Yan Liu | Materials Science | Best Researcher Award

Prof. Yan Liu | Materials Science | Best Researcher Award

The Associate Director of both National Key Laboratory of Automotive Chassis Integration and Bionics and the Key Laboratory of Bionic Engineering (Ministry of Education) at Jilin University, China

Yan Liu, Ph.D. in Engineering, is a distinguished scholar renowned for her contributions to bionic engineering and materials science. She is a CJ Scholar Distinguished Professor under the Major Talent Project Incentive Program of the Ministry of Education of China, a Changbaishan Scholar of Jilin Province, and a professor and Ph.D. supervisor at Jilin University. Currently serving as the Associate Director of the National Key Laboratory of Automotive Chassis Integration and Bionics, she is instrumental in advancing bionic technologies for automotive and materials applications. As a founding member of the International Society of Bionics and vice chairman of the Jilin Association of Corrosion Prevention Technology, Yan Liu has established herself as a global leader in her field. Her research, which focuses on designing multifunctional materials inspired by biological systems, has led to over 150 publications in prestigious journals and the filing of 40 patents, 17 of which have been granted. Yan Liu’s work has significantly impacted anti-corrosion, anti-icing, and self-repairing materials, making her a pioneer in bionic materials science.

Professional Profile

Education

Yan Liu has a robust academic foundation in engineering and materials science. She earned her Ph.D. in Agricultural Mechanization Engineering from Jilin University in December 2006, following her Master’s degree in the same field from the same institution in July 2003. Her undergraduate studies were completed at the Former School of Materials, Jilin University of Technology, where she graduated with a Bachelor’s degree in July 1997. Her academic journey has been marked by a consistent focus on integrating engineering principles with innovative materials development, laying the groundwork for her expertise in bionics and biomimetic materials. This strong educational background has enabled her to excel in multidisciplinary research, combining agricultural engineering, materials science, and bionic technologies.

Professional Experience

Yan Liu has an illustrious professional career spanning over two decades, primarily at Jilin University. Since September 2013, she has served as a Professor and Ph.D. Supervisor at the Key Laboratory of Engineering Bionics, Ministry of Education, Jilin University. Prior to this, she was an Associate Professor and Master’s Supervisor in the same department from 2008 to 2013. Yan Liu also gained international experience as a Postdoctoral Researcher and Visiting Scholar at the University of Bristol, UK, between 2010 and 2011. Her earlier postdoctoral work, from 2009 to 2013, at the College of Materials Science and Engineering, Jilin University, further honed her expertise in advanced materials research. Currently, as the Associate Director of the National Key Laboratory of Automotive Chassis Integration and Bionics, Yan Liu plays a vital role in steering cutting-edge research in bionic materials and technologies.

Research Interests

Yan Liu’s research focuses on bionic intelligent protective coatings and materials, with applications in automotive and surface engineering. She draws inspiration from biological structures to develop multifunctional materials, including self-repairing and self-warning coatings, superhydrophobic anti-corrosion surfaces, and anti-icing multifunctional coatings. Her work also extends to flexible electronic devices and polymer-based materials, combining advanced material science with biomimetic principles. Yan Liu is dedicated to addressing real-world challenges such as corrosion resistance and ice formation on automotive surfaces, making her research highly relevant and impactful. Her interdisciplinary approach integrates biology, materials science, and engineering to pioneer innovative solutions that bridge academic research and industrial applications.

Research Skills

Yan Liu possesses a wide array of advanced research skills in bionic and materials engineering. She specializes in designing multifunctional coatings and materials inspired by biological mechanisms, with expertise in self-repairing, anti-corrosion, and anti-icing technologies. Her skills include surface engineering, interface science, and the development of superhydrophobic materials. Yan Liu is adept at leading large-scale research projects, having managed several national and international R&D initiatives, including projects funded by the National Natural Science Foundation and major international collaboration programs. She also excels in intellectual property development, with 40 patent applications, 17 of which have been granted. Her ability to translate complex research into practical innovations highlights her technical acumen and problem-solving expertise.

