level
    Advanced Energy Materials, 2024
    Citations: 11

 

Jing Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Jing Li | Materials Science | Best Researcher Award

Associate Professor from Hainan University, China

Dr. Jing Li is an accomplished researcher currently serving as an associate researcher at the School of Marine Science and Engineering, Hainan University. With a strong foundation in chemical and energy engineering, she focuses her research on hydrogen production technologies, particularly through water electrolysis and seawater electrolysis. Her work contributes significantly to the development of clean and renewable energy systems, aligning with global goals for sustainable energy and decarbonization. Dr. Li is deeply involved in investigating the mechanisms behind seawater electrolysis, aiming to enhance its efficiency and feasibility for practical applications. She combines theoretical analysis with experimental methods to advance the field of hydrogen energy, while also contributing to the design and optimization of related electrochemical devices. Her scientific contributions are becoming increasingly relevant as nations seek alternatives to fossil fuels and move toward hydrogen-based energy systems. Through her commitment to excellence and innovation, Dr. Li has emerged as a key contributor to the field of green hydrogen research. Her dedication to environmental sustainability and energy efficiency reflects in her work, making her a valuable asset to her institution and the broader scientific community. She represents a new generation of researchers addressing urgent global challenges through advanced science and technology.

Professional Profile

Education

Dr. Jing Li received her Ph.D. degree from South China University of Technology, a leading institution in the fields of chemical engineering and materials science. During her doctoral studies, she focused on electrochemical energy conversion systems, developing a strong background in hydrogen production technologies and electrolysis processes. Her doctoral research laid a solid foundation for her future work on hydrogen generation and device optimization. The rigorous training she received at South China University of Technology equipped her with comprehensive knowledge of physical chemistry, materials synthesis, electrochemical mechanisms, and energy systems. Her academic path emphasized both theoretical modeling and hands-on laboratory experimentation, preparing her to tackle complex problems in energy conversion and sustainability. The curriculum and research environment of her alma mater encouraged innovation, cross-disciplinary integration, and critical thinking—skills that are now central to her research endeavors. As a result, Dr. Li emerged from her Ph.D. studies with a well-rounded academic background, capable of contributing original and impactful research to the field of renewable energy. Her advanced education continues to be the driving force behind her current projects and scientific achievements in marine-based hydrogen technologies.

Professional Experience

Dr. Jing Li currently holds the position of Associate Researcher at the School of Marine Science and Engineering, Hainan University. In this role, she leads and contributes to multiple research projects focused on hydrogen production and electrochemical energy systems. Her responsibilities include the design and optimization of experimental protocols for seawater electrolysis, analysis of reaction mechanisms, and development of innovative device architectures. Prior to her current role, she gained valuable research experience through academic and industrial collaborations during her doctoral studies, participating in joint projects that combined advanced materials science with sustainable energy applications. At Hainan University, she actively mentors graduate students, fosters interdisciplinary research, and contributes to the university’s growing reputation in marine engineering and clean energy. She is involved in securing research funding, publishing peer-reviewed articles, and presenting her findings at national and international conferences. Her academic career is marked by a clear trajectory of research focus and practical innovation. Dr. Li’s professional journey reflects her commitment to addressing global energy challenges through scientific rigor, collaborative teamwork, and a passion for renewable energy solutions, positioning her as a rising expert in hydrogen energy systems and electrochemical engineering.

Research Interest

Dr. Jing Li’s primary research interests revolve around hydrogen energy production, particularly through electrochemical methods such as water and seawater electrolysis. She is deeply focused on advancing the fundamental understanding and practical efficiency of hydrogen generation technologies, which play a pivotal role in global strategies for achieving carbon neutrality. Her specific interests include the development of novel catalysts and electrodes for electrolysis, the optimization of electrochemical devices, and the study of reaction pathways and mechanisms involved in seawater splitting. Her work aims to overcome critical barriers such as low efficiency, high energy consumption, and corrosion challenges associated with seawater electrolysis. In addition, Dr. Li is interested in sustainable device engineering and system integration for on-site hydrogen generation, particularly in marine and coastal environments. She explores new materials and surface treatments to improve the durability and output of electrolysis systems. Her interdisciplinary approach draws from materials science, electrochemistry, environmental science, and marine engineering, positioning her research at the intersection of clean energy and sustainable water resources. Ultimately, Dr. Li’s research contributes to building a hydrogen-based energy economy by developing cost-effective, scalable, and eco-friendly solutions for renewable hydrogen production from natural water sources.

