Aimé Peláiz Barranco | Materials Science | Best Researcher Award

Prof. Dr. Aimé Peláiz Barranco | Materials Science | Best Researcher Award

Faculty of Physics, University of Havana, Cuba

Aimé Peláiz Barranco is a distinguished Cuban physicist born on June 25, 1972, in La Habana, Cuba. She currently serves as the Dean and Full Professor at the Faculty of Physics, University of Havana, where she also leads the Ferroic Materials Group. With a prolific academic and research career, she is widely recognized for her contributions to ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials. Dr. Peláiz Barranco has played crucial roles in academic leadership, including serving as Deputy Dean and Secretary of the Scientific Council. Internationally active, she has coordinated the Latin-American Network of Ferroelectric Materials and held invited professorships in prestigious institutions across Mexico, Brazil, Spain, France, Portugal, and China. A full member of the Academy of Sciences of Cuba, she has made significant contributions to teaching, research supervision, and academic development. With over 140 international publications, multiple book chapters, and extensive participation in scientific conferences, she has profoundly impacted the field of materials science. Her outstanding research has earned her several international and national awards, including the TWAS-ROLAC Award, the Sofia Kovalieskaya Award, and the Best Researcher recognition from the University of Havana. Her multilingual proficiency further amplifies her global academic collaborations.

Professional Profile

Education

Aimé Peláiz Barranco pursued all her higher education degrees at the University of Havana, Cuba. She earned her B.Sc. in Physics in 1995, followed by a Master’s degree in Physics Sciences in 1996. She later obtained her Doctorate in Physics Sciences in 2001, cementing her academic foundation in the field of material sciences. Her education has been deeply rooted in the Cuban academic system, particularly at the Faculty of Physics, University of Havana, where she has remained an integral part of the academic community both as a student and later as a faculty leader. Her advanced training provided the essential theoretical and practical framework for her subsequent pioneering research in ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials. Throughout her educational journey, she demonstrated a strong commitment to physics education and material sciences, which laid the groundwork for her international collaborations and leadership roles. Her comprehensive education has not only equipped her with deep expertise in material characterization but also fostered her ability to lead research groups, mentor students, and contribute to scientific advancements globally.

Professional Experience

Aimé Peláiz Barranco has accumulated an extensive professional history at the University of Havana since 1995. She began as a teaching trainee and steadily advanced to become an instructor, assistant professor, auxiliary professor, and eventually a full professor in 2014. Since 2019, she has served as the Dean of the Faculty of Physics, where she also leads the Ferroic Materials Group. Her teaching portfolio includes more than 70 undergraduate and postgraduate courses, with significant involvement in thesis evaluations at the licentiate, master’s, and doctoral levels. Dr. Peláiz Barranco has also held various academic positions such as Deputy Dean, Secretary of the Scientific Council, and Member of the National Physics Commission. She actively participates in scientific organization, having served on committees for over 20 national and international conferences. Internationally, she has been invited as a professor to universities in Mexico, Brazil, Spain, France, Portugal, and China, enhancing global academic exchanges. Her coordination of the Latin-American Network of Ferroelectric Materials between 2000 and 2019 exemplifies her leadership in fostering regional research collaboration. Her broad professional journey showcases her dedication to education, research, and scientific advancement.

Research Interests

Dr. Peláiz Barranco’s research primarily focuses on the preparation and characterization of ferroelectric, piezoelectric, antiferroelectric, and multiferroic materials in the form of ceramics, thin films, and composites. She specializes in the study of phase transitions, relaxors, dielectric relaxation, electrical conductivity, and impedance spectroscopy. Her research extends to bioimpedance, pyroelectricity, piezoelectricity, multiferroics, energy storage, and the electrocaloric effect. These areas contribute significantly to the advancement of modern material science, with applications in sensors, actuators, energy systems, and smart materials. She has led numerous national and international research projects, including three grants awarded by the Third World Academy of Science. Her deep exploration into ferroic materials has resulted in over 140 publications in international journals, four book chapters, and more than 200 presentations at scientific meetings. Dr. Peláiz Barranco’s research activities are globally recognized, positioning her as a leading expert in the field. Through her leadership in the Ferroic Materials Group and the Latin-American Network of Ferroelectric Materials, she has created substantial regional and international research synergies.