Awards and Honors

Yan Liu’s exceptional contributions to science and engineering have earned her numerous accolades. She is a recipient of the prestigious CJ Scholar Distinguished Professor Award under the Ministry of Education’s Major Talent Project. As a Changbaishan Scholar of Jilin Province, she has been recognized for her leadership in materials science and bionics. She also holds prominent positions, including the Associate Directorship of the National Key Laboratory of Automotive Chassis Integration and Bionics and vice chairmanship of the Jilin Association of Corrosion Prevention Technology. Yan Liu’s work has been supported by over seven national-level grants and international collaboration programs, underscoring her excellence in research leadership. Her contributions to the field are further validated by her extensive publication record and numerous granted patents.

Conclusion

Yan Liu is an exceptional candidate for the Best Researcher Award due to her groundbreaking contributions in bionic engineering and materials science. Her achievements in developing multifunctional coatings, securing competitive funding, and publishing extensively in high-impact journals firmly establish her as a leading figure in her field. While enhancing international collaborations and emphasizing the practical impact of her innovations could further bolster her profile, her existing accomplishments position her as a highly suitable nominee for this prestigious recognition.

Publication Top Notes

  1. Fluorine-free and high-robustness photothermal self-healing superhydrophobic coating with long-term anticorrosion and antibacterial performances
    • Authors: Wenliang Zhang, Shuyi Li, Dongsong Wei, Yafei Shi, Ting Lu, Zhen Zhang, Zaihang Zheng, Yan Liu
    • Year: 2025
    • DOI: 10.1016/j.jmst.2024.05.052
  2. Eucalyptus spp.-inspired degradable lubricant-releasing coating for marine antifouling surfaces
    • Authors: Yafei Shi, Miaomiao Qian, Dongsong Wei, Wenliang Zhang, Ting Lu, Zhen Zhang, Shuyi Li, Yan Liu
    • Year: 2025
    • DOI: 10.1016/j.porgcoat.2024.108917
  3. Bioinspired interlaced wetting surfaces for continuous on-demand emulsion separation
  4. Facile and effective construction of superhydrophobic, multi-functional and durable coatings on steel structure
    • Authors: Zhenlin Tang, Meihuan Gao, Haidi Li, Ziyang Zhang, Xinying Su, Yingge Li, Zhishuang Han, Xinmeng Lv, Jing He, Zaihang Zheng, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.compositesb.2024.111850
  5. A fluorine-free bioinspired multifunctional slippery coating for ultra-long-term anticorrosion of Mg alloy, static/dynamic anti-icing, antibacterial and antifouling
    • Authors: Wenliang Zhang, Shuyi Li, Dongsong Wei, Yafei Shi, Ting Lu, Zhen Zhang, Zhiwu Han, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.cej.2024.157516
  6. Ultralight, elastic, hydrophobic Willow moss-derived aerogels for efficient oil-water separation
    • Authors: Zhibiao Chen, Bin Zhan, Shuyi Li, Dongsong Wei, Wenting Zhou, Zhengping Fang, Guoyong Wang, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.colsurfa.2024.134648
  7. Optically Responsive Hydrogel with Rapid Deformation for Motion Regulation of Magnetic Actuators
  8. Superwetting PVA/cellulose aerogel with asymmetric structure for oil/water separation and solar-driven seawater desalination
  9. Flexible Pressure, Humidity, and Temperature Sensors for Human Health Monitoring
  10. One-Step Spraying Strategy for Fabricating Bioinspired, Graphene-Based, and Multifunctional-Integrated Coatings on Structural Steel with Good Water Repellency, Fireproofing, Anticorrosion, and Durability
    • Authors: Zhenlin Tang, Meihuan Gao, Haidi Li, Ziyang Zhang, Xinying Su, Yingge Li, Zhishuang Han, Xinmeng Lv, Jing He, Yan Liu
    • Year: 2024
    • DOI: 10.1021/acs.langmuir.4c02001
  11. Fabrication of superhydrophobic all-biomass aerogels with ultralight, elasticity and degradability for efficient oily wastewater treatment
    • Authors: Zhengping Fang, Jiaqi Li, Shiting Li, Chaohuan Yang, Chenchen Liao, Chengyu Du, Zhibiao Chen, Dongsong Wei, Jiayu Qi, Xiaopeng Guo, Yan Liu
    • Year: 2024
    • DOI: 10.1016/j.jwpe.2024.105607
  12. Fluorine-free, robust and self-healing superhydrophobic surfaces with anticorrosion and antibacterial performances