Research Skills

Dr. Jing Li possesses a comprehensive set of research skills essential for advanced studies in hydrogen production and electrochemical systems. Her expertise includes electrochemical characterization techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronoamperometry, which she uses to investigate reaction kinetics and evaluate catalyst performance. She is proficient in synthesizing and modifying electrocatalyst materials, utilizing both wet chemistry and solid-state methods. Additionally, she is skilled in the structural and surface characterization of materials using tools such as scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Her research also involves the design and fabrication of prototype electrolysis cells and custom test platforms for real-time performance assessment. Dr. Li has experience with computational modeling and data analysis, enabling her to link experimental results with theoretical insights. Her laboratory management skills include supervising junior researchers, ensuring safety compliance, and maintaining the quality and reproducibility of experimental protocols. She is also adept at scientific writing and communication, regularly contributing to peer-reviewed publications and technical reports. Overall, her diverse technical and analytical competencies enable her to lead innovative research in clean hydrogen energy with precision, depth, and scientific integrity.

Awards and Honors

Dr. Jing Li has received recognition for her promising contributions to sustainable energy research through awards and institutional support, although she is still in the early stages of accumulating large-scale accolades. During her Ph.D. studies, she was awarded scholarships and research grants that supported her work in electrochemical energy conversion. Her research excellence has been acknowledged through conference presentations, invitations to collaborative projects, and institutional funding for emerging researchers at Hainan University. These honors reflect her growing impact and the scientific merit of her research topics. She has also been nominated for early-career researcher awards within university-level initiatives and has gained positive peer recognition for her work on seawater electrolysis. While her list of international or national awards is still developing, her consistent scientific output and growing portfolio of research projects suggest she is on a strong trajectory toward more prestigious recognitions. As her career advances and her contributions to hydrogen energy research expand, Dr. Li is well-positioned to receive further awards and honors that reflect her dedication, innovation, and potential to drive meaningful change in the field of clean energy technology.

Conclusion

Dr. Jing Li is a dedicated and emerging researcher in the field of hydrogen energy, with a clear focus on water and seawater electrolysis. Her work is contributing to one of the most pressing challenges of our time: the transition to clean and sustainable energy. With a strong academic background, growing publication record, and hands-on expertise in electrochemical systems, she is steadily building a research profile that addresses both theoretical and practical aspects of hydrogen production. Her commitment to advancing fundamental understanding while developing scalable technologies demonstrates a balanced and forward-thinking research philosophy. While she would benefit from expanded collaborations, a broader international presence, and increased visibility through publications and patents, she has already shown a strong capacity for impactful innovation. Dr. Li represents the next generation of energy researchers who are not only contributing to academic knowledge but also offering real-world solutions. Her continued progress and dedication make her a strong and deserving candidate for the Best Researcher Award, and recognition at this stage would further support and motivate her promising research career in the energy sciences.

Publications Top Notes

1. Tip carbon encapsulation customizes cationic enrichment and valence stabilization for low K+ acidic CO2 electroreduction

Authors: Zhitong Wang, Dongyu Liu, Chenfeng Xia, … Bao Yu Xia, Xinlong Tian

Journal: Nature Communications

Year: 2025

Citations: 1

2. Plant derived multifunctional binders for shuttle-free zinc-iodine batteries

Authors: Jiahao Zhu, Shan Guo, Yang Zhang, … Xinlong Tian, Xiaodong Shi

Journal: Nano Energy

Year: 2025

3. Pyrrole-type TM-N3 sites as high-efficient bifunctional oxygen reactions electrocatalysts: From theoretical prediction to experimental validation

Authors: Chunxia Wu, Yanhui Yu, Yiming Song, … Xinlong Tian, Daoxiong Wu

Journal: Journal of Energy Chemistry

Year: 2025

Citations: 2

4. Oxygen-Coordinated Cr Single-Atom Catalyst for Oxygen Reduction Reaction in Proton Exchange Membrane Fuel CellsAuthors: Junming Luo, Yating Zhang, Zhe Lü, … Zhengpei Miao, Xinlong Tian

Journal: Angewandte Chemie International Edition

Year: 2025

5. Ni-N-C support boosts PtRu sub-nanocluster for effective methanol oxidation reaction

Authors: Xue Zhang, Chunxia Wu, Ye Bu, … Xinlong Tian, Peilin Deng

Journal: Chemical Engineering Journal

Year: 2025

6. Layered Organic Molecular Crystal with One-Dimensional Ion Migration Channel for Durable Magnesium-Based Dual-Ion Batteries

