Yutaka Matsuura | Materials Science | Best Researcher Award

Dr. Yutaka Matsuura | Materials Science | Best Researcher Award

Senior Fellow at Research Institute for Applied Sciences, Japan

Yutaka Matsuura is a distinguished researcher and engineer known for his pioneering work in the development of NdFeB sintered magnets, which are essential for a wide range of applications, from electronics to renewable energy. As an inventor, Matsuura played a crucial role in establishing the NdFeB ternary phase diagram, a fundamental breakthrough that has significantly advanced the magnetic material industry. His research also led to innovations in magnet production processes, including hydrogen decrepitation and dehydrogenation methods, which greatly improved the efficiency and quality of NdFeB magnets. Throughout his career, Matsuura has been instrumental in developing high-performance magnets by introducing Dy-substituted magnets to enhance coercive force. His expertise spans both the scientific and industrial sectors, having worked in research and development, production, and marketing. His contributions have shaped the global magnet industry, making him a leading figure in material science. Matsuura’s extensive patent portfolio and leadership in key industrial roles have solidified his reputation as a trailblazer in the field of permanent magnets.

Professional Profile

Education:

Yutaka Matsuura’s academic journey has been rooted in engineering and material science. He earned his Doctor of Engineering from Kyoto University in 1987, where his doctoral thesis focused on the study of NdFeB sintered magnets. This pivotal work set the foundation for his lifelong dedication to magnet research. Prior to this, Matsuura completed his Master’s degree in Science at Okayama University in 1977, following his undergraduate studies at the same institution. His education provided him with the deep scientific understanding and technical expertise that would later define his career in magnet technology. Matsuura’s academic training has played a vital role in his ability to innovate and lead groundbreaking research in material science, particularly in the domain of magnetic materials.

Professional Experience:

Yutaka Matsuura’s professional experience spans over several decades and encompasses both academic and industrial roles. Currently, he serves as a Research Fellow at the Research Institute for Applied Sciences, where he continues to advance his work in material science. His career trajectory includes leadership positions at renowned companies such as Hitachi Metals Ltd., where he served as Chief Engineer and Division President, and NEOMAX Co., Ltd., where he led the Magnetic Material Laboratories. Matsuura’s industrial experience has allowed him to bridge the gap between research and practical application, particularly in the development of advanced NdFeB sintered magnets. His roles in marketing, technical support, and R&D have contributed significantly to the global spread of NdFeB magnets, especially in industries like automotive and energy. Matsuura’s work with Sumitomo Special Metals, Kinki-Sumitoku Electronics, and other organizations has solidified his status as a key figure in the permanent magnet industry.

Research Interests:

Yutaka Matsuura’s primary research interests lie in the field of material science, with a specific focus on permanent magnets, particularly NdFeB sintered magnets. His work explores the development of high-performance magnets with enhanced coercive force, critical for a wide range of applications, including electric vehicles and renewable energy technologies. Matsuura’s research has contributed to understanding the coercive force mechanism of NdFeB magnets and the effects of rare-earth substitutions, such as Dy, on their magnetic properties. His studies have also led to the establishment of the NdFeB ternary phase diagram, a cornerstone in the synthesis and optimization of these magnets. Beyond material development, Matsuura is interested in refining the production processes of NdFeB magnets, including methods such as hydrogen decrepitation, to improve efficiency and sustainability. His work also addresses challenges such as reducing the reliance on rare-earth elements like Dy, thereby advancing both the scientific and environmental aspects of magnet technology.

Research Skills:

Yutaka Matsuura possesses a broad set of research skills, underpinned by decades of experience in material science, engineering, and industrial R&D. He is highly skilled in developing and optimizing production processes for NdFeB sintered magnets, including hydrogen decrepitation and dehydrogenation techniques. His ability to conduct fundamental research on the coercive force mechanism of magnets has been central to his work. Matsuura’s expertise extends to the creation of phase diagrams, specifically the NdFeB ternary system, which has been integral to understanding the properties of rare-earth magnets. His proficiency in experimental research, coupled with his deep knowledge of magnetic materials, allows him to innovate in the development of high-performance permanent magnets. Furthermore, Matsuura’s extensive patent portfolio reflects his ability to translate research findings into practical, industrial applications. His technical skills are complemented by a strong understanding of market dynamics, enabling him to effectively lead product development and global marketing efforts in the magnet industry.