Research Skills

Aimé Peláiz Barranco possesses exceptional research skills in experimental design, material synthesis, and advanced characterization techniques. Her expertise spans ceramics, thin films, and composite materials, particularly in the domains of ferroelectric, piezoelectric, antiferroelectric, and multiferroic substances. She is adept at using impedance spectroscopy, dielectric relaxation analysis, and pyroelectric and piezoelectric measurements to explore the functional properties of advanced materials. Additionally, she is skilled in bioimpedance analysis and electrocaloric effect evaluation, essential for emerging applications in biophysics and energy storage. Dr. Peláiz Barranco’s ability to lead large, multi-institutional research projects, both nationally and internationally, underscores her project management and scientific coordination capabilities. Her involvement as an editor and contributor to scientific books further highlights her ability to synthesize complex information and contribute to scientific literature. Furthermore, her supervisory experience, mentoring over 30 undergraduate, master’s, and doctoral theses, demonstrates her leadership and instructional strengths in guiding research teams and developing new scientific talent. Her fluency in Spanish, English, and Portuguese enhances her global research communication and collaboration skills.

Awards and Honors

Aimé Peláiz Barranco has received numerous prestigious awards and recognitions at both national and international levels. Among her international accolades, she won the First Prize at the First Iberoamerican Concourse of Laboratory Classes in Materials Science (1999) and the TWAS-ROLAC Award for Young Scientists in Physics (2011). She has been honored with the Young Scientist Award by CAS-TWAS (2012) and the TWOWS Award for Young Women Scientists (2010), signifying her influence across the Latin America and Caribbean region. Nationally, she has been repeatedly awarded by the Cuban Academy of Sciences, with multiple recognitions spanning from 1999 to 2023. The University of Havana has acknowledged her as Best Researcher in several years, alongside departmental and faculty awards for scientific excellence and educational innovation. She also received the distinguished Carlos J. Finlay Medal for her significant scientific contributions. These honors highlight her sustained commitment to research, education, and academic leadership. Her continuous recognition within Cuba and abroad underscores her remarkable impact on materials science and the broader scientific community.

Conclusion

Aimé Peláiz Barranco is an accomplished physicist whose career exemplifies excellence in teaching, research, and academic leadership. Her extensive expertise in ferroic materials has contributed significantly to the advancement of materials science in Cuba and internationally. Through her roles as Dean, research group leader, and international project coordinator, she has demonstrated exceptional leadership and organizational skills. Her research is widely published, and she has been recognized with numerous prestigious awards for her scientific achievements and educational contributions. Dr. Peláiz Barranco’s commitment to fostering regional and international collaborations, along with her dedication to mentoring the next generation of scientists, highlights her as a key figure in the scientific community. Fluent in multiple languages and having held various visiting professorships, she continues to build global partnerships that enrich both her work and the institutions she serves. Her professional journey reflects a harmonious balance of research excellence, impactful teaching, and significant service to the academic and scientific ecosystem, positioning her as a highly deserving candidate for the Best Researcher Award.

Publications Top Notes

1. Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements

  • Authors: A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela

  • Year: 1998

  • Citations: 163

2. Ionized oxygen vacancy-related electrical conductivity in (Pb₁₋ₓLaₓ)(Zr₀.₉₀Ti₀.₁₀)₁₋ₓ/₄O₃ ceramics

  • Authors: A. Peláiz-Barranco, J.D.S. Guerra, R. Lopez-Noda, E.B. Araujo

  • Year: 2008

  • Citations: 141

3. Ferroelectric ceramic materials of the Aurivillius family

  • Authors: A. Peláiz-Barranco, Y. González-Abreu

  • Year: 2013

  • Citations: 69

4. Dielectric relaxation related to single-ionized oxygen vacancies in (Pb₁₋ₓLaₓ)(Zr₀.₉₀Ti₀.₁₀)₁₋ₓ/₄O₃ ceramics

  • Authors: A. Peláiz-Barranco, J.D.S. Guerra

  • Year: 2010

  • Citations: 65

5. Atomic‐scale imaging and quantification of electrical polarisation in incommensurate antiferroelectric lanthanum‐doped lead zirconate titanate

  • Authors: I. MacLaren, R. Villaurrutia, B. Schaffer, L. Houben, A. Peláiz‐Barranco

  • Year: 2012

  • Citations: 63

6. Raman spectroscopy study of the La‐modified (Bi₀.₅Na₀.₅)₀.₉₂Ba₀.₀₈TiO₃ lead‐free ceramic system

  • Authors: Y. Mendez‐González, A. Peláiz‐Barranco, A.L. Curcio, A.D. Rodrigues, et al.