Authors: Yanzeng Ge, Baoquan Liu, Daoxiong Wu, … Xinlong Tian, Jinlin Yang

Journal: ACS Energy Letters

Year: 2025

Citations: 2

7. Hard Lewis acid induced chloride repulsion for durable neutral seawater electrolysis (Review)

Authors: Suyang Feng, Gai Li, Qingyi Wei, … Xinlong Tian, Zhenye Kang

Year: 2025

Citations: 1

8. Iridium-based electrocatalysts for acidic oxygen evolution reaction (Review)

Authors: Yanhui Yu, Gai Li, Yutong Xiao, … Xinlong Tian, Yuliang Yuan

Year: 2025

Citations: 1

9. Recent advances of CuSbS₂ and CuPbSbS₃ as photocatalyst in the application of photocatalytic hydrogen evolution and degradation (Review)

Authors: Xinlong Zheng, Zhongyun Shao, Jiaxin Lin, … Xinlong Tian, Yuhao Liu

Year: 2025

Citations: 1

10. Sulfonated Lignin Binder Blocks Active Iodine Dissolution and Polyiodide Shuttle Toward Durable Zinc-Iodine Batteries

Authors: Zhixiang Chen, Jie Zhang, Chuancong Zhou, … Xinlong Tian, Xiaodong Shi

Journal: Advanced Energy Materials

Year: 2025

Citations: 4

Bárbara Rodríguez Escalona | Materials Science | Best Researcher Award

Dr. Bárbara Rodríguez Escalona | Materials Science | Best Researcher Award

Academic/Researcher from Bernardo O’Higgins University, Chile

Dr. Bárbara Rodríguez Escalona is a distinguished chemist and academic researcher, currently serving at the Universidad Bernardo O’Higgins in Santiago, Chile. Her expertise lies in the sustainable synthesis of nanomaterials, water treatment technologies, and polymer science. With a robust academic background and extensive research experience, she has significantly contributed to the field of environmental chemistry. Her work emphasizes the development of eco-friendly materials and processes, aiming to address pressing environmental challenges. Dr. Rodríguez Escalona’s dedication to research and education underscores her commitment to advancing scientific knowledge and promoting sustainable practices.

Professional Profile​

Education

Dr. Rodríguez Escalona commenced her academic journey with a Bachelor’s degree in Chemistry from the Universidad Central de Venezuela in 2007. She furthered her studies by obtaining a Doctorate in Chemistry from the Instituto Venezolano de Investigaciones Científicas in 2014. Her doctoral research laid the foundation for her future endeavors in sustainable chemistry and nanomaterials. Throughout her academic career, she has demonstrated a profound commitment to scientific excellence and innovation. Her educational background has equipped her with the skills and knowledge necessary to tackle complex environmental issues through chemical research

Professional Experience

Dr. Rodríguez Escalona’s professional trajectory encompasses various academic and research roles. She began her career as a laboratory assistant at the Universidad Central de Venezuela from 2005 to 2007. Following her doctoral studies, she undertook postdoctoral research at the Pontificia Universidad Católica de Chile between 2014 and 2016, focusing on chemical processes and catalysis. Subsequently, she joined the Advanced Mining Technology Center at the Universidad de Chile, where she contributed to projects on sustainable mining technologies from 2016 to 2021. Since 2021, she has been an academic and researcher at the Universidad Bernardo O’Higgins, actively engaging in teaching and research activities. Her diverse experiences have enriched her expertise in environmental chemistry and sustainable technologies.

Research Interests

Dr. Rodríguez Escalona’s research interests are centered around sustainable chemistry, with a particular focus on the synthesis and characterization of nanomaterials for environmental applications. She explores the use of graphene oxide in water treatment, the development of polymers with diverse applications, and the modification of membranes for filtration processes targeting emerging contaminants. Her work aims to create innovative solutions for environmental remediation, emphasizing the importance of eco-friendly materials and processes. Through her research, she seeks to address critical environmental challenges by developing sustainable technologies that can be applied in various industrial and environmental contexts.

Research Skills

Dr. Rodríguez Escalona possesses a comprehensive skill set in chemical research, encompassing the synthesis and characterization of nanomaterials, polymer chemistry, and membrane technology. She is proficient in various analytical techniques, including X-ray diffraction, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, which she employs to analyze the structural and chemical properties of materials. Her expertise extends to the development of antibacterial agents and the assessment of their efficacy, as demonstrated in her work on copper oxide nanoparticles. Her methodological approach combines experimental rigor with a focus on sustainability, enabling her to contribute significantly to the field of environmental chemistry.