 

Bardia Hejazi | Materials Science | Best Researcher Award

Dr. Bardia Hejazi | Materials Science | Best Researcher Award

Postdoc at Federal Institute for Materials Research and Testing, Germany

Bardia Hejazi is a dedicated physicist currently serving as a scientist at the Bundesanstalt für Materialforschung und -prüfung (BAM) in Berlin, Germany. With a rich background in fluid dynamics, particle interactions, and X-ray imaging, he specializes in failure analysis of 3D printed materials, particularly titanium components. His research journey has taken him from his undergraduate studies in Iran to prestigious institutions, including a postdoctoral role at the Max Planck Institute for Dynamics and Self-Organization. Here, he focused on the intersection of fluid dynamics and biology, particularly the flight dynamics of honeybees in varying environmental conditions. Hejazi’s multidisciplinary approach not only contributes to advancements in materials science but also provides insights into complex biological systems. His contributions to both academia and outreach highlight his commitment to scientific communication and mentorship, fostering a diverse scientific community. His active participation in research, teaching, and organizational roles showcases his ability to bridge theoretical knowledge with practical applications, positioning him as a promising candidate for recognition as a leading researcher in his field.

Professional Profile

Education

Bardia Hejazi completed his Ph.D. in Physics at Wesleyan University in January 2021, where he conducted research on particle-turbulence interactions under the guidance of Professor Greg A. Voth. His doctoral thesis significantly advanced the understanding of how particles behave in turbulent flows, contributing to the broader field of fluid dynamics. Prior to his Ph.D., Hejazi earned a Bachelor of Science in Physics from the Sharif University of Technology in Tehran, Iran, in June 2015. This strong educational foundation equipped him with essential theoretical knowledge and practical skills in experimental and computational physics. His education also includes a visiting research experience at Harvard University’s Center for Nanoscale Systems, where he developed particle manufacturing techniques using advanced 3D printing technologies. Throughout his academic journey, Hejazi has demonstrated a commitment to interdisciplinary research, leveraging his expertise in physics to explore applications in material science, biology, and environmental studies. His solid educational background is complemented by numerous research experiences, allowing him to contribute meaningfully to diverse scientific inquiries.

Professional Experience

Bardia Hejazi has cultivated a diverse professional experience, beginning as an undergraduate researcher at Sharif University of Technology and continuing through various prestigious research positions. Currently, he serves as a scientist at BAM in Berlin, where he focuses on the failure analysis of 3D printed titanium components, utilizing advanced X-ray computed tomography imaging techniques. Before this role, Hejazi completed a postdoctoral fellowship at the Max Planck Institute for Dynamics and Self-Organization, engaging in innovative studies on honeybee flight dynamics and the effects of atmospheric turbulence. His prior experiences include conducting field measurements of cloud dynamics and investigating the effectiveness of face masks in mitigating disease transmission. Additionally, Hejazi’s research at Wesleyan University involved tracking flexible particles in fluid flows and studying their dynamics, further enhancing his expertise in fluid dynamics and experimental physics. He has also contributed to undergraduate education as an instructor and teaching assistant, where he applied his knowledge to nurture the next generation of physicists. This combination of research and teaching roles underscores his commitment to advancing scientific knowledge and education.

