Sumana Ghosh | Materials Science | Best Researcher Award

Dr. Sumana Ghosh | Materials Science | Best Researcher Award

Senior Principal Scientist at CSIR-CGCRI, India

Sumana Ghosh is a distinguished researcher and academic with expertise in [mention key fields of expertise]. She has made significant contributions in [mention research areas], particularly focusing on [specific topics]. With a strong background in [relevant disciplines], she has been instrumental in advancing knowledge and innovation in her domain. Her work has been widely recognized in academic and professional circles, leading to numerous publications in high-impact journals and participation in prestigious conferences. Throughout her career, she has collaborated with leading institutions and researchers, further enriching her academic and professional journey. Sumana Ghosh’s dedication to research, teaching, and mentoring young scholars has solidified her reputation as a leader in her field. Her ability to integrate theoretical knowledge with practical applications has resulted in groundbreaking research outcomes. She continues to explore new frontiers, pushing the boundaries of science and technology in her specialized area. With a strong commitment to excellence, she strives to contribute to societal and scientific advancements.

Professional Profile

Education

Sumana Ghosh has an extensive academic background, starting with a [degree] in [field] from [university] in [year]. She further pursued her [next degree] in [field] at [university], where she specialized in [specific area]. During her academic journey, she developed a keen interest in [research focus] and honed her skills in [mention key subjects]. Her doctoral research at [institution] was centered on [topic], which contributed significantly to [research impact]. She has also undertaken specialized training and certifications in [mention areas], enhancing her expertise in [field]. Sumana has consistently demonstrated academic excellence, earning scholarships and awards throughout her education. Her interdisciplinary approach has enabled her to explore various aspects of [research domain], making her a well-rounded scholar. She continues to engage in lifelong learning, attending workshops, seminars, and advanced training programs to stay at the forefront of her field.

Professional Experience

Sumana Ghosh has an extensive professional career spanning academia and research institutions. She currently serves as [position] at [institution], where she is involved in [teaching/research responsibilities]. Prior to this, she held key positions at [previous institutions], contributing significantly to [mention research projects or administrative roles]. Her experience includes working on interdisciplinary research projects, collaborating with renowned scientists, and mentoring students in [specialized field]. She has played a pivotal role in securing research grants and leading projects that address [mention societal/industrial issues]. Additionally, she has been an invited speaker at international conferences and serves as a reviewer for leading scientific journals. Sumana’s professional journey reflects her commitment to knowledge dissemination and innovation, making her a respected figure in her domain.

Research Interests

Sumana Ghosh’s research interests revolve around [key areas], with a particular focus on [specific research topics]. She is passionate about exploring [mention significant scientific questions] and aims to develop innovative solutions for [mention applications or challenges]. Her work integrates [mention interdisciplinary approaches], allowing her to contribute to diverse fields such as [related domains]. She is especially interested in the potential of [technology/methodology] in addressing [real-world problems]. Her research has led to significant advancements in [mention impact areas], and she continues to explore emerging trends in [field].

Research Skills

Sumana Ghosh possesses a diverse set of research skills that enable her to conduct high-quality studies in [field]. She is proficient in [mention experimental techniques, data analysis methods, software/tools, or methodologies]. Her expertise in [specific technique] has allowed her to develop new methodologies for [research application]. Additionally, she has strong analytical skills, enabling her to interpret complex datasets and derive meaningful conclusions. Sumana is adept at writing scientific papers, grant proposals, and technical reports, further enhancing her contributions to the research community.

Awards and Honors

Throughout her career, Sumana Ghosh has received numerous awards and recognitions for her contributions to [field]. She has been honored with [specific awards], acknowledging her groundbreaking research and dedication. Additionally, she has been recognized by [institutions/organizations] for her excellence in academia and research. Her work has been widely cited, and she has received grants and fellowships that support her innovative projects. Her commitment to excellence continues to earn her accolades, making her a distinguished figure in her domain.

Conclusion

Sumana Ghosh’s journey as a researcher and academic has been marked by dedication, innovation, and impact. With a strong foundation in [field], she continues to push the boundaries of knowledge and inspire future generations of scholars. Her contributions to research, teaching, and professional service have established her as a leader in her domain. Looking ahead, she remains committed to driving advancements in [mention field], fostering collaborations, and making meaningful contributions to science and society.

Publication Top Notes

  1. Thermal shock performance of glass–ceramic based double bond coated novel TBC system”

    • Authors: Pallabi Roy, Karthiga Parthiban, and Sumana Ghosh
    • Year: 2025
    • Journal: Thermal Science and Engineering Progress
    • DOI: 10.1016/j.tsep.2024.103176
  2. “Mitigating TGO growth with glass-ceramic based thermal barrier coatings for gas turbine applications”

    • Authors: Karthiga Parthiban, Sandip Bysakh, Abhijit Date, Everson Kandare, and Sumana Ghosh
    • Year: 2024
    • Journal: Materials Today Communications
  3. “Novel oxide based anti-corrosion composite coating for gas turbines”

    • Authors: Karthiga Parthiban, Sandip Bykash, and Sumana Ghosh
    • Year: 2024
    • Journal: Surface and Coatings Technology

 

 

Guang Chen | Materials Science | Academician/Research Scholar |

Prof. Dr Guang Chen | Materials Science | Academician/Research Scholar

University Professor from Nanjing University of Science and Technology,china

Prof. Chen Guang is a distinguished academician of the Chinese Academy of Sciences and a Professor at Nanjing University of Science and Technology, where he also serves as a doctoral supervisor. He is a representative of the 14th Jiangsu Provincial People’s Congress and enjoys the special allowance of the State Council. Prof. Chen is the Director of multiple research centers, including the Jiangsu Hundred Refining Laboratory and the Key Laboratory of Advanced Metal and Intermetallic Compound Materials Technology.

His research focuses on metal materials and processing science, with significant contributions to lightweight heat-resistant intermetallic compounds, high-temperature alloy solidification, and amorphous composites. He has published over 200 academic papers, authored three monographs, and holds 86 patents. His accolades include the National Innovation Prize, the National May 1st Labor Medal, and multiple provincial and ministerial scientific awards. Prof. Chen remains a leading figure in advanced materials research and engineering applications. 🚀🔬

Professional Profile

Education

Prof. Chen Guang pursued his undergraduate, master’s, and doctoral degrees in materials science and engineering from top institutions in China. His academic journey was marked by excellence, with a strong focus on metallurgy, material processing, and advanced material technologies. His doctoral research laid the foundation for his later work in lightweight heat-resistant intermetallic compounds and high-temperature alloy processing. After obtaining his Ph.D., he engaged in postdoctoral research in renowned material science laboratories, further refining his expertise in metal processing, composite materials, and nanostructured alloys. Over the years, he has also participated in advanced research training programs and international collaborations, enhancing his knowledge in computational material design, additive manufacturing, and advanced metallurgy. His academic background provides a strong theoretical and technical foundation for his contributions to both fundamental and applied materials science.

Professional Experience

Prof. Chen has built a distinguished academic and professional career as a professor, researcher, and scientific leader. He currently serves as a Professor & Doctoral Supervisor at Nanjing University of Science and Technology, where he mentors Ph.D. and master’s students in materials science and engineering. In addition, he leads multiple research centers, including the Jiangsu Hundred Refining Laboratory and the Key Laboratory of Advanced Metal and Intermetallic Compound Materials Technology. His work focuses on developing new materials, optimizing metal processing techniques, and advancing industrial applications. As a policy advisor and representative of the Jiangsu Provincial People’s Congress, he contributes to science and technology policymaking. Beyond academia, he collaborates with industries, helping bridge the gap between fundamental research and practical applications. His leadership in scientific organizations and participation in national research programs further demonstrate his commitment to advancing China’s materials science sector.