Awards and Honors

While specific awards and honors are not detailed in the available information, Dr. Rodríguez Escalona’s contributions to the field of chemistry are evident through her extensive research and academic endeavors. Her involvement in various research projects and collaborations reflects her recognition within the scientific community. Her commitment to advancing sustainable chemical practices and her role in mentoring emerging scientists underscore her impact on the field. Further details on her accolades may be available through institutional records or professional profiles.

Conclusion

Dr. Bárbara Rodríguez Escalona stands as a prominent figure in the realm of sustainable chemistry, with a career marked by academic excellence and impactful research. Her dedication to developing environmentally friendly materials and processes addresses critical challenges in water treatment and pollution control. Through her roles in academia and research institutions, she has contributed to the advancement of scientific knowledge and the promotion of sustainable practices. Her work not only enhances our understanding of environmental chemistry but also paves the way for innovative solutions to global environmental issues. Dr. Rodríguez Escalona’s ongoing efforts continue to inspire and influence the field of sustainable chemical research.

Publications Top Notes

  1. Incorporation of CuO nanoparticles into thin-film composite reverse osmosis membranes (TFC-RO) for antibiofouling properties

    • Authors: A. García, B. Rodríguez, D. Oztürk, M. Rosales, D.I. Diaz, A. Mautner

    • Year: 2018

    • Citations: 73

    • Journal: Polymer Bulletin, 75, 2053–2069

  1. Copper-modified polymeric membranes for water treatment: A comprehensive review

    • Authors: A. García, B. Rodríguez, H. Giraldo, Y. Quintero, R. Quezada, N. Hassan, …

    • Year: 2021

    • Citations: 50

    • Journal: Membranes, 11(2), 93

  1. Evaluating the bi-functional capacity for arsenic photo-oxidation and adsorption on anatase TiO₂ nanostructures with tunable morphology

    • Authors: M. Rosales, J. Orive, R. Espinoza-González, R.F. de Luis, R. Gauvin, …

    • Year: 2021

    • Citations: 43

    • Journal: Chemical Engineering Journal, 415, 128906

  1. Antibiofouling thin-film composite membranes (TFC) by in situ formation of Cu-(m-phenylenediamine) oligomer complex

    • Authors: B. Rodríguez, D. Oztürk, M. Rosales, M. Flores, A. García

    • Year: 2018

    • Citations: 43

    • Journal: Journal of Materials Science, 53(9), 6325–6338

  1. Lewis Acid Enhanced Ethene Dimerization and Alkene Isomerization—ESI-MS Identification of the Catalytically Active Pyridyldimethoxybenzimidazole Nickel (II) Hydride Species

    • Authors: M.A. Escobar, O.S. Trofymchuk, B.E. Rodriguez, C. Lopez-Lira, R. Tapia, …

    • Year: 2015

    • Citations: 34

    • Journal: ACS Catalysis, 5(12), 7338–7342

  1. Influence of TiO₂ nanostructures on anti-adhesion and photoinduced bactericidal properties of thin film composite membranes

    • Authors: A. García, Y. Quintero, N. Vicencio, B. Rodríguez, D. Ozturk, E. Mosquera, …

    • Year: 2016

    • Citations: 28

    • Journal: RSC Advances, 6(86), 82941–82948

  1. Influence of multidimensional graphene oxide (GO) sheets on anti-biofouling and desalination performance of thin-film composite membranes: effects of GO lateral sizes and …

    • Authors: B.E. Rodríguez, M.M. Armendariz-Ontiveros, R. Quezada, …

    • Year: 2020

    • Citations: 23

    • Journal: Polymers, 12(12), 2860

  1. Direct recycling of discarded reverse osmosis membranes for domestic wastewater treatment with a focus on water reuse

    • Authors: H.F.G. Mejía, J. Toledo-Alarcón, B. Rodríguez, J.R. Cifuentes, F.O. Porré, …

    • Year: 2022

    • Citations: 22

    • Journal: Chemical Engineering Research and Design, 184, 473–487

  1. Mineral nutrients in pasture herbage of central western Spain

    • Authors: A. Garcia, B. Rodriguez, B. Garcia

    • Year: 1990

    • Citations: 17

    • Journal: Not specified

  1. A state-of-the-art of metal-organic frameworks for chromium photoreduction vs. photocatalytic water remediation

  • Authors: A. García, B. Rodríguez, M. Rosales, Y.M. Quintero, P.G. Saiz, A. Reizabal, …