  • Year: 2019

  • Citations: 57

7. AC behaviour and conductive mechanisms of 2.5 mol% La₂O₃ doped PbZr₀.₅₃Ti₀.₄₇O₃ ferroelectric ceramics

  • Authors: A.P. Barranco, F.C. Pinar, O.P. Martinez, J.D.L.S. Guerra, I.G. Carmenate

  • Year: 1999

  • Citations: 57

8. Effects of MnO₂ additive on the properties of PbZrO₃–PbTiO₃–PbCu₁/₄Nb₃/₄O₃ ferroelectric ceramic system

  • Authors: A.P. Barranco, F.C. Piñar, O.P.M.P. Martínez, E.T. García

  • Year: 2001

  • Citations: 50

9. Thermal and structural characterization of the ZrO₂₋ₓ(OH)₂ₓ to ZrO₂ transition

  • Authors: E. Torres-García, A. Peláiz-Barranco, C. Vázquez-Ramos, G.A. Fuentes

  • Year: 2001

  • Citations: 39

10. Piezo-, pyro-, ferro-, and dielectric properties of ceramic/polymer composites obtained from two modifications of lead titanate

  • Authors: A. Pelaiz-Barranco, P. Marin-Franch

  • Year: 2005

  • Citations: 38

Likun Qian | Materials Science | Best Researcher Award

Mr. Likun Qian | Materials Science | Best Researcher Award

School of Future Technology, China University of Geosciences (Wuhan), China

Qian Likun is an emerging researcher in the field of automation and control systems, currently pursuing his undergraduate degree at China University of Geosciences (Wuhan). With a solid foundation in electronic technologies, embedded systems, and automation instrumentation, Qian has displayed strong technical proficiency and innovative thinking across various academic and practical projects. He has independently designed and developed motion controllers, control platforms, and monitoring systems, showcasing his ability to integrate software and hardware seamlessly. His projects range from motion trajectory control to subsurface conductor detection and RGBD salient object detection using convolutional neural networks. In addition to his technical skills, Qian has demonstrated outstanding leadership capabilities by serving as the class monitor and contributing to his college’s new media promotion initiatives. He has actively led his classmates to achieve multiple awards at the college level, earning personal recognition as an excellent Communist Youth League cadre. His work ethic, problem-solving ability, and teamwork have set him apart as a student leader and aspiring researcher. With his growing expertise in control systems, programming, and intelligent instrumentation, Qian Likun is positioning himself as a promising researcher with the potential to make significant contributions to the field of automation and intelligent systems in the near future.

Professional Profile

Education

Qian Likun is currently enrolled at China University of Geosciences (Wuhan), where he has been studying Automation since September 2018. His undergraduate education has provided him with comprehensive knowledge of automation systems, control theory, embedded technologies, and sensor applications. Throughout his studies, he has maintained a GPA of 3.01 and successfully completed a diverse range of technical courses such as analog electronic technology, digital logic circuit design, digital signal processing, system analysis, embedded programming, and object-oriented software development. These courses have helped him build a solid theoretical foundation and practical skill set. Qian’s education has also included specialized training in big data processing technologies for manufacturing and advanced system control strategies. His participation in several project-based learning modules has further enhanced his engineering abilities and problem-solving skills. His academic journey reflects not only his dedication to learning but also his ability to apply knowledge effectively to real-world scenarios. Qian has also achieved English proficiency certifications, having passed CET-4 and CET-6, and earned a Computer Level 2 certification in C++, which complements his automation expertise with solid programming capabilities. His educational background has fully equipped him to contribute meaningfully to complex research in automation and intelligent control systems.

Professional Experience

Although Qian Likun is in the early stages of his professional journey, he has accumulated substantial project-based experience that closely mirrors industry applications. He has led and contributed to multiple innovative projects during his time at China University of Geosciences. Notably, Qian successfully designed and implemented a cascade control system for a water tank and pipeline pressure monitoring, using PID control and Ethernet communication to achieve multi-machine interaction with an impressive 85% control precision. He independently built an integrated motion control experimental platform capable of simple three-dimensional relief processing and developed a modular CNC control interface. His hands-on experience also includes controlling servo motors via 51 microcontrollers, designing circuits for microvoltage signal acquisition, and applying LABVIEW software for upper computer visualization. Additionally, he utilized C++ and QT to create a multifunctional human-machine interaction calculator capable of performing both basic arithmetic and complex trigonometric operations. His graduation project focuses on RGBD salient object detection using convolutional neural networks and bifurcation backbone strategies. Qian’s practical experience demonstrates his ability to handle multidisciplinary engineering tasks, from hardware design to embedded system development and intelligent control applications, making him a well-rounded and capable early-career researcher.