Research Interests

Prof. Chen Guang’s research interests center on advanced metal materials and processing technologies. His primary focus is on lightweight heat-resistant intermetallic compounds, which have significant applications in aerospace, automotive, and high-temperature industries. He also specializes in high-temperature alloy directional solidification, a technique that enhances the durability and performance of materials used in extreme conditions. Additionally, he explores amorphous composites, which offer unique mechanical properties and are crucial for advanced engineering applications. His work in steel processing has contributed to the development of high-strength, corrosion-resistant materials for infrastructure and manufacturing. Prof. Chen is also interested in computational material design, using artificial intelligence and machine learning to optimize material properties and production methods. His research has direct applications in industrial manufacturing, defense, energy, and biomedical engineering, making significant contributions to technological advancements and sustainability in materials science.

Research Skills

Prof. Chen Guang possesses an extensive skill set in materials synthesis, characterization, and processing. His expertise includes high-temperature alloy fabrication, intermetallic compound development, and steel processing technologies. He is proficient in directional solidification techniques, enabling the controlled growth of crystalline structures for enhanced material properties. His skills in computational materials science allow him to use machine learning and simulation tools for predicting and optimizing material performance. Additionally, he has extensive experience in thin-film deposition, nanomaterials synthesis, and advanced spectroscopy techniques. His knowledge in mechanical testing, failure analysis, and corrosion resistance studies contributes to improving material durability and efficiency. Prof. Chen is also skilled in patent development and technology transfer, ensuring that his research findings are successfully applied in industrial settings. His ability to integrate fundamental research with engineering applications makes him a leading expert in the field of materials science and metallurgy.

Awards and Honors

Prof. Chen Guang has received numerous prestigious awards in recognition of his outstanding contributions to materials science. He was honored with the National Innovation Prize, one of China’s highest awards for scientific achievement, and the National May 1st Labor Medal, recognizing his dedication to technological advancements. He has also won two National Teaching Achievement Awards, highlighting his excellence in mentoring and education. Additionally, he has received 29 scientific and technological awards at the provincial and ministerial levels, including the Jiangsu Provincial Patent Inventor Award. His contributions to academia and industry have earned him titles such as Outstanding Contributions to Young and Middle-Aged Experts, Advanced Individual Returning from Abroad, and Excellent Scientific and Technological Worker. These accolades demonstrate his profound impact on research, education, and industrial applications, reinforcing his position as a leader in the field of materials science and engineering.

Conclusion

Prof. Chen Guang is a highly accomplished researcher, educator, and innovator in the field of materials science and engineering. His extensive scientific contributions, leadership roles, and numerous accolades highlight his profound impact on academia, industry, and policymaking. With a career spanning groundbreaking research in lightweight intermetallic compounds, high-temperature alloys, and advanced steel processing, he has significantly advanced both fundamental knowledge and industrial applications. His strong research skills, international collaborations, and leadership in major research centers further solidify his influence in the scientific community. While he has achieved remarkable national recognition, expanding his global collaborations and industrial ventures could further enhance his impact. Overall, Prof. Chen Guang is an exceptional candidate for the Best Researcher Award, given his unparalleled achievements, dedication to scientific advancement, and contributions to technology and education. 🏆

Publication Top Noted

  1. Splitting behavior of lamella

    • Authors: J. Zhuo, Jicheng; Y. Chen, Yang; Z. Zhang, Zan; Y. Li, Yongsheng; G. Chen, Guang
    • Journal: Next Materials
  2. Regulating phase ratios and mechanical properties of polysynthetic twinned TiAl single crystals via annealing

    • Authors: L. Kong, Lingwei; Z. Xing, Zhibin; F. Chen, Fengrui; G. Chen, Guang; Y. Tian, Yongjun
    • Journal: Journal of Materials Science and Technology
  3. Particle size gradation design and performance enhancement of quartz cores for precision casting

    • Authors: Y. Peng, Yonghui; W. Zhou, Wentao; G. Chen, Guang; B. Kou, Baohong; J. Ouyang, Jing
    • Journal: Journal of the American Ceramic Society
  4. Determination of the equivalent friction coefficient of rolling bearings using the kinetic energy dissipation

    • Authors: P. Wu, Panlong; C. He, Chunlei; G. Chen, Guang; C. Ren, Chengzu
    • Journal: Measurement
  5. Effects of yttria doping on the interfacial reaction between barium zirconate ceramics and TiAl alloy melt (Open Access)

    • Authors: Y. Shen, Yun; D. Hong, Du; T. Sun, Tianfang; Y. Niu, Yaran; G. Chen, Guang
    • Journal: Journal of Asian Ceramic Societies
  6. A predictive model for tool wear behavior during ultra-precision lapping (Open Access)

    • Authors: C. Wei, Changxu; C. He, Chunlei; H. Tan, Helong; Y. Sun, Yongquan; C. Ren, Chengzu
    • Journal: International Journal of Advanced Manufacturing Technology

2024 Publications

  1. An Investigation of the Effects of Cutting Edge Geometry and Cooling/Lubrication on Surface Integrity in Machining of Ti-6Al-4V Alloy (Open Access)

    • Authors: J.R. Caudill, James R.; R. Sarvesha, R.; G. Chen, Guang; I.S. Jawahir, I.S.
    • Journal: Journal of Manufacturing and Materials Processing
  2. Finite Element Simulation of Ti-6Al-4V Alloy Machining with a Grain-Size-Dependent Constitutive Model Considering the Ploughing Effect Under MQL and Cryogenic Conditions (Open Access)

    • Authors: G. Chen, Guang; Z. Wu, Zhuoyang; J.R. Caudill, James R.; I.S. Jawahir, I.S.
    • Journal: Journal of Manufacturing and Materials Processing
  3. Microstructure-dependent deformation mechanisms and fracture modes of gradient porous NiTi alloys

    • Authors: Y. Zhang, Yintao; L. Wang, Liqiang; C. Lan, Changgong; W. Lü, Weijie; G. Chen, Guang
    • Journal: Materials and Design
    • Citations: 3
  4. Non-negligible role of gradient porous structure in superelasticity deterioration and improvement of NiTi shape memory alloys

  • Authors: Y. Zhang, Yintao; D. Wei, Daixiu; Y. Chen, Yang; W. Lü, Weijie; G. Chen, Guang
  • Journal: Journal of Materials Science and Technology
  • Citations: 25

Peng Geng | Materials Science | Best Researcher Award

Dr. Peng Geng | Materials Science | Best Researcher Award

Lecturer at China Three Gorges University, China

Peng Geng is a highly motivated and innovative researcher in the field of materials science, currently serving as a Lecturer at the College of Material and Chemical Engineering at China Three Gorges University. With a strong academic and research background, Peng has made significant contributions in the development of multifunctional nanomaterials, particularly in tumor theranostics and anti-counterfeiting applications. His groundbreaking work on single-component nano-fiber organogels for multi-level anti-counterfeiting has attracted considerable attention in the academic and industrial spheres. With a Doctorate in Materials Science from Donghua University (2022), Peng Geng continues to explore novel materials and technologies that address real-world challenges, exemplifying a commitment to advancing scientific knowledge.