Research Interests

Bardia Hejazi’s research interests span a range of interdisciplinary topics within physics, particularly focusing on fluid dynamics, material science, and biological systems. His current research involves utilizing X-ray imaging techniques for failure analysis of 3D printed titanium components, exploring the intricate relationships between material properties and structural integrity. Hejazi’s postdoctoral research at the Max Planck Institute allowed him to investigate honeybee flight dynamics in windy environments, revealing critical insights into how turbulence affects biological behavior. He is also interested in aerosol dynamics and their implications for public health, particularly in understanding how airborne particles contribute to disease transmission in indoor environments. Throughout his academic career, Hejazi has engaged in computational studies, developing algorithms to track particle deformations in fluid flows, and exploring the interactions of flexible particles with turbulence. His diverse research interests not only reflect his expertise in physics but also emphasize his commitment to addressing complex scientific challenges that span multiple disciplines. By bridging the gap between theoretical concepts and practical applications, Hejazi aims to contribute to advancements in both fundamental science and real-world issues.

Research Skills

Bardia Hejazi possesses a robust skill set that encompasses a wide array of research methodologies and technical proficiencies. His expertise in fluid dynamics and particle physics is complemented by practical skills in X-ray computed tomography and image analysis, enabling him to perform detailed investigations into material properties and behaviors. Hejazi has developed advanced coding skills for image analysis, quantifying crack features in 3D printed components, and facilitating in-situ experiments. His research experience is supported by a solid foundation in computational physics, allowing him to simulate complex systems and analyze dynamic behaviors of particles in various environments. Additionally, Hejazi has hands-on experience with particle manufacturing techniques, particularly using nano-scale 3D printing, enhancing his ability to innovate within experimental setups. His strong analytical capabilities are evidenced by his numerous publications in high-impact journals, showcasing his ability to communicate complex findings effectively. Furthermore, Hejazi has demonstrated leadership and mentorship skills through his roles in teaching and outreach, reflecting his commitment to fostering collaboration and diversity within the scientific community. His interdisciplinary skills position him as a valuable contributor to research initiatives across various domains.

Awards and Honors

Bardia Hejazi has been recognized for his academic and research excellence through several prestigious awards and honors throughout his career. Notably, he received the 1st Prize at the national scientific competition of the Iranian Society of Acoustics and Vibrations in December 2013, showcasing his early commitment to scientific inquiry and innovation. Hejazi was also selected to represent Iran as a member of the national team in the 22nd International Young Physicists Tournament held in Tianjin, China, in July 2009, reflecting his strong foundation in physics during his formative years. His educational achievements, including a Ph.D. from Wesleyan University, further underscore his dedication to advancing knowledge in the field of physics. Additionally, Hejazi has successfully secured funding from the Max Planck Society for high-speed camera purchases to support his research on fluid dynamics, indicating recognition of the significance of his work. These accolades not only highlight Hejazi’s individual achievements but also demonstrate his ongoing commitment to contributing to the scientific community and fostering the advancement of research in physics and its applications.

Conclusion

Bardia Hejazi demonstrates an impressive profile for the Best Researcher Award, characterized by a combination of innovative research, technical expertise, and leadership in the scientific community. His contributions have significant implications for both academic and practical applications, particularly in materials science and public health. By addressing the identified areas for improvement, he can further enhance his impact and visibility within the research community. Overall, Bardia is a strong candidate for the award, reflecting both current achievements and future potential.

Publications Top Notes

  • An upper bound on one-to-one exposure to infectious human respiratory particles
    • Authors: G. Bagheri, B. Thiede, B. Hejazi, O. Schlenczek, E. Bodenschatz
    • Year: 2021
    • Citations: 151
  • Lessons for preparedness and reasons for concern from the early COVID-19 epidemic in Iran
    • Authors: M. Ghafari, B. Hejazi, A. Karshenas, S. Dascalu, A. Kadvidar, M.A. Khosravi, …
    • Year: 2021
    • Citations: 35
  • Using deformable particles for single-particle measurements of velocity gradient tensors
    • Authors: B. Hejazi, M. Krellenstein, G.A. Voth
    • Year: 2019
    • Citations: 17
  • Emergent scar lines in chaotic advection of passive directors
    • Authors: B. Hejazi, B. Mehlig, G.A. Voth
    • Year: 2017
    • Citations: 9
  • On the risk of infection by infectious aerosols in large indoor spaces
    • Authors: B. Hejazi, O. Schlenczek, B. Thiede, G. Bagheri, E. Bodenschatz
    • Year: 2022
    • Citations: 4
  • Honeybees modify flight trajectories in turbulent wind
    • Authors: B. Hejazi, C. Küchler, G. Bagheri, E. Bodenschatz
    • Year: 2022
    • Citations: 3
  • Particle-turbulence interactions
    • Author: B. Hejazi
    • Year: 2021
    • Citations: 3
  • Crack characterization of fatigued additively manufactured Ti-6Al-4V using X-ray computed tomography and deep learning methods
    • Authors: B. Hejazi, A. Compart, T. Fritsch, R. Wagner, A. Weidner, H. Biermann, …
    • Year: 2024
  • Honeybee flight dynamics and pair separation in windy conditions near the hive entrance
    • Authors: B. Hejazi, H. Antigny, S. Huellstrunk, E. Bodenschatz
    • Year: 2023
  • Honeybee flight in windy conditions
    • Authors: B. Hejazi, C. Küchler, G. Bagheri, E. Bodenschatz
    • Year: 2022

 

Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assistant Professor at Shahrood University of technology, Iran

Assist. Prof. Dr. Meysam Jalali is a distinguished academic and professional in the field of Civil and Structural Engineering, currently serving as an Assistant Professor at Shahrood University of Technology (SUT). With a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology and an MSc in Civil/Earthquake Engineering from the University of Tehran, Dr. Jalali has developed significant expertise in construction materials, seismic behavior of structures, and advanced cementitious composites. He is also the Head of the Construction Material Lab at SUT, where he leads innovative research in experimental investigations and numerical modeling. Dr. Jalali’s work has earned him recognition in both academic and professional circles, particularly for his contributions to the development of novel fibers for reinforcing ultra-high-performance concrete and other cement-based materials. His research interests include the application of soft computing methods in civil engineering, net-zero construction, and 3D concrete printing. Dr. Jalali has published extensively in high-impact journals and has been involved in several high-profile research projects and consulting roles in Iran’s infrastructure development.

Profile

Assist. Prof. Dr. Meysam Jalali holds a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology, where he developed advanced expertise in structural analysis and design. He also earned a Master of Science (MSc) in Civil/Earthquake Engineering from the University of Tehran, focusing on the seismic behavior of structures, which has significantly influenced his research and professional work. Dr. Jalali completed his Bachelor of Science (BSc) in Civil Engineering at Shahrood University of Technology, laying the foundation for his extensive academic and professional career in civil and structural engineering.

Professional Experience

Assist. Prof. Dr. Meysam Jalali has a wealth of professional experience in the field of Civil and Structural Engineering, with a particular focus on construction materials and seismic behavior. He has been an Assistant Professor at Shahrood University of Technology (SUT) since 2010, where he also serves as the Head of the Construction Material Lab. In addition to his academic roles, Dr. Jalali is a Professional Engineer registered with the Tehran Engineering Organization and has extensive consulting experience. He has worked as a consultant engineer for Iran Water & Power Resources Development Company (IWPCO) and Tehran Engineering and Technical Consultant Organization (TETCO) for Underground Structures. Dr. Jalali has also held key positions in major infrastructure projects, including serving as Project Manager for the Hakim Twin Tunnels of Tehran and as the Head Engineer for the East-West Lot of Tehran Metro Line 7. His professional expertise extends to the design of structures, where he has contributed to various projects, bringing innovative solutions and technical acumen to the field.

Research Interest

Assist. Prof. Dr. Meysam Jalali’s research interests are centered around the experimental investigation of construction materials and structural engineering. His work focuses on cement-based materials, including Engineered Cementitious Composites (ECC), High-Performance Concrete (HPC), Fiber-Reinforced Concrete (FRC), and Slurry Infiltrated Fiber Concrete (SIFCON). Dr. Jalali is particularly interested in the development of innovative fiber types for reinforcing cementitious composites and the application of additive manufacturing techniques, such as 3D concrete printing, in construction. His research also encompasses the application of soft computing methods in civil engineering, multi-scale testing, and numerical modeling. He is dedicated to advancing net-zero construction practices and has been involved in pioneering projects related to the mechanical behavior of construction materials, the prediction of composite material performance using machine learning, and the development of new testing apparatus for fibrous composites. Dr. Jalali’s work contributes significantly to the innovation and sustainability of construction materials and methods.

Research Skills

Assist. Prof. Dr. Meysam Jalali is highly skilled in a broad range of research areas within civil and structural engineering. His expertise includes experimental investigations of construction materials, particularly cement-based composites such as ECC, HPC, FRC, and SIFCON. He has demonstrated significant proficiency in developing innovative fiber types for reinforcing these composites and is adept at conducting multi-scale testing to evaluate material performance. Dr. Jalali’s research extends to advanced numerical modeling, where he utilizes sophisticated computational techniques to predict and analyze structural behaviors. Additionally, he is well-versed in applying soft computing methods, including artificial neural networks (ANN), genetic programming (GEP), adaptive neuro-fuzzy inference systems (ANFIS), and group method of data handling (GMDH), to model and forecast the performance of construction materials. His innovative approach is further highlighted by his work in additive manufacturing, specifically 3D concrete printing, and his development of patented testing apparatus and methodologies for fibrous composites. Dr. Jalali’s research skills are complemented by his strong project management capabilities and his success in securing research funding from various academic and industry sources.

Conclusion

Given their extensive academic background, innovative research contributions, professional experience in large-scale engineering projects, and leadership in both education and research, this individual is a highly deserving candidate for the “Excellence in Research” award. Their work not only advances the field of civil and structural engineering but also addresses critical challenges in construction materials and sustainability.

Publications Top Notes

  • Shear strengthening of RC beams using innovative manually made NSM FRP bars
    • Journal: Construction and Building Materials
    • Year: 2012
    • Cited by: 81
    • Volume: 36, Pages: 990-1000
  • Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames
    • Journal: Steel and Composite Structures
    • Year: 2014
    • Cited by: 38
    • Volume: 16(1), Pages: 1-21
  • Machine learning prediction of fiber pull-out and bond-slip in fiber-reinforced cementitious composites
    • Journal: Journal of Building Engineering
    • Year: 2023
    • Cited by: 14
    • Volume: 63, Article ID: 105474
  • Tunnel Rehabilitation in Fault Zone Using Sequential Joints Method – Case Study: Karaj Water Conveyance Tunnel
    • Journal: International Journal of Mining and Geo-Engineering
    • Year: 2018
    • Cited by: 14
    • Volume: 52(1), Pages: 87-94
  • Flexural characteristics of fibre reinforced concrete with an optimised spirally deformed steel fibre
    • Journal: International Journal of Engineering, Transactions C: Aspects
    • Year: 2021
    • Cited by: 7
    • Volume: 34(6), Pages: 1390-1397
  • Experimental investigation on the performance of engineered spiral fiber: Fiber pull-out and direct tension tests
    • Journal: Construction and Building Materials
    • Year: 2022
    • Cited by: 2
    • Volume: 347, Article ID: 128569
  • Effect of seawater on micro-nano air bubbles concrete for repair of coastal structures
    • Journal: Journal of Rehabilitation in Civil Engineering
    • Year: 2020
    • Cited by: 2
    • Volume: 8(3), Pages: 34-42
  • Numerical investigation of mechanized shield tunnels cross-cut
    • Journal: Journal of Analytical and Numerical Methods in Mining Engineering
    • Year: 2018
    • Cited by: 1
    • Volume: 8(16), Pages: 29-43
  • Numerical investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP
    • Conference: 6th National Congress on Civil Engineering
    • Year: 2011
    • Cited by: 1
  • Pull-out behavior of twin-twisted steel fibers from various strength cement-based matrices
    • Journal: Construction and Building Materials
    • Year: 2024 (upcoming publication)
    • Article ID: 137855