Research Interest

Qian Likun’s research interests are centered on automation systems, intelligent instrumentation, embedded control, and intelligent perception technologies. He is particularly fascinated by the integration of sensor technologies with embedded systems to achieve precise control in real-time industrial environments. His work has also ventured into the field of intelligent detection, including subsurface conductor identification and salient object detection using RGBD imaging and convolutional neural networks. Qian is deeply interested in the development of intelligent monitoring systems that leverage human-machine interfaces (HMI) and multi-device communication through Ethernet networks. His passion lies in designing practical control systems that are both accurate and efficient, particularly in complex industrial processes. Furthermore, his recent exploration of deep learning methodologies, especially in salient object detection using bottom-up feature extraction and bifurcation backbone strategies, reflects his growing interest in artificial intelligence and machine vision applications. He is motivated to pursue research that blends traditional control theories with modern computational intelligence techniques to solve real-world challenges. Qian aspires to further investigate advanced control algorithms, embedded smart devices, and data-driven decision-making systems in future academic or industry research, aiming to contribute to the advancement of intelligent automation and control engineering.

Research Skills

Qian Likun possesses a diverse and practical set of research skills that span programming, circuit design, motion control, system modeling, and embedded development. He is proficient in programming languages such as C++ and MATLAB, which he has used to design embedded software, motion control systems, and data visualization interfaces. His expertise in control systems includes practical application of PID control algorithms, system modeling, and real-time control implementations. Qian has hands-on skills in building experimental platforms for motion processing, servo motor control using 51 microcontrollers, and data acquisition through differential amplification circuits. He has also demonstrated the ability to develop multi-functional human-machine interaction interfaces using QT and C++ for embedded applications. His hardware knowledge extends to sensor integration, analog and digital circuit design, and microcontroller programming. Additionally, Qian is familiar with machine learning techniques, particularly convolutional neural networks, which he applied in his graduation project for salient object detection. His skill set is further strengthened by his capability to design networked systems that enable multi-device communication using Ethernet protocols. Qian’s combination of software development, hardware control, signal processing, and intelligent algorithm application makes him a versatile researcher capable of addressing complex automation challenges.

Awards and Honors

Throughout his academic journey, Qian Likun has received multiple recognitions for both his leadership and academic contributions. He has served as the class monitor at China University of Geosciences (Wuhan), successfully leading his class to receive the “Excellent Class” award at the college level on several occasions. His dedication and organizational skills were further acknowledged when he was honored with the title of “Outstanding Communist Youth League Cadre” at the university level. Qian also played an active role in the university’s New Media Promotion Department, where he contributed to the management and content creation for the Automation College’s official WeChat platform. These leadership roles have allowed him to develop strong communication, teamwork, and project management skills in parallel with his technical education. His certification achievements include passing the Computer Level 2 examination in C++ and successfully completing both the College English Test (CET-4 and CET-6), demonstrating his competency in programming and his readiness for international collaboration. These awards and recognitions highlight his well-rounded profile, balancing academic performance, research activities, and social engagement, which together showcase his suitability as a dedicated and promising young researcher.

Conclusion

Qian Likun is a highly motivated, technically skilled, and leadership-oriented young researcher with a growing background in automation and intelligent control systems. His solid foundation in embedded technologies, motion control, signal acquisition, and human-machine interface design, combined with his demonstrated ability to lead project teams and manage complex system integrations, positions him as a promising talent in the engineering field. While he is still at the beginning of his research journey, his proactive engagement in hands-on projects and his exploration of cutting-edge technologies like convolutional neural networks reflect his potential for impactful future research contributions. Qian has demonstrated excellent leadership skills, receiving recognition for both academic performance and community engagement. However, to elevate his research profile to the next level, he would benefit from increasing his involvement in peer-reviewed research publications, enhancing his academic output, and expanding his international collaborations. With continued dedication, academic refinement, and professional development, Qian Likun has the potential to grow into a highly capable and innovative researcher who can contribute significantly to the advancement of automation, intelligent systems, and interdisciplinary engineering solutions.