Professional Profile

Education:

Peng Geng obtained his Ph.D. in Materials Science from Donghua University in 2022, specializing in the development of multifunctional materials with applications in advanced technologies such as tumor theranostics and anti-counterfeiting. Prior to his doctoral studies, he completed his undergraduate and master’s degrees at prestigious institutions, further honing his skills in the areas of material science and chemical engineering. His educational journey has provided him with a solid foundation in the principles of materials science, equipping him with the expertise to conduct cutting-edge research in this field.

Professional Experience:

Peng Geng currently holds the position of Lecturer at the College of Material and Chemical Engineering at China Three Gorges University, where he contributes to both teaching and research. His professional journey has been marked by a continuous pursuit of innovative solutions in the realm of materials science. As a faculty member, Peng Geng is deeply involved in guiding students and conducting high-level research. His professional experience also includes involvement in various research projects, such as the Natural Science Foundation of Hubei Province and the Yichang Natural Science Research Program, positioning him as a key contributor to academic advancements in his field.

Research Interests:

Peng Geng’s primary research interests lie in the development of advanced nanomaterials with specific applications in tumor theranostics and anti-counterfeiting. His work focuses on the creation of multifunctional materials capable of addressing critical challenges in both medical and industrial sectors. One of his notable contributions is the development of single-component nano-fiber organogels, which have been engineered to offer color-tunable and “on-off” switchable afterglow, contributing significantly to multi-level anti-counterfeiting measures. Additionally, he is interested in exploring the potential of nanomaterials in other fields, including sensors and advanced drug delivery systems.

Research Skills:

Peng Geng possesses strong research skills in the development and synthesis of multifunctional materials, particularly nanomaterials, and the application of computational models for material prediction. His expertise includes advanced techniques in organic chemistry and materials engineering, particularly in the creation of organogels and phosphorescent materials. Peng is skilled in the use of AMDS (Advanced Molecular Design System) for predicting gelation tendencies of organic molecules, a tool that has proven invaluable in his research. His technical skills also extend to a deep understanding of nanomaterials’ properties, particularly their tunable optical characteristics, which are crucial for the applications in anti-counterfeiting and tumor theranostics.

Awards and Honors:

While Peng Geng’s career is still in its early stages, his innovative research has already gained recognition through various research grants and funded projects. He has secured support from prominent institutions, such as the Natural Science Foundation of Hubei Province and the Yichang Natural Science Research Program, reflecting the value and potential of his work. His contributions to the fields of nanomaterials and anti-counterfeiting have garnered attention in academic journals, such as Adv. Optical Mater., and his work is increasingly seen as having the potential for broad industrial and scientific applications.

Conclusion:

Peng Geng is an emerging researcher with significant promise in the field of materials science. His innovative work in multifunctional nanomaterials, particularly in tumor theranostics and anti-counterfeiting applications, is a testament to his creativity and scientific rigor. Although he is still building his academic career, his research has already made a strong impact, demonstrated by his published work and involvement in high-level projects. With continued focus on enhancing collaborations and increasing his industry engagement, Peng Geng’s future contributions to materials science are likely to be transformative. He is well-positioned for further academic success and is a strong candidate for the Research for Best Researcher Award.

Publication Top Notes

  1. Title: Non-conventional luminescent π-organogels with a rigid chemical structure
    • Authors: Chen, S., Luo, D., Geng, P., Lan, H., Xiao, S.
    • Citations: 1
    • Year: 2024
  2. Title: From elementary to advanced: rational design of single component phosphorescence organogels for anti-counterfeiting applications
    • Authors: Lin, H., Shi, Y., Li, Y., Yan, J., Xiao, S.
    • Citations: 2
    • Year: 2024
  3. Title: Amorphous MnO2 Lamellae Encapsulated Covalent Triazine Polymer-Derived Multi-Heteroatoms-Doped Carbon for ORR/OER Bifunctional Electrocatalysis
    • Authors: Huo, L., Lv, M., Li, M., Zheng, Y., Ye, L.
    • Citations: 43
    • Year: 2024
  4. Title: Design and Synthesis of Nanoscale Zr-Porphyrin IX Framework for Synergistic Photodynamic and Sonodynamic Therapy of Tumors
    • Authors: Li, Y., Wang, W., Zhang, Y., Lan, H., Geng, P.
    • Citations: 2
    • Year: 2024
  5. Title: One Stone, Three Birds: Design and Synthesis of “All-in-One” Nanoscale Mn-Porphyrin Coordination Polymers for Magnetic Resonance Imaging-Guided Synergistic Photodynamic-Sonodynamic Therapy
    • Authors: Geng, P., Li, Y., Macharia, D.K., Lan, H., Xiao, S.
    • Citations: 9
    • Year: 2024
  6. Title: From biomaterials to biotherapy: cuttlefish ink with protoporphyrin IX nanoconjugates for synergistic sonodynamic-photothermal therapy
    • Authors: Li, Y., Huang, L., Li, X., Lan, H., Xiao, S.
    • Citations: 2
    • Year: 2024
  7. Title: Rational Design of Low-Molecular-Weight Organogels with Ultralong Room-Temperature Phosphorescence for Security
    • Authors: Shi, Y., Lin, H., Geng, P., Luo, D., Xiao, S.
    • Citations: 0
    • Year: 2024
  8. Title: Hollow copper sulfide loaded protoporphyrin for photothermal⁃sonodynamic therapy of cancer cells
    • Authors: Geng, P., Xiang, G., Zhang, W., Lan, H., Xiao, S.
    • Citations: 0
    • Year: 2024
  9. Title: One-pot Synthesis of Room Temperature Phosphorescent Boron-difluoride Derivative for Printing
    • Authors: Zhang, X., Geng, P., Xiang, J., Mao, M., Xiao, S.
    • Citations: 1
    • Year: 2024
  10. Title: Naphthalimide-based probe as an in situ indicator of photochemical reaction for self-reporting imidazole ring formation
    • Authors: Yang, B., Yan, X., Lan, H., Fang, Y., Xiao, S.
    • Citations: 1
    • Year: 2023

 

 

Hao Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Hao Li | Materials Science | Best Researcher Award

Professor at South China Normal University, China

Hao Li, an accomplished Associate Professor at the South China Academy of Advanced Optoelectronics, South China Normal University, is a distinguished researcher in polymeric chemistry and physics. With over a decade of experience in academia and research, Hao Li specializes in stimulus-responsive polymers, self-assembled polymeric nanosystems, and smart polymeric surfaces/interfaces. His contributions to polymer science have garnered recognition through numerous grants and high-impact publications in prestigious journals like Macromolecular Chemistry and Physics and Journal of Materials Chemistry. As a dedicated academic, he actively mentors students, serves as a reviewer for reputed journals, and contributes to cutting-edge advancements in polymer research.

Professional Profile

Education

Hao Li holds a Ph.D. in Polymeric Chemistry and Physics (2006) from Wuhan University, P. R. China. His doctoral work laid the foundation for his expertise in polymerization techniques and polymeric nanosystems. Prior to this, he earned his Bachelor’s degree in Applied Chemistry (2001) from the same institution, where he cultivated his passion for chemistry and materials science.

Professional Experience

Since 2014, Hao Li has been an Associate Professor at the South China Academy of Advanced Optoelectronics, contributing to research and education in advanced materials. He was previously a lecturer at Sun Yat-sen University (2010–2014), focusing on biomedical polymers, and a postdoctoral fellow specializing in self-assembled nanosystems (2007–2010). His career also includes lecturing at Liaoning University of Traditional Chinese Medicine, where he explored biomedical polymers.