Awards and Honors:

Throughout his career, Yutaka Matsuura has received numerous accolades that recognize his contributions to material science and magnet technology. Notably, he holds several patents in the field of permanent magnets, including groundbreaking patents on the production of NdFeB sintered magnets and methods for enhancing coercive force. His work on NdFeB magnets, particularly the development of Dy-substituted magnets, has earned him recognition as a leading figure in the industry. Matsuura’s achievements have not only advanced scientific knowledge but have also had a significant impact on the industrial applications of magnetic materials. His patents have contributed to the commercialization of high-performance permanent magnets used in a wide array of technologies, cementing his position as an innovator. Matsuura’s extensive career in both research and industry has been marked by numerous professional milestones, showcasing his leadership and dedication to advancing the field of material science.

Conclusion:

Yutaka Matsuura’s career is a testament to his exceptional contributions to the field of material science, particularly in the development of high-performance NdFeB sintered magnets. His groundbreaking research on the coercive force mechanism and the creation of the NdFeB ternary phase diagram has had a lasting impact on the magnet industry. Matsuura’s innovative production techniques, including hydrogen decrepitation, have revolutionized the manufacturing process for these magnets, making them more efficient and sustainable. His extensive patent portfolio and leadership roles in major companies highlight his ability to bridge the gap between scientific research and industrial application. While his contributions have already had a profound impact on technology, there is potential for further growth in exploring sustainable methods and interdisciplinary collaborations. Matsuura’s career exemplifies the qualities of a leading researcher, making him a deserving candidate for recognition in the field of material science and engineering.

Publication Top Notes

  1. Title: Demagnetization processes of Nd-Fe-B sintered magnets and ferrite magnets as demonstrated by soft X-ray magnetic circular dichroism microscopy
    • Authors: Matsuura, Y., Ishigami, K., Tamura, R., Nakamura, T.
    • Journal: Journal of Magnetism and Magnetic Materials
    • Citations: 2
    • Year: 2023
  2. Title: Demagnetization of Nd-Fe-B Sintered and Ferrite Magnets Derived from Magnetic Measurements
    • Authors: Matsuura, Y.
    • Conference: 2023 IEEE International Magnetic Conference – Short Papers, INTERMAG Short Papers 2023 – Proceedings
    • Year: 2023
  3. Title: Alignment and angular dependences of coercivity for (Sm,Ce)2(Co,Fe,Cu,Zr)17 magnets
    • Authors: Matsuura, Y., Tamura, R., Ishigami, K., Kajiwara, K., Nakamura, T.
    • Journal: Materials Transactions
    • Year: 2021
  4. Title: Magnetization reversal of (Sm, Ce)2(Co, Fe, Cu, Zr)17 magnets as per soft x-ray magnetic circular dichroism microscopy
    • Authors: Matsuura, Y., Maruyama, R., Kato, R., Kajiwara, K., Nakamura, T.
    • Journal: Applied Physics Letters
    • Citations: 2
    • Year: 2020
  5. Title: Coercivity Mechanism of Ga-Doped Nd-Fe-B Sintered Magnets
    • Authors: Matsuura, Y., Nakamura, T., Ishigami, K., Nagae, M., Osamura, K.
    • Journal: IEEE Transactions on Magnetics
    • Citations: 3
    • Year: 2019
  6. Title: Coercivity mechanism of SrOFe2O3 ferrite magnets
    • Authors: Matsuura, Y.
    • Journal: IEEE Transactions on Magnetics
    • Citations: 2
    • Year: 2018
  7. Title: Angular dependence of coercivity in isotropically aligned Nd-Fe-B sintered magnets
    • Authors: Matsuura, Y., Nakamura, T., Sumitani, K., Tamura, R., Osamura, K.
    • Journal: AIP Advances
    • Citations: 4
    • Year: 2018
  8. Title: Angular dependence of coercivity derived from alignment dependence of coercivity in Nd-Fe-B sintered magnets
    • Authors: Matsuura, Y., Nakamura, T., Sumitani, K., Tamura, R., Osamura, K.
    • Journal: AIP Advances
    • Citations: 8
    • Year: 2018
  9. Title: Relation between the alignment dependence of coercive force decrease ratio and the angular dependence of coercive force of ferrite magnets
    • Authors: Matsuura, Y., Kitai, N., Hosokawa, S., Hoshijima, J.
    • Journal: Journal of Magnetism and Magnetic Materials
    • Citations: 13
    • Year: 2016
  10. Title: Temperature properties of the alignment dependence of coercive force decrease ratio and the angular dependence of coercive force in Nd-Fe-B sintered magnets
    • Authors: Matsuura, Y., Kitai, N., Ishii, R., Hoshijima, J., Kuniyoshi, F.
    • Journal: Journal of Magnetism and Magnetic Materials
    • Citations: 23
    • Year: 2016