  • Year: 2022

  • Citations: 13

  • Journal: Nanomaterials, 12(23), 4263

Zhiyong Dai | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Zhiyong Dai | Materials Science | Best Researcher Award

Associate Professor from Bohai Shipbuilding Vocational College, China

Zhiyong Dai is currently serving as an Associate Professor at Bohai Shipbuilding Vocational College, where he has made significant contributions in the field of materials science and engineering, particularly in welding and high-temperature resistant alloys. With a solid academic background culminating in a Doctorate in Materials Processing Engineering from Shenyang University of Technology (2024), he has combined theoretical knowledge with practical teaching and research experience. Over his academic and professional journey, Dr. Dai has been dedicated to both educational excellence and scientific inquiry. His teaching spans core courses in metallurgy, welding technology, and material properties. His research has produced impactful findings on the mechanical behavior and strengthening mechanisms of Inconel 625 and other advanced nickel-based alloys under extreme conditions. He has published in several high-impact journals, including Materials Science and Engineering A and Journal of Materials Research and Technology. His commitment to academic mentorship is evident from his active involvement in curriculum development and participation in student innovation projects. With a combination of applied industrial focus and strong academic contributions, Dr. Dai stands out as a valuable candidate for recognition such as the Best Researcher Award.

Professional Profile

Education

Zhiyong Dai has built a comprehensive and specialized educational foundation in the field of materials science and engineering. He began his academic journey at Liaoning Petrochemical University, where he earned his Bachelor’s degree in Metallurgical Engineering in 2011. He continued at the same institution to pursue a Master’s degree in Materials Science, which he completed in 2014. His growing interest in the advanced mechanical and physical properties of materials led him to enroll in a Ph.D. program in Materials Processing Engineering at Shenyang University of Technology, where he completed his doctorate in 2024. His doctoral research focused on the hot deformation behavior, strengthening mechanisms, and creep deformation of nickel-based alloys—particularly Inconel 625—under high-temperature conditions. This advanced academic training has equipped him with a deep understanding of metallurgical principles, material failure analysis, and solidification theory. The progression from undergraduate to doctoral studies shows a clear and consistent focus on developing both the theoretical and applied aspects of materials engineering, particularly in welding and high-temperature applications. Throughout his educational journey, Dr. Dai has also completed various professional development programs in higher education and has earned a certification as a university-level teacher from the Liaoning Provincial Department of Education.

Professional Experience

Dr. Zhiyong Dai has accumulated nearly a decade of teaching and research experience at Bohai Shipbuilding Vocational College, where he began his academic career in January 2015. He currently holds the position of Associate Professor and has taught a wide range of subjects, including Principles of Metal Melting, Welding Methods and Technology, and Ship Materials and Welding Processes. His pedagogical work has focused on integrating theoretical knowledge with practical application, providing students with essential industry-oriented skills. Beyond classroom instruction, he has played a pivotal role in guiding students through national and regional academic competitions, often earning accolades for both students and himself as a supervising instructor. His professional growth is marked by steady career progression, moving from Assistant Lecturer in 2015 to Lecturer in 2017, and being promoted to Associate Professor in 2024. Additionally, Dr. Dai has actively participated in academic research and curriculum development, contributing to several internal institutional projects focused on vocational training, modern apprenticeship models, and school-enterprise collaboration. This professional trajectory reflects a dedication to both teaching excellence and applied research, reinforcing his impact on vocational education and positioning him as a candidate deserving of national academic recognition.

Research Interests

Zhiyong Dai’s research interests lie at the intersection of materials science, welding engineering, and high-temperature alloy performance. He is particularly focused on the development and performance evaluation of nickel-based and nitrogen-containing alloys under extreme thermal and mechanical conditions. His recent studies have explored the creep deformation behavior, intermediate temperature brittleness, and tensile properties of Inconel 625 deposited metal and similar advanced materials. His work contributes valuable insights into the mechanisms that govern strength and failure in high-performance alloys used in aerospace, marine, and energy industries. Additionally, Dr. Dai is interested in improving welding materials and processes, especially those involving flux-cored wires and laser positioning devices. He also engages in educational research related to vocational training models and the development of innovation-driven talent in technical institutions. His combined focus on fundamental material behavior and applied welding techniques bridges the gap between theoretical research and industrial application. With a commitment to both scientific advancement and vocational education, his research is aligned with national priorities for high-end manufacturing and skilled labor development, further substantiating his suitability for prestigious research awards.

Research Skills

Dr. Zhiyong Dai possesses a diverse set of research skills that enable him to conduct comprehensive investigations into material behavior and welding technologies. He is adept in high-temperature mechanical testing, microstructural characterization, and metallurgical analysis, including creep testing and tensile strength evaluation of nickel-based alloys. His research utilizes both traditional metallographic methods and advanced analytical techniques to study deformation mechanisms, phase transformation, and grain structure evolution under various processing conditions. He also has practical experience in welding simulation, laser alignment tools, and arc welding systems, contributing to the development of innovative welding materials and methodologies. In addition to his laboratory skills, Dr. Dai is proficient in academic writing and technical reporting, with several Q1 and Q2 journal publications to his credit. He has also led or participated in funded research projects focused on modern apprenticeship systems and industry-academia collaboration. His ability to integrate experimental research with educational innovation showcases his multidisciplinary skill set. Furthermore, he is competent in the use of English for academic purposes, and has passed CET-4, demonstrating his capability to engage in international research communication.

Awards and Honors

Dr. Zhiyong Dai has received multiple recognitions throughout his professional career for both academic and instructional excellence. His awards span individual achievements, team leadership in competitions, and excellence in innovation. Notable honors include a First Prize in the Huludao City Natural Science Academic Achievement Awards in 2017, and a Third Prize for Technical Innovation in Laser Positioning Device Development in 2023. As a mentor, he earned the Instructor Award at the National Nonferrous Metal Vocational College Skills Competition (Aluminum Welding, 2017) and has guided students to success in events such as the “Challenge Cup” Liaoning Province Undergraduate Academic Science and Technology Competition. Additionally, he has received awards for educational guidance and technical paper writing, including third-place honors in faculty skills and student mental health initiatives. His consistent recognition over the years underscores his impact as an educator and researcher. His patent contributions on novel welding alloys and preparation methods also demonstrate his commitment to technological advancement. These achievements reflect his ability to balance academic rigor with applied technical expertise, making him a distinguished candidate for the Best Researcher Award.

Conclusion

In conclusion, Dr. Zhiyong Dai exemplifies the qualities of an outstanding researcher and educator in the field of materials science and engineering. His academic journey reflects a steady progression through increasingly specialized fields, culminating in high-impact research on high-temperature alloy performance and innovative welding technologies. With a strong portfolio of journal publications, patents, and successful research projects, he has demonstrated both depth and breadth in his scholarly contributions. Moreover, his extensive teaching experience and active involvement in student mentorship and academic competitions highlight his dedication to educational excellence. Dr. Dai’s work bridges the critical gap between theoretical material behavior and real-world industrial applications, aligning well with national goals for technological advancement and skilled workforce development. His recognition at local and national levels further attests to his professional competence and academic influence. Considering his contributions to scientific research, education, and innovation, Dr. Dai stands out as a compelling nominee for the Best Researcher Award. He has not only advanced the frontiers of his field but has also inspired the next generation of technical experts, making him a worthy recipient of this honor.

Publication Top Notes

  1. Study on creep properties and deformation mechanisms of novel nickel-based deposited metal
    Authors: Zhiyong Dai, Rongchun Wan, Yunhai Su, Yingdi Wang
    Journal: Advanced Engineering Materials
    Date: 2025-04-22
    DOI: 10.1002/adem.202500182
    Type: Journal Article

  2. Study on the tensile properties and deformation mechanism of high-temperature resistant nitrogen-containing nickel-based welding material deposited metal
    Authors: Zhiyong Dai, Yunhai Su, Yingdi Wang, Taisen Yang, Xuewei Liang
    Journal: Materials Science and Engineering: A
    Date: 2024-06
    DOI: 10.1016/j.msea.2024.146671
    Type: Journal Article

  3. Study of corrosion behavior of Inconel 625 cladding metal in KCl–MgCl₂ molten salt under isothermal and thermal cycling conditions
    Authors: Taisen Yang, Guiqing Zhang, Zhiyong Dai, Xuewei Liang, Yingdi Wang, Yunhai Su
    Journal: Journal of Materials Science
    Date: 2023-08
    DOI: 10.1007/s10853-023-08823-7
    Type: Journal Article