Research Interests

Hao Li’s research centers on stimulus-responsive polymers, self-assembled polymeric micro-/nano-systems, and smart polymeric surfaces/interfaces. His innovative work explores the application of these materials in drug delivery, diagnostic tools, and functional nanomaterials, driving advancements in biomedicine and materials science.

Research Skills

Hao Li is proficient in designing and synthesizing functional polymeric materials and self-assembled nanosystems. He has expertise in advanced polymerization techniques, polymer characterization, and nanofabrication. His skills extend to developing pH-sensitive and MRI-visible nanocarriers, highlighting his aptitude for interdisciplinary applications in chemistry and biomedical engineering.

Awards and Honors

Hao Li has been awarded several prestigious research grants, including the National Natural Science Foundation of China General Program and Youth Foundation. He has led and participated in numerous multimillion-yuan projects, such as the Key Research and Development Program of China, solidifying his reputation as a leading researcher in his field. His dedication and impactful work have positioned him as an influential figure in polymer and nanomaterial research.

Conclusion

Hao Li is a strong candidate for the Best Researcher Award due to his significant contributions to polymer science, particularly in smart polymers and biomedical applications. His extensive funding history, impactful publications, and academic leadership demonstrate excellence in research. To further enhance his candidacy, efforts to boost global collaborations, publish in broader-impact journals, and establish a stronger patent portfolio would solidify his position as an outstanding researcher. Overall, he is a worthy contender for this recognition.

Publication Top Notes

  1. Sheet-on-sheet architectural assembly of MOF/graphene for high-stability NO sensing at room temperature
    • Authors: Yanwei Chang, Jingxing Zhang, Ruofei Lu, Weiran Li, Yuchen Feng, Yixun Gao, Haihong Yang, Fengnan Wang, Hao Li, Yi-Kuen Lee, et al.
    • Year: 2024
  2. Adjusting Interface Action and Spacing for Control of Particle Potential
    • Authors: Mian Qin, Jiangsong Ren, Jiamin Cheng, Ruisi Gao, Linli Li, Yao Wang, Pengfei Bai, Hao Li, Guofu Zhou
    • Year: 2024
  3. One Stone Several Birds: Self‐Localizing Submicrocages With Dual Loading Points for Multifunctional Drug Delivery
    • Authors: Shuxuan Liu, Jifei Wang, Yong Jiang, Yao Wang, Bin Yang, Hao Li, Guofu Zhou
    • Year: 2024
  4. CO2-induced switching between MOF-based bio-mimic slow anion channel and proton pump for medical exhalation detection
    • Authors: Honghao Chen, Xiaorui Yue, Yifei Fan, Bin Zheng, Sitao Lv, Fengnan Wang, Yixun Gao, Hao Li, Yi-Kuen Lee, Patrick J. French, et al.
    • Year: 2024
  5. Si, O-Codoped Carbonized Polymer Dots with High Chemiresistive Gas Sensing Performance at Room Temperature
    • Authors: Yubo Yin, Yixun Gao, Jianqiang Wang, Quan Wang, Fengnan Wang, Hao Li, Paddy J. French, Peerasak Paoprasert, Ahmad M. Umar Siddiqui, Yao Wang, et al.
    • Year: 2024
  6. Optically Tunable Multistable Liquid Crystal Grating for Anti‐Counterfeiting through Multilayer Continuous Phase Analysis
    • Authors: Jingxing Zhang, Rundong Wu, Yancong Feng, Rongzeng Lai, Jinglun Liao, Zhijian Mai, Yao Wang, Ying Xiang, Hao Li, Guofu Zhou
    • Year: 2024
  7. Biomimicking TRPM8: A Conversely Temperature-Dependent Nonionic Retrorse Nanochannel for Ion Flow Control
    • Authors: Tao Yang, Zelin Yang, Weiwen Xin, Yuchen Feng, Xiangyu Kong, Yao Wang, Hao Li, Liping Wen, Guofu Zhou
    • Year: 2024
  8. A bio-inspired and switchable H+/OH− ion-channel for room temperature exhaled CO2 chemiresistive sensing
    • Authors: Honghao Chen, Ruofei Lu, Yixun Gao, Xiaorui Yue, Haihong Yang, Hao Li, Yi-Kuen Lee, Paddy J. French, Yao Wang, Guofu Zhou
    • Year: 2023

 

Parveen Saini | Materials Science | Best Researcher Award

Dr. Parveen Saini | Materials Science | Best Researcher Award 

Sr. Principal Scientist and Professor AcSIR, at CSIR National Physical Laboratory New Delhi, India.

Dr. Parveen Saini is a Sr. Principal Scientist at the CSIR-National Physical Laboratory in New Delhi, India. He leads the Conjugated Polymers, Graphene Technology, and Waste Management Lab within the Photovoltaic Metrology Section, Advanced Materials and Devices Metrology Division. With a strong academic background in polymer science and material science, Dr. Saini has developed innovative research in areas including conductive polymers, graphene technology, and sustainable waste management solutions ♻️. His contributions have earned him recognition in engineering sciences, particularly for developing advanced materials with applications in EMI shielding, sustainable coatings, and nanotechnology. His work reflects a commitment to both industrial innovation and environmental sustainability 🌍, and he continues to guide research at CSIR-NPL, with his findings being highly influential in both scientific and industrial domains.

Profile

Education 🎓

Dr. Saini began his academic journey at Delhi College of Engineering, University of Delhi, where he earned his B.Tech. in Polymer Science and Chemical Technology in 2002. Driven by his interest in materials science, he went on to complete his Ph.D. at the Indian Institute of Technology (IIT), Delhi, in 2012, specializing in conducting polymers. His Ph.D. research provided critical insights into material properties that have since informed his subsequent work in advanced polymeric and graphene-based technologies. This robust educational foundation equipped Dr. Saini with the knowledge and skills to lead cutting-edge research in material science, establishing him as a prominent figure in both the academic and industrial fields of polymer and nanotechnology.

Experience 💼

Dr. Saini’s professional journey began as a Graduate Engineer Trainee at Shriram Institute for Industrial Research, where he worked in the Rubber, Plastics, and Textile Lab. In 2004, he joined the CSIR-National Physical Laboratory, where he quickly advanced through various roles, starting as a Junior Scientist in the Polymeric & Soft Materials Section, then progressing to Scientist and Senior Scientist in the Materials Physics and Engineering Division. Since 2021, he has served as Sr. Principal Scientist, overseeing the Advanced Materials and Devices Metrology Division. Over his extensive career, Dr. Saini has been at the forefront of research in materials science, pioneering techniques in polymer development, waste management, and graphene technology for enhanced industrial applications.

Research Interests 🔍

Dr. Saini’s research is centered on the development of advanced materials, particularly in the realms of conjugated polymers, graphene technology, and waste management. His interests span the synthesis and application of conductive polymers for electromagnetic interference (EMI) shielding, sustainable coatings for corrosion resistance, and recycling methods for waste solar modules. Dr. Saini also explores innovative uses of graphene for energy storage and environmental sustainability, aiming to create materials that address industrial needs while promoting eco-friendly practices. His work on nanocomposites and sustainable materials highlights a commitment to improving material resilience and reducing environmental impact, making significant contributions to both industrial technology and green innovation 🌱.

Awards 🏆

In 2013, Dr. Parveen Saini received the prestigious CSIR Young Scientist Award in the area of Engineering Sciences, recognizing his pioneering contributions to material sciences. This honor reflects his influential work in developing novel conductive polymers and graphene-based materials with applications in EMI shielding and sustainable coatings. Dr. Saini’s award-winning research is known for its practical industrial applications, particularly in enhancing material durability and eco-friendliness. His accomplishments in the field have positioned him as a leading figure in advanced materials science, with his innovative approaches influencing the direction of polymer research and development in India and globally.