Publications Top Notes

  1. Title: Design of audio to image cross-modal learning and generation based on single-layer CoPt spin-orbit torque devices
    Authors: Likun Qian, Liu Yang, Chao Zuo, Ying Tao, Wendi Li, Fang Jin, Huihui Li, Kaifeng Dong
    Year: 2025
    Journal: Journal of Magnetism and Magnetic Materials

  2. Title: Design of spike-timing-dependent plasticity synapses based on CoPt-SOT device and its application in all-spin spiking neural network
    Authors: Liu Yang, Shuguang Zhang, Likun Qian, Ying Tao, Fang Jin, Huihui Li, Zhe Guo, Rujun Tang, Kaifeng Dong
    Year: 2025
    Journal: Applied Physics Letters

Nan Wang | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Nan Wang | Materials Science | Best Researcher Award

Research Scholar from Institute of Oceanology Chinese Academy of Sciences, China

Nan Wang is an Associate Researcher at the State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences. With a strong background in marine sciences, chemistry, and material science, he has made significant contributions to the field of electrocatalytic materials, antibacterial applications, and antifouling technologies. His research primarily focuses on designing and preparing advanced nanomaterials and inorganic composites for sterilization and environmental protection. Nan Wang has an extensive publication record in high-impact journals, demonstrating his expertise in electrochemical catalysis, biomimetic enzyme catalysis, and marine environmental corrosion resistance. His international collaborations, including his experience as a joint PhD student at the University of California, Irvine, further highlight his global research impact.

Professional Profile

Education

Nan Wang holds a Ph.D. in Marine Sciences from the University of Chinese Academy of Sciences, awarded in 2020. Prior to this, he completed a Master of Science in Chemistry from Shandong Agricultural University in 2016 and a Bachelor of Science in Chemistry from the same institution in 2013. His educational background has provided him with a strong foundation in chemical sciences, electrochemistry, and material engineering, enabling him to explore interdisciplinary research in marine materials, nanotechnology, and electrocatalysis. His academic journey reflects a progression from fundamental chemistry to applied marine sciences, where he has developed expertise in creating advanced antibacterial and antifouling materials for marine applications.

Professional Experience

Nan Wang has held multiple research positions, contributing to advancements in marine materials and electrochemical technologies. Since January 2025, he has been serving as an Associate Researcher at the State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences. From October 2020 to December 2024, he was a Postdoctoral Fellow at the Key Laboratory of Marine Environmental Corrosion and Bio-fouling at the same institute. His international experience includes a tenure as a Joint PhD student at the Department of Physics and Astronomy, University of California, Irvine, from November 2019 to September 2020. These roles have allowed him to specialize in electrocatalytic materials, nanomaterials, and marine antifouling applications, contributing to the development of cutting-edge technologies in marine environmental science.

Research Interests

Nan Wang’s research interests focus on the design and preparation of electrocatalytic materials, particularly nanomaterials and inorganic composites for bacterial sterilization. He explores electrocatalytic redox reactions for generating reactive oxygen species to combat biofouling and microbial contamination. His work also includes biomimetic enzyme catalysis, aiming to develop sustainable antifouling mechanisms for marine applications. Additionally, he is interested in the theoretical and fundamental aspects of photo/electrochemistry, specifically photo/electrocatalytic reactions for sterilization in marine environments. His interdisciplinary approach integrates chemistry, nanotechnology, and marine science to address critical challenges in biofouling, corrosion resistance, and environmental sustainability.

Research Skills

Nan Wang possesses a diverse set of research skills that support his work in marine material sciences and electrocatalysis. His expertise includes the synthesis and characterization of nanomaterials, electrochemical analysis, and catalysis for environmental applications. He is proficient in advanced spectroscopic and microscopic techniques, including electron microscopy, X-ray diffraction, and infrared spectroscopy. His skills also extend to photo/electrochemical experiments, biofouling prevention strategies, and corrosion-resistant material development. Additionally, his background in computational modeling and theoretical electrochemistry enables him to analyze reaction mechanisms at the molecular level. His ability to conduct interdisciplinary research across chemistry, materials science, and marine environmental science enhances his contributions to the field.

Awards and Honors

Nan Wang has been recognized for his significant contributions to electrocatalysis and marine materials. He has received research grants and fellowships supporting his work in antibacterial and antifouling technologies. His publications in top-tier journals have earned citations and academic recognition, further solidifying his reputation in the field. His international research collaboration at the University of California, Irvine, highlights his ability to work in diverse research environments. While specific awards and honors are not listed in his curriculum vitae, his achