Mohammad Reza Karampoor | Materials Science | Best Researcher Award

Mr. Mohammad Reza Karampoor | Materials Science | Best Researcher Award

Research Assistance at Isfahan University of Technology, Iran

Mr. Mohammad Reza Karampoor is a dedicated researcher in materials science and engineering, specializing in corrosion protection, biomedical coatings, and nanomaterials. His expertise spans antibacterial surfaces, additive manufacturing, and the structure-properties relationship in advanced materials. With a strong academic foundation and an impressive publication record, he has significantly contributed to cutting-edge research in coatings for biomedical applications and self-healing materials. Mr. Karampoor has collaborated with prestigious institutions and industries, working on projects related to gas pipeline coatings, selective laser melting, and electrophoretic deposition techniques. His commitment to research is evident in his numerous ISI-indexed publications, national conference papers, and industry collaborations. As a fellow of the National Elite Foundation of Iran, he has demonstrated excellence in academia and innovation, earning multiple honors for his outstanding academic performance and research achievements.

Professional Profile

Education

Mr. Mohammad Reza Karampoor holds a Master’s degree in Materials Engineering (Corrosion) from Isfahan University of Technology (2020-2022), where he received a full scholarship and graduated with an 18.50/20 GPA. His thesis, supervised by Dr. Masoud Atapour and Dr. Abbas Bahrami, focused on developing antibacterial self-healing coatings on carbon steel. Prior to that, he earned his Bachelor’s degree in Materials Science and Engineering from Shahrekord University (2016-2020), also on a full scholarship. He maintained a 16.33/20 GPA, with an 18.52/20 average in his final semesters, and his thesis investigated the wear behavior of aluminum-based composites under the supervision of Dr. Hasan Sharifi. His academic excellence led him to secure top rankings in national competitions and entrance exams, further establishing his strong educational background in materials science.

Professional Experience

Mr. Karampoor has gained extensive research and industrial experience through various positions. He serves as a Research Assistant in the Chemical Metallurgical Laboratory at Isfahan University of Technology, contributing to advanced studies in corrosion protection and coatings. Additionally, he has worked on the Ahmadiroshan Plan, focusing on additive manufacturing (AM) equipment expansion at Behyaar Company. His industry collaborations include a project with the National Iranian Gas Company, where he developed protective coatings for gas pipelines. As a Teaching Assistant for the Advanced Corrosion Laboratory under Dr. Masoud Atapour, he has mentored students for three semesters. Moreover, he has supervised the Metallurgical Chemistry Laboratory since 2021. His research development role at Isfahan Science and Technology Town (ISTT) involved investigating boron nitride properties and applications. These experiences have strengthened his expertise in material coatings, biomedical applications, and industrial research.

Research Interests

Mr. Karampoor’s research focuses on corrosion protection, biomedical coatings, antibacterial surfaces, nanomaterials, and additive manufacturing. He has actively explored the structure-properties relationship in advanced materials, contributing to the development of self-healing and drug-releasing coatings. His work on electrophoretic deposition of bioactive glass coatings for biomedical applications has garnered significant attention. Additionally, he is interested in photocatalytic coatings, green corrosion inhibitors, and metal matrix composites. His research also extends to laser-material interactions in selective laser melting (SLM), investigating defect formation and process optimization. With a strong background in surface engineering, he aims to advance biocompatible coatings and sustainable solutions for industrial applications.

Research Skills

Mr. Karampoor possesses strong analytical and technical skills in corrosion testing, materials characterization, electrochemical techniques, and computational modeling. His expertise includes electrophoretic deposition, self-healing coatings, and nanomaterial synthesis. He is proficient in software tools such as Z-view, Origin Pro, Image J, Mendeley, Power Suite, and COMSOL Multiphysics (beginner level). His experimental skills extend to cathodic and anodic protection techniques, as well as surface analysis through microscopy and spectroscopy. His ability to integrate computational modeling with experimental research has enhanced his contributions to biomedical coatings and additive manufacturing.

Awards and Honors

Mr. Karampoor has received numerous awards recognizing his academic and research excellence. He was named an Outstanding Student at Isfahan University of Technology (2024) and was a Fellow of the National Elite Foundation of Iran (2022) with an exceptional score of 285. He ranked first in his master’s program at Isfahan University of Technology (2022) and secured 5th place in the 25th National Student Olympiad (2021). During his undergraduate studies, he was among the Top 10% of Graduated Students at Shahrekord University (2020) and ranked in the Top 1% of candidates in the national master’s entrance exam (2020). His achievements highlight his dedication to research, innovation, and academic excellence.

Conclusion

Mr. Mohammad Reza Karampoor is an accomplished researcher with a strong academic record, extensive research contributions, and a passion for advancing materials science and engineering. His expertise in corrosion protection, biomedical coatings, and additive manufacturing has led to impactful research in both academia and industry. With multiple ISI-indexed publications, national conference papers, and industrial collaborations, he has demonstrated excellence in innovation and applied research. His honors, including the National Elite Foundation Fellowship and top rankings in academic competitions, reflect his commitment to scientific advancement. Given his extensive experience, research achievements, and strong technical expertise, Mr. Karampoor is a highly suitable candidate for the Best Researcher Award.

Publications Top Notes

  • Preparation of an anti-bacterial CuO-containing polyurea-formaldehyde/linseed oil self-healing coating

    • Authors: MR Karampoor, M Atapour, A Bahrami
    • Year: 2023
    • Citations: 8
  • Electrophoretic deposition of ZnO-containing bioactive glass coatings on AISI 316L stainless steel for biomedical applications

    • Authors: F Heidari Laybidi, A Bahrami, MS Abbasi, M Rajabinezhad, …
    • Year: 2023
    • Citations: 7
  • Towards an antibacterial self‐healing coating based on linseed oil/ZnO nanoparticles repair agent, encapsulated in polyurea formaldehyde microcapsules

    • Authors: MR Karampoor, A Bahrami, M Atapour
    • Year: 2024
    • Citations: 2
  • The promising application of pectin/ɛ-polylysine as coating material on anodized titanium surfaces for orthopedic implants: Preparation, characterization and biomedical properties

    • Authors: FH Laybidi, A Bahrami, MS Abbasi, MA Mokhtari, MJ Dehkordi, …
    • Year: 2025
    • Citations: 1
  • Visible light photocatalytic efficiency and corrosion resistance of Zn, Ni, and Cu-doped TiO2 coatings

    • Authors: M Khalaghi, M Atapour, MM Momeni, MR Karampoor
    • Year: 2025
  • Effects of humidity, ionic contaminations and temperature on the degradation of silicone-based sealing materials used in microelectronics

    • Authors: M Yazdan Mehr, P Hajipour, MR Karampoor, HW van Zeijl, WD van Driel, …
    • Year: 2025
  • Effects of humidity, ionic contaminations and temperature on the degradation of silicone-based sealing materials used in microelectronics

    • Authors: MY Mehr, P Hajipour, MR Karampoor, H van Zeijl, WD van Driel, …
    • Year: 2025
  • Investigating the inhibitory effect of Silybum Marianum Oil (SMO) on commercial pure copper as a Green Inhibitor in 1.0 M HCl

    • Authors: MRK Masoud Atapour
    • Year: 2022
  • Investigation and introduction of defects caused by the interaction of laser and iron powder in the process of selective laser melting

    • Authors: AS Matin Mahmoudi, Shiva Karimi, Omid Mohseni, Farnaz Heidari, Sotoudeh …
    • Year: 2022
  • Modeling the interaction of laser and iron powder to estimate the temperature distribution and size of the molten pool in the selective laser melting process

    • Authors: RE Mohammad Reza Karampoor, Farnaz Heidari, Sotoudeh Heidarpour, Matin …
    • Year: 2022

 

Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assistant Professor at Shahrood University of technology, Iran

Assist. Prof. Dr. Meysam Jalali is a distinguished academic and professional in the field of Civil and Structural Engineering, currently serving as an Assistant Professor at Shahrood University of Technology (SUT). With a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology and an MSc in Civil/Earthquake Engineering from the University of Tehran, Dr. Jalali has developed significant expertise in construction materials, seismic behavior of structures, and advanced cementitious composites. He is also the Head of the Construction Material Lab at SUT, where he leads innovative research in experimental investigations and numerical modeling. Dr. Jalali’s work has earned him recognition in both academic and professional circles, particularly for his contributions to the development of novel fibers for reinforcing ultra-high-performance concrete and other cement-based materials. His research interests include the application of soft computing methods in civil engineering, net-zero construction, and 3D concrete printing. Dr. Jalali has published extensively in high-impact journals and has been involved in several high-profile research projects and consulting roles in Iran’s infrastructure development.

Profile

Assist. Prof. Dr. Meysam Jalali holds a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology, where he developed advanced expertise in structural analysis and design. He also earned a Master of Science (MSc) in Civil/Earthquake Engineering from the University of Tehran, focusing on the seismic behavior of structures, which has significantly influenced his research and professional work. Dr. Jalali completed his Bachelor of Science (BSc) in Civil Engineering at Shahrood University of Technology, laying the foundation for his extensive academic and professional career in civil and structural engineering.

Professional Experience

Assist. Prof. Dr. Meysam Jalali has a wealth of professional experience in the field of Civil and Structural Engineering, with a particular focus on construction materials and seismic behavior. He has been an Assistant Professor at Shahrood University of Technology (SUT) since 2010, where he also serves as the Head of the Construction Material Lab. In addition to his academic roles, Dr. Jalali is a Professional Engineer registered with the Tehran Engineering Organization and has extensive consulting experience. He has worked as a consultant engineer for Iran Water & Power Resources Development Company (IWPCO) and Tehran Engineering and Technical Consultant Organization (TETCO) for Underground Structures. Dr. Jalali has also held key positions in major infrastructure projects, including serving as Project Manager for the Hakim Twin Tunnels of Tehran and as the Head Engineer for the East-West Lot of Tehran Metro Line 7. His professional expertise extends to the design of structures, where he has contributed to various projects, bringing innovative solutions and technical acumen to the field.

Research Interest

Assist. Prof. Dr. Meysam Jalali’s research interests are centered around the experimental investigation of construction materials and structural engineering. His work focuses on cement-based materials, including Engineered Cementitious Composites (ECC), High-Performance Concrete (HPC), Fiber-Reinforced Concrete (FRC), and Slurry Infiltrated Fiber Concrete (SIFCON). Dr. Jalali is particularly interested in the development of innovative fiber types for reinforcing cementitious composites and the application of additive manufacturing techniques, such as 3D concrete printing, in construction. His research also encompasses the application of soft computing methods in civil engineering, multi-scale testing, and numerical modeling. He is dedicated to advancing net-zero construction practices and has been involved in pioneering projects related to the mechanical behavior of construction materials, the prediction of composite material performance using machine learning, and the development of new testing apparatus for fibrous composites. Dr. Jalali’s work contributes significantly to the innovation and sustainability of construction materials and methods.

Research Skills

Assist. Prof. Dr. Meysam Jalali is highly skilled in a broad range of research areas within civil and structural engineering. His expertise includes experimental investigations of construction materials, particularly cement-based composites such as ECC, HPC, FRC, and SIFCON. He has demonstrated significant proficiency in developing innovative fiber types for reinforcing these composites and is adept at conducting multi-scale testing to evaluate material performance. Dr. Jalali’s research extends to advanced numerical modeling, where he utilizes sophisticated computational techniques to predict and analyze structural behaviors. Additionally, he is well-versed in applying soft computing methods, including artificial neural networks (ANN), genetic programming (GEP), adaptive neuro-fuzzy inference systems (ANFIS), and group method of data handling (GMDH), to model and forecast the performance of construction materials. His innovative approach is further highlighted by his work in additive manufacturing, specifically 3D concrete printing, and his development of patented testing apparatus and methodologies for fibrous composites. Dr. Jalali’s research skills are complemented by his strong project management capabilities and his success in securing research funding from various academic and industry sources.

Conclusion

Given their extensive academic background, innovative research contributions, professional experience in large-scale engineering projects, and leadership in both education and research, this individual is a highly deserving candidate for the “Excellence in Research” award. Their work not only advances the field of civil and structural engineering but also addresses critical challenges in construction materials and sustainability.

Publications Top Notes

  • Shear strengthening of RC beams using innovative manually made NSM FRP bars
    • Journal: Construction and Building Materials
    • Year: 2012
    • Cited by: 81
    • Volume: 36, Pages: 990-1000
  • Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames
    • Journal: Steel and Composite Structures
    • Year: 2014
    • Cited by: 38
    • Volume: 16(1), Pages: 1-21
  • Machine learning prediction of fiber pull-out and bond-slip in fiber-reinforced cementitious composites
    • Journal: Journal of Building Engineering
    • Year: 2023
    • Cited by: 14
    • Volume: 63, Article ID: 105474
  • Tunnel Rehabilitation in Fault Zone Using Sequential Joints Method – Case Study: Karaj Water Conveyance Tunnel
    • Journal: International Journal of Mining and Geo-Engineering
    • Year: 2018
    • Cited by: 14
    • Volume: 52(1), Pages: 87-94
  • Flexural characteristics of fibre reinforced concrete with an optimised spirally deformed steel fibre
    • Journal: International Journal of Engineering, Transactions C: Aspects
    • Year: 2021
    • Cited by: 7
    • Volume: 34(6), Pages: 1390-1397
  • Experimental investigation on the performance of engineered spiral fiber: Fiber pull-out and direct tension tests
    • Journal: Construction and Building Materials
    • Year: 2022
    • Cited by: 2
    • Volume: 347, Article ID: 128569
  • Effect of seawater on micro-nano air bubbles concrete for repair of coastal structures
    • Journal: Journal of Rehabilitation in Civil Engineering
    • Year: 2020
    • Cited by: 2
    • Volume: 8(3), Pages: 34-42
  • Numerical investigation of mechanized shield tunnels cross-cut
    • Journal: Journal of Analytical and Numerical Methods in Mining Engineering
    • Year: 2018
    • Cited by: 1
    • Volume: 8(16), Pages: 29-43
  • Numerical investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP
    • Conference: 6th National Congress on Civil Engineering
    • Year: 2011
    • Cited by: 1
  • Pull-out behavior of twin-twisted steel fibers from various strength cement-based matrices
    • Journal: Construction and Building Materials
    • Year: 2024 (upcoming publication)
    • Article ID: 137855