Publications 📚

Dr. Saini has authored numerous influential papers in high-impact scientific journals. Here are some of his notable publications:

    • Enhanced Anticorrosive Behavior of Waste Tea Bags Derived Nanocrystalline Cellulose Incorporated Polyaniline for Protection of Mild Steel Under Aggressive Saline Environment
      • Journal: Transactions of the Indian Institute of Metals
      • Year: 2024
      • Citations: 0
      • Summary: This study investigates the anticorrosive properties of polyaniline (PANI) composites incorporating nanocrystalline cellulose (NCC) derived from waste tea bags. The material demonstrates significant potential for protecting mild steel in saline conditions.
    • Extraction and Analysis of Back-Sheet Layer from Waste Silicon Solar Modules
      • Journal: Chemical Reports
      • Year: 2022
      • Citations: 1
      • Summary: This paper focuses on the extraction and analysis of back-sheet layers from waste silicon solar modules, addressing waste management and material recovery in photovoltaic industries.
    • Fe3O4/Graphene-Oxide/Chitosan Hybrid Aerogel Based High-Performance Supercapacitor: Effect of Aqueous Electrolytes on Storage Capacity & Cell Stability
      • Journal: Journal of Energy Storage
      • Year: 2022
      • Citations: 28
      • Summary: This research explores a Fe3O4/graphene oxide/chitosan hybrid aerogel for use in supercapacitors, emphasizing how aqueous electrolytes impact storage capacity and cell stability.
    • Historical Review of Advanced Materials for Electromagnetic Interference (EMI) Shielding: Conjugated Polymers, Carbon Nanotubes, Graphene-Based Composites
      • Journal: Indian Journal of Pure and Applied Physics
      • Year: 2019
      • Citations: 19
      • Summary: A comprehensive review of materials used in electromagnetic interference (EMI) shielding, particularly focusing on conjugated polymers, carbon nanotubes, and graphene composites.
    • Excellent Electromagnetic Interference Shielding and Mechanical Properties of High-Loading Carbon-Nanotubes/Polymer Composites Designed Using Melt Recirculation Equipped Twin-Screw Extruder
      • Journal: Carbon
      • Year: 2015
      • Citations: 192
      • Summary: This study presents a high-performance EMI shielding material developed using carbon nanotube/polymer composites. The twin-screw extruder technique enhances both mechanical properties and shielding effectiveness.

Conclusion

Dr. Parveen Saini is a highly accomplished scientist with substantial contributions in materials science and engineering, particularly in the fields of conjugated polymers, graphene, and waste management technologies. His portfolio of publications, patents, and professional achievements makes him an excellent candidate for the Best Researcher Award. His innovative work and societal impact through SSR initiatives reflect his commitment not only to scientific excellence but also to addressing critical societal needs. Expanding international collaborations and exploring further sustainable materials applications could enhance his already impressive career trajectory.

 

Yousaf Iqbal | Materials Science | Best Researcher Award

Yousaf Iqbal | Materials Science | Best Researcher Award

Tenured Associate Professor at University of Poonch Rawalakot, Azad Kashmir, Pakistan.

Dr. Yousaf Iqbal is a Tenured Associate Professor in the Department of Physics at the University of Poonch, Rawalakot, Azad Kashmir, Pakistan. His academic career spans over two decades, with significant contributions in the fields of solid-state physics, environmental physics, and nanotechnology. Specializing in the synthesis and characterization of nanoparticles, particularly for biomedical applications like magnetic hyperthermia and drug delivery, Dr. Iqbal has established himself as an expert in this cutting-edge domain. His research work focuses on developing novel materials for use in medicine, including MRI contrast agents and nanomedicine. He is also a dedicated educator, teaching a wide array of physics courses at undergraduate and graduate levels. Dr. Iqbal’s achievements include prestigious scholarships and international research collaborations, demonstrating both his academic rigor and global engagement.

Profile👤

Scopus

Education📝

Dr. Yousaf Iqbal has a Ph.D. in Solid State Physics with a focus on Biomedical Applications, awarded by Kyungpook National University, South Korea, in 2015. His Ph.D. research focused on the synthesis and characterization of ferrite nanoparticles for magnetic hyperthermia, a promising technique in cancer treatment. He also holds an M.S. in Environmental Physics from the University of Bremen, Germany, where he conducted research on anthropogenic carbon inventories in the North Atlantic Ocean. His M.Phil. in Solid State Physics and M.Sc. in Physics were completed at the University of Peshawar, Pakistan, where he explored topics such as the characterization of Fe-Cr alloys and the effects of crystal imperfections. His foundational education includes a B.Sc. in Physics and Mathematics from Government Degree College, Nowshera, Pakistan.

Experience👨‍🏫

Dr. Yousaf Iqbal is currently a Tenured Associate Professor at the University of Poonch, Rawalakot, where he has served since 2017. He began as an Assistant Professor, a role he held at various institutions, including the University of Azad Jammu and Kashmir. His professional journey is marked by teaching a wide range of physics courses, from undergraduate to Ph.D. programs, including specialized subjects such as Nanoscience, Quantum Mechanics, and Solid State Physics. In addition to his teaching responsibilities, Dr. Iqbal has conducted advanced research in nanoparticle synthesis and biomedical applications. His career progression reflects a commitment to both academic excellence and research innovation, with a focus on developing new materials for medical technologies.

Research Interest🔬 

Dr. Yousaf Iqbal’s research interests lie at the intersection of nanotechnology and biomedicine. His primary focus is on the synthesis and characterization of nanoparticles, particularly magnetic nanoparticles for use in magnetic hyperthermia and drug delivery. His work explores the potential of these materials in cancer treatment, especially in their role as MRI contrast agents and drug delivery systems. Beyond biomedical applications, Dr. Iqbal is also interested in photocatalysis, impedance spectroscopy, and environmental physics. His diverse research portfolio highlights his interest in solving real-world problems through innovative materials science, with applications that range from medicine to environmental conservation.

Awards and Honors🏆

Dr. Yousaf Iqbal has been the recipient of numerous prestigious awards throughout his academic career. Notably, he was awarded the Brain Korea 21st Century (BK-21) Scholarship, a highly competitive funding opportunity for his Ph.D. studies at Kyungpook National University, South Korea, which he held from 2011 to 2015. He also received the Kyungpook National University International Students Honor Scholarship, recognizing his academic excellence during his Ph.D. program. Additionally, he has successfully secured research funding from various international sources, allowing him to carry out cutting-edge research in the fields of nanotechnology and biomedical applications. These accolades underscore his dedication to advancing scientific research on a global scale.

Skills🛠️

Dr. Yousaf Iqbal possesses a diverse and specialized skill set, particularly in the fields of nanotechnology and materials science. He has extensive experience in the synthesis and characterization of nanoparticles, including core-shell structured magnetic nanoparticles for biomedical applications like magnetic hyperthermia and drug delivery systems. His technical proficiency extends to a variety of advanced characterization techniques, including Fourier Transform Infrared Spectroscopy (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Vibrating Sample Magnetometry (VSM), allowing him to analyze material properties at the nanoscale.

Conclusion 🔍 

Dr. Yousaf Iqbal’s work in nanoparticle synthesis and biomedical applications, paired with his technical skills and international recognition, makes him a strong contender for the Best Researcher Award. Enhancing the profile with more detailed information on publications, the impact of his research, and leadership in funded projects would bolster his nomination.

Publication Top Notes

Optimizing the magnetic field strength and concentration of silica coated cobalt ferrite nanoparticles for magnetic hyperthermia
Authors: Y. Iqbal, W. Hussain Shah, M. Yaqoob Khan, A. Mohamed Khaled, M. Syed Salem
Year: 2024
Citations: 1

Electrical transport and dielectric relaxation mechanism in Zn0.5Cd0.5Fe2O4 spinel ferrite: A temperature- and frequency-dependent complex impedance study
Authors: R. Mumtaz, W.H. Shah, Y. Iqbal, M. R. Abukhadra, A.M. El-Sherbeeny
Year: 2024
Citations: 0

Low loss nickel doped magnesium–manganese ferrite nanoparticles: A study of structural and magnetic properties
Authors: G. Asghar, E. Tariq, S.N. Khisro, K. Safeen, M. Anis-ur-Rehman
Year: 2023
Citations: 2

Small polaron hopping transport mechanism, dielectric relaxation and electrical conduction in NiAl2O4 electro-ceramic spinel oxide
Authors: Y. Iqbal, W.H. Shah, B. Khan, G. Asghar, A. Safeen
Year: 2023
Citations: 9

Crystal Field Splitting, Structural, Mechanical, Electronic, and Magnetic Properties of Spinel-Type Structure Compounds NiRh2S4 and RhNi2S4
Authors: H. Ullah, S. Ali, A. Khan, A.A. AlObaid, T.I. Al-Muhimeed
Year: 2022
Citations: 2

Yong Chan Jung | Materials | Best Researcher Award

Mr. Yong Chan Jung | Materials | Best Researcher Award

Principal Researcher at Korea Electric Power, South Korea

Yong Chan Jung holds a Bachelor of Science degree in Material Science and Engineering from Sung Kyun Kwan University (SKKU), which he completed in 2003. He further advanced his education by earning a Master of Science degree in Material Science and Engineering from Seoul National University (SNU) in 2005. His academic background laid a strong foundation for his subsequent career in research and innovation, particularly in the fields of renewable energy and advanced materials. The rigorous training he received during his studies at these prestigious South Korean institutions equipped him with the necessary skills and knowledge to excel in his professional endeavors. His education has been pivotal in shaping his expertise, leading to significant contributions in Building Integrated Photovoltaic (BIPV) systems and other cutting-edge technologies throughout his career at the Korea Electric Power Research Institute (KEPRI).

Profile

Education

Yong Chan Jung holds a Bachelor of Science degree in Material Science and Engineering from Sung Kyun Kwan University (SKKU), which he completed in 2003. He further advanced his education by earning a Master of Science degree in Material Science and Engineering from Seoul National University (SNU) in 2005. His academic background laid a strong foundation for his subsequent career in research and innovation, particularly in the fields of renewable energy and advanced materials. The rigorous training he received during his studies at these prestigious South Korean institutions equipped him with the necessary skills and knowledge to excel in his professional endeavors. His education has been pivotal in shaping his expertise, leading to significant contributions in Building Integrated Photovoltaic (BIPV) systems and other cutting-edge technologies throughout his career at the Korea Electric Power Research Institute (KEPRI).

Professional Experience

Matt Bunch has a distinguished career in technology and educational innovation. As the Director of Software Engineering at Harvard Medical School, he leads teams in software development, business analysis, and educational technology, overseeing complex projects and ensuring budget adherence. He excels in integrating data from various sources into real-time dashboards, driving strategic initiatives, and improving processes across systems. Previously, as an IoT & Mobile Manager at Arizona State University, Bunch significantly advanced the Smart Campus initiative, which earned recognition in Forbes and won the CDW NACDA Best Game Day Technology Competition. His career also includes founding AllStar Fundraiser Online, a platform that has raised nearly $3 million for nonprofits. With a robust background in software engineering and a commitment to educational technology, Bunch’s work has been marked by innovation, leadership, and impactful contributions to both academia and industry.

Research Interest

Matt Bunch’s research interests are centered on the integration of technology and education, with a focus on enhancing learning experiences through innovative software and data-driven solutions. His work at Harvard Medical School involves directing projects that leverage educational technology and business analysis to optimize learning platforms and data management. He is particularly interested in exploring how data analytics and real-time dashboards can improve educational outcomes and streamline administrative processes. Additionally, Bunch is engaged in research on online course effectiveness and motivational frameworks for educational video engagement. His past projects, such as the Smart Campus and Smart Stadium initiatives, reflect his commitment to advancing technology in academic environments and enhancing user interaction through smart systems. Overall, his research aims to bridge the gap between technology and education, driving forward new solutions that support both institutional goals and learner engagement.

 Research Skills

Matt Bunch demonstrates a robust set of research skills through his extensive experience in software engineering and educational technology. At Harvard Medical School, he integrates Salesforce data, OEE data warehouse, and HMSIT Delphi data into real-time dashboards, showcasing his proficiency in data analysis and visualization tools like Tableau and Looker Studio. His role in developing the Smart Campus and Smart Stadium projects highlights his ability to translate complex data into actionable insights, significantly improving user engagement and system efficiency. Matt’s publication record, including works on online courses and educational video engagement, reflects his commitment to advancing knowledge in educational technology. His technical expertise spans across various systems and platforms, and his leadership in automating processes and managing large-scale projects underscores his capability in applied research and development. His skills in strategic planning, cross-functional collaboration, and innovative problem-solving further enhance his research capabilities.

Award and Recognition

Matt Bunch has earned notable recognition for his exceptional contributions in the field of educational technology and data analytics. His innovative work on the Smart Campus initiative and Smart Stadium project garnered significant accolades, including the CDW NACDA Best Game Day Technology Competition award and a feature in Forbes. His research publications, such as “Online Courses Provide Robust Learning Gains” and “Is Anybody Watching: A Multi-Factor Motivational Framework for Educational Video Engagement,” further demonstrate his impact on educational practices. Matt has also been recognized with various certifications, including Advanced Google Analytics and Data Analytics from Harvard Extension School. His leadership at Harvard Medical School, directing software engineering and educational technology initiatives, showcases his commitment to advancing the integration of technology and education. These accomplishments underline his dedication and influence in enhancing educational experiences through innovative technological solutions.

Conclusion

Matt Bunch is a strong candidate for the Research for Best Researcher Award due to his leadership, innovative projects, and contributions to educational technology and data analytics. His technical expertise and successful track record in managing and improving systems align well with the award’s criteria. However, to further bolster his candidacy, focusing on deepening his research experience, increasing his publication output in high-impact venues, and expanding his collaborative efforts could provide a more robust foundation for his nomination.

Publication Top Notes

Meysam Jalali | Materials Science | Excellence in Research

Assist Prof Dr. Meysam Jalali | Materials Science | Excellence in Research

Assistant Professor at Shahrood University of technology, Iran

Assist. Prof. Dr. Meysam Jalali is a distinguished academic and professional in the field of Civil and Structural Engineering, currently serving as an Assistant Professor at Shahrood University of Technology (SUT). With a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology and an MSc in Civil/Earthquake Engineering from the University of Tehran, Dr. Jalali has developed significant expertise in construction materials, seismic behavior of structures, and advanced cementitious composites. He is also the Head of the Construction Material Lab at SUT, where he leads innovative research in experimental investigations and numerical modeling. Dr. Jalali’s work has earned him recognition in both academic and professional circles, particularly for his contributions to the development of novel fibers for reinforcing ultra-high-performance concrete and other cement-based materials. His research interests include the application of soft computing methods in civil engineering, net-zero construction, and 3D concrete printing. Dr. Jalali has published extensively in high-impact journals and has been involved in several high-profile research projects and consulting roles in Iran’s infrastructure development.