 

 

Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assistant Professor at Shahrood University of technology, Iran

Assist. Prof. Dr. Meysam Jalali is a distinguished academic and professional in the field of Civil and Structural Engineering, currently serving as an Assistant Professor at Shahrood University of Technology (SUT). With a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology and an MSc in Civil/Earthquake Engineering from the University of Tehran, Dr. Jalali has developed significant expertise in construction materials, seismic behavior of structures, and advanced cementitious composites. He is also the Head of the Construction Material Lab at SUT, where he leads innovative research in experimental investigations and numerical modeling. Dr. Jalali’s work has earned him recognition in both academic and professional circles, particularly for his contributions to the development of novel fibers for reinforcing ultra-high-performance concrete and other cement-based materials. His research interests include the application of soft computing methods in civil engineering, net-zero construction, and 3D concrete printing. Dr. Jalali has published extensively in high-impact journals and has been involved in several high-profile research projects and consulting roles in Iran’s infrastructure development.

Profile

Assist. Prof. Dr. Meysam Jalali holds a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology, where he developed advanced expertise in structural analysis and design. He also earned a Master of Science (MSc) in Civil/Earthquake Engineering from the University of Tehran, focusing on the seismic behavior of structures, which has significantly influenced his research and professional work. Dr. Jalali completed his Bachelor of Science (BSc) in Civil Engineering at Shahrood University of Technology, laying the foundation for his extensive academic and professional career in civil and structural engineering.

Professional Experience

Assist. Prof. Dr. Meysam Jalali has a wealth of professional experience in the field of Civil and Structural Engineering, with a particular focus on construction materials and seismic behavior. He has been an Assistant Professor at Shahrood University of Technology (SUT) since 2010, where he also serves as the Head of the Construction Material Lab. In addition to his academic roles, Dr. Jalali is a Professional Engineer registered with the Tehran Engineering Organization and has extensive consulting experience. He has worked as a consultant engineer for Iran Water & Power Resources Development Company (IWPCO) and Tehran Engineering and Technical Consultant Organization (TETCO) for Underground Structures. Dr. Jalali has also held key positions in major infrastructure projects, including serving as Project Manager for the Hakim Twin Tunnels of Tehran and as the Head Engineer for the East-West Lot of Tehran Metro Line 7. His professional expertise extends to the design of structures, where he has contributed to various projects, bringing innovative solutions and technical acumen to the field.

Research Interest

Assist. Prof. Dr. Meysam Jalali’s research interests are centered around the experimental investigation of construction materials and structural engineering. His work focuses on cement-based materials, including Engineered Cementitious Composites (ECC), High-Performance Concrete (HPC), Fiber-Reinforced Concrete (FRC), and Slurry Infiltrated Fiber Concrete (SIFCON). Dr. Jalali is particularly interested in the development of innovative fiber types for reinforcing cementitious composites and the application of additive manufacturing techniques, such as 3D concrete printing, in construction. His research also encompasses the application of soft computing methods in civil engineering, multi-scale testing, and numerical modeling. He is dedicated to advancing net-zero construction practices and has been involved in pioneering projects related to the mechanical behavior of construction materials, the prediction of composite material performance using machine learning, and the development of new testing apparatus for fibrous composites. Dr. Jalali’s work contributes significantly to the innovation and sustainability of construction materials and methods.