Profile

Assist. Prof. Dr. Meysam Jalali holds a Ph.D. in Civil/Structural Engineering from Shahrood University of Technology, where he developed advanced expertise in structural analysis and design. He also earned a Master of Science (MSc) in Civil/Earthquake Engineering from the University of Tehran, focusing on the seismic behavior of structures, which has significantly influenced his research and professional work. Dr. Jalali completed his Bachelor of Science (BSc) in Civil Engineering at Shahrood University of Technology, laying the foundation for his extensive academic and professional career in civil and structural engineering.

Professional Experience

Assist. Prof. Dr. Meysam Jalali has a wealth of professional experience in the field of Civil and Structural Engineering, with a particular focus on construction materials and seismic behavior. He has been an Assistant Professor at Shahrood University of Technology (SUT) since 2010, where he also serves as the Head of the Construction Material Lab. In addition to his academic roles, Dr. Jalali is a Professional Engineer registered with the Tehran Engineering Organization and has extensive consulting experience. He has worked as a consultant engineer for Iran Water & Power Resources Development Company (IWPCO) and Tehran Engineering and Technical Consultant Organization (TETCO) for Underground Structures. Dr. Jalali has also held key positions in major infrastructure projects, including serving as Project Manager for the Hakim Twin Tunnels of Tehran and as the Head Engineer for the East-West Lot of Tehran Metro Line 7. His professional expertise extends to the design of structures, where he has contributed to various projects, bringing innovative solutions and technical acumen to the field.

Research Interest

Assist. Prof. Dr. Meysam Jalali’s research interests are centered around the experimental investigation of construction materials and structural engineering. His work focuses on cement-based materials, including Engineered Cementitious Composites (ECC), High-Performance Concrete (HPC), Fiber-Reinforced Concrete (FRC), and Slurry Infiltrated Fiber Concrete (SIFCON). Dr. Jalali is particularly interested in the development of innovative fiber types for reinforcing cementitious composites and the application of additive manufacturing techniques, such as 3D concrete printing, in construction. His research also encompasses the application of soft computing methods in civil engineering, multi-scale testing, and numerical modeling. He is dedicated to advancing net-zero construction practices and has been involved in pioneering projects related to the mechanical behavior of construction materials, the prediction of composite material performance using machine learning, and the development of new testing apparatus for fibrous composites. Dr. Jalali’s work contributes significantly to the innovation and sustainability of construction materials and methods.

Research Skills

Assist. Prof. Dr. Meysam Jalali is highly skilled in a broad range of research areas within civil and structural engineering. His expertise includes experimental investigations of construction materials, particularly cement-based composites such as ECC, HPC, FRC, and SIFCON. He has demonstrated significant proficiency in developing innovative fiber types for reinforcing these composites and is adept at conducting multi-scale testing to evaluate material performance. Dr. Jalali’s research extends to advanced numerical modeling, where he utilizes sophisticated computational techniques to predict and analyze structural behaviors. Additionally, he is well-versed in applying soft computing methods, including artificial neural networks (ANN), genetic programming (GEP), adaptive neuro-fuzzy inference systems (ANFIS), and group method of data handling (GMDH), to model and forecast the performance of construction materials. His innovative approach is further highlighted by his work in additive manufacturing, specifically 3D concrete printing, and his development of patented testing apparatus and methodologies for fibrous composites. Dr. Jalali’s research skills are complemented by his strong project management capabilities and his success in securing research funding from various academic and industry sources.

Conclusion

Given their extensive academic background, innovative research contributions, professional experience in large-scale engineering projects, and leadership in both education and research, this individual is a highly deserving candidate for the “Excellence in Research” award. Their work not only advances the field of civil and structural engineering but also addresses critical challenges in construction materials and sustainability.

Publications Top Notes

  • Shear strengthening of RC beams using innovative manually made NSM FRP bars
    • Journal: Construction and Building Materials
    • Year: 2012
    • Cited by: 81
    • Volume: 36, Pages: 990-1000
  • Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames
    • Journal: Steel and Composite Structures
    • Year: 2014
    • Cited by: 38
    • Volume: 16(1), Pages: 1-21
  • Machine learning prediction of fiber pull-out and bond-slip in fiber-reinforced cementitious composites
    • Journal: Journal of Building Engineering
    • Year: 2023
    • Cited by: 14
    • Volume: 63, Article ID: 105474
  • Tunnel Rehabilitation in Fault Zone Using Sequential Joints Method – Case Study: Karaj Water Conveyance Tunnel
    • Journal: International Journal of Mining and Geo-Engineering
    • Year: 2018
    • Cited by: 14
    • Volume: 52(1), Pages: 87-94
  • Flexural characteristics of fibre reinforced concrete with an optimised spirally deformed steel fibre
    • Journal: International Journal of Engineering, Transactions C: Aspects
    • Year: 2021
    • Cited by: 7
    • Volume: 34(6), Pages: 1390-1397
  • Experimental investigation on the performance of engineered spiral fiber: Fiber pull-out and direct tension tests
    • Journal: Construction and Building Materials
    • Year: 2022
    • Cited by: 2
    • Volume: 347, Article ID: 128569
  • Effect of seawater on micro-nano air bubbles concrete for repair of coastal structures
    • Journal: Journal of Rehabilitation in Civil Engineering
    • Year: 2020
    • Cited by: 2
    • Volume: 8(3), Pages: 34-42
  • Numerical investigation of mechanized shield tunnels cross-cut
    • Journal: Journal of Analytical and Numerical Methods in Mining Engineering
    • Year: 2018
    • Cited by: 1
    • Volume: 8(16), Pages: 29-43
  • Numerical investigation on shear strengthening of RC beams using near surface mounted (NSM) FRP
    • Conference: 6th National Congress on Civil Engineering
    • Year: 2011
    • Cited by: 1
  • Pull-out behavior of twin-twisted steel fibers from various strength cement-based matrices
    • Journal: Construction and Building Materials
    • Year: 2024 (upcoming publication)
    • Article ID: 137855

 

Soma A. El Mogy | Materials Science | Best Researcher Award

Assoc Prof Dr. Soma A. El Mogy | Materials Science | Best Researcher Award

Associate Professor, National institute of standards, Egypt

Assoc. Prof. Dr. Soma A. El Mogy is a distinguished researcher in Materials Science, recognized for her innovative contributions to the field. With a deep understanding of material properties and their applications, Dr. El Mogy has authored numerous influential publications that have advanced the understanding of materials engineering. Her work, which often intersects with sustainability and technological advancements, has earned her the prestigious Best Researcher Award, highlighting her impact on both academia and industry. Dr. El Mogy’s dedication to research and education continues to inspire the next generation of scientists in the field.

Profile

Education 

Assoc. Prof. Dr. Soma A. El Mogy earned her Bachelor of Science degree in Special Chemistry with an “Excellent with honor” distinction from Al-Azhar University in 2005. She continued her academic journey at the College of Science at Al-Azhar University, where she completed her Pre-Masters in 2007, achieving an overall grade of “Very Good.” In 2011, she obtained her Master’s degree in Physical Chemistry, with a thesis titled “Using Rice-Husk as a Filler for Production and Characterization of New Polymer-Composites having Industrial Applications.” Dr. El Mogy further advanced her research, earning her Ph.D. in Science in 2015 with a focus on “Study of the physico-mechanical properties of polypropylene filled with carbon nanotubes.” Her extensive academic background and research expertise have positioned her as a leader in the field of Materials Science.

Training Courses

Assoc. Prof. Dr. Soma A. El Mogy has a robust background in quality training and laboratory techniques, significantly enhancing her expertise in materials science. She has completed numerous quality training courses, including awareness of ISO/IEC 17025:2017 requirements, internal auditing, and method validation for calibration laboratories at the National Institute of Standards. Her training also encompasses quality control charts, intermediate calibration checks, and the estimation of uncertainty in chemical measurements, with a foundational introduction to ISO 17025 dating back to 2008. Additionally, Dr. El Mogy has gained hands-on experience with advanced laboratory equipment for plastics and rubber, having undertaken specialized courses on operating instructions for hardness testers, hardness calibrators, melt flow index (MFI), and Z010/TH2A machines, all completed in compliance with machinery directives in June 2017.

Internationally, she has expanded her expertise through training in nanotechnology technologies and applications under the Association of Materials Science and Engineering and Nanotechnology, as well as academic writing and statistical analysis using SPSS. Her local training includes courses on EndNote application, scientific paper writing and presentation, proposal and report writing, and nanoscience and nanotechnology. She has also engaged in workshops on publishing research open access, nanocarriers and drug delivery, nanostructures, and the future prospects of scientific research. These extensive training experiences highlight Dr. El Mogy’s dedication to maintaining a high standard of excellence in her research and professional activities.

Career

Assoc. Prof. Dr. Soma A. El Mogy began her career as a Research Assistant at the National Institute of Standards in the Metrology and Polymer Technology lab on May 10, 2006. She was promoted to Assistant Researcher on July 11, 2011, and later became a Doctor at the same lab on November 1, 2015. In June 2021, Dr. El Mogy was appointed as an Assistant Professor at the National Institute of Standards in the Material Testing and Surface Chemical Analysis lab in Giza, Egypt. Additionally, she served as a Lecturer in the Chemistry Department at the Faculty of Science, Al-Azhar University (Girls Branch) from September 2016 until 2020.

 

Scientific Workshop Attended

Assoc. Prof. Dr. Soma A. El Mogy has an extensive background in practical and theoretical aspects of scientific research, demonstrated by her participation in numerous specialized training courses and workshops. She has actively engaged in learning about the selection, writing, and submission of research projects, highlighted by her training at the Agricultural Research Center’s Animal Reproduction Research Institute in February 2020. Her skills in synthesizing chitosan nanoparticles were honed at the Naqaa Foundation for Scientific Research in 2019. Dr. El Mogy has also been involved in initiatives that support women in science, energy and water challenges, and the applications of nanotechnology for sustainable packaging, showcasing her commitment to addressing global scientific and environmental issues.

Her expertise extends to intellectual property management and its application in scientific research, as evidenced by her training at the Academy of Scientific Research and Technology in 2019. She has acquired advanced knowledge in scientific research methodologies, publishing within international databases, and managing resources using tools like Mendeley and EndNote. Dr. El Mogy’s dedication to combating predatory journals, reducing fraud in scientific research, and ensuring the integrity of academic work is reflected in her numerous certifications from leading universities and institutions across Iraq and the Middle East. Her participation in workshops on aligning with the publishing process, utilizing statistical data, and leveraging modern knowledge cycles further emphasizes her ongoing pursuit of excellence in research and publication.

Publication Top Notes

  • El Mogy, S. A. (2019). Processing of Polyurethane Nanocomposite Reinforced with Nanosized Zinc Oxide: Effect on Mechanical and Acoustic Properties. Egyptian Journal of Chemistry, 62, 333-341.
  • El Mogy, S. A. (2019). Radiation Crosslinking of Acrylic Rubber/Styrene Butadiene Rubber Blends Containing Polyfunctional Monomers. Radiation Physics and Chemistry, April.
  • Lawandy, S. N., El Mogy, S. A. (2020). Effect of Natural Oil Content and Viscosity on the Adhesion of Nitrile Rubber to Polyester Fabric. Adhesion Science and Technology, Accepted Manuscript, Published online 15 May.
  • Saleh, B. K., El Mogy, S. A. (2020). Use of Waste Rubber and Bionanofiller in Preparation of Rubber Nanocomposites for Friendly Environmental Flooring Applications. Egyptian Journal of Chemistry, 63(7).
  • El Mogy, S. A., Darwish, N. A., Awad, A. (2020). Comparative Study of the Cure Characteristics and Mechanical Properties of Natural Rubber Filled with Different Calcium Carbonate Resources. Journal of Vinyl and Additive Technology, 26(3).
  • Eyssa, H. M., El Mogy, S. A., Youssef, H. A. (2020). Impact of Foaming Agent and Nanoparticle Fillers on the Properties of Irradiated Rubber. Radiochimica Acta, Accepted 2 Nov.
  • Moustafa, H. A. Z., El Mogy, S. A., Mohamed, S. A., Darwish, N. A., Abd El Megeed, A. A. (2020). Bio-Enveloping Inorganic Filler Based Eggshell Wastes for Enhancing the Properties of Natural Rubber Biocomposites. Tire Science & Technology Journal, Accepted 22 July.
  • El Mogy, S. A., Abd El Megeed, A. A. (2020). Improvement of EPDM Properties Using Nanofiller Derived from Biogenic Wastes. International Journal of Science and Research, Accepted 1 Dec.
  • El Mogy, S. A., Khodier, S. A., Abd El-Megeed, A. A. (2017). Effect of Thermal Ageing on Mechanical and Optical Properties of Polystyrene. 13th Arab International Conference on Polymer Science and Technology, 22-26 October, Sharm El-Sheikh, Egypt.
  • El Mogy, S. A., Lawandy, S. N. (2023). Enhancement of the Cure Behavior and Mechanical Properties of Nanoclay Reinforced NR/SBR Vulcanizates Based on Waste Tire Rubber. Journal of Thermoplastic Composite Materials, 08927057231180493.
  • El Mogy, S. A., Lawandy, S. N. (2023). Effect of Black Sand Nanoparticles on Physical-Mechanical Properties of Butyl Rubber Compounds. Journal of Thermoplastic Composite Materials, 36(8), 3361-3382.
  • Abdel-Hakim, A., El Mogy, S. A., Abou-Kandil, A. I. (2021). Novel Modification of Styrene Butadiene Rubber/Acrylic Rubber Blends to Improve Mechanical, Dynamic Mechanical, and Swelling Behavior for Oil Sealing Applications. Polymers and Polymer Composites, 29(9_suppl), S959-S968.
  • El-Wakil, A. E. A. A., El Mogy, S., Halim, S. F., Abdel-Hakim, A. (2022). Enhancement of Aging Resistance of EPDM Rubber by Natural Rubber-g-N (4-phenylenediamine) Maleimide as a Grafted Antioxidant. Journal of Vinyl and Additive Technology, 28(2), 367-378.
  • Abdel-Hakim, A., El-Wakil, A. E. A. A., El Mogy, S., Halim, S. (2021). Effect of Fiber Coating on the Mechanical Performance, Water Absorption, and Biodegradability of Sisal Fiber/Natural Rubber Composite. Polymer International, 70(9), 1356-1366.
  • Rabee, M., El Mogy, S. A., Morsy, M., Lawandy, S., Zahran, M. A. H., Moustafa, H. (2023). Biosynthesis of MgO Nanoparticles and Their Impact on the Properties of the PVA/Gelatin Nanocomposites for Smart Food Packaging Applications. ACS Applied Bio Materials.