Research Skills

Assist. Prof. Dr. Meysam Jalali is highly skilled in a broad range of research areas within civil and structural engineering. His expertise includes experimental investigations of construction materials, particularly cement-based composites such as ECC, HPC, FRC, and SIFCON. He has demonstrated significant proficiency in developing innovative fiber types for reinforcing these composites and is adept at conducting multi-scale testing to evaluate material performance. Dr. Jalali’s research extends to advanced numerical modeling, where he utilizes sophisticated computational techniques to predict and analyze structural behaviors. Additionally, he is well-versed in applying soft computing methods, including artificial neural networks (ANN), genetic programming (GEP), adaptive neuro-fuzzy inference systems (ANFIS), and group method of data handling (GMDH), to model and forecast the performance of construction materials. His innovative approach is further highlighted by his work in additive manufacturing, specifically 3D concrete printing, and his development of patented testing apparatus and methodologies for fibrous composites. Dr. Jalali’s research skills are complemented by his strong project management capabilities and his success in securing research funding from various academic and industry sources.

Conclusion

Given their extensive academic background, innovative research contributions, professional experience in large-scale engineering projects, and leadership in both education and research, this individual is a highly deserving candidate for the “Excellence in Research” award. Their work not only advances the field of civil and structural engineering but also addresses critical challenges in construction materials and sustainability.

Publications Top Notes

  • Shear strengthening of RC beams using innovative manually made NSM FRP bars
    • Journal: Construction and Building Materials
    • Year: 2012
    • Cited by: 81
    • Volume: 36, Pages: 990-1000
  • Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames
    • Journal: Steel and Composite Structures
    • Year: 2014
    • Cited by: 38
    • Volume: 16(1), Pages: 1-21
  • Machine learning prediction of fiber pull-out and bond-slip in fiber-reinforced cementitious composites
    • Journal: Journal of Building Engineering
    • Year: 2023
    • Cited by: 14
    • Volume: 63, Article ID: 105474
  • Tunnel Rehabilitation in Fault Zone Using Sequential Joints Method – Case Study: Karaj Water Conveyance Tunnel
    • Journal: International Journal of Mining and Geo-Engineering
    • Year: 2018
    • Cited by: 14
    • Volume: 52(1), Pages: 87-94
  • Flexural characteristics of fibre reinforced concrete with an optimised spirally deformed steel fibre
    • Journal: International Journal of Engineering, Transactions C: Aspects
    • Year: 2021
    • Cited by: 7
    • Volume: 34(6), Pages: 1390-1397
  • Experimental investigation on the performance of engineered spiral fiber: Fiber pull-out and direct tension tests
    • Journal: Construction and Building Materials
    • Year: 2022
    • Cited by: 2
    • Volume: 347, Article ID: 128569
  • Effect of seawater on micro-nano air bubbles concrete for repair of coastal structures
    • Journal: Journal of Rehabilitation in Civil Engineering
    • Year: 2020
    • Cited by: 2
    • Volume: 8(3), Pages: 34-42
  • Numerical investigation of mechanized shield tunnels cross-cut
    • Journal: Journal of Analytical and Numerical Methods in Mining Engineering
    • Year: 2018
    • Cited by: 1
    • Volume: 8(16), Pages: 29-43
  • Numerical investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP
    • Conference: 6th National Congress on Civil Engineering
    • Year: 2011
    • Cited by: 1
  • Pull-out behavior of twin-twisted steel fibers from various strength cement-based matrices
    • Journal: Construction and Building Materials
    • Year: 2024 (upcoming publication)
    • Article ID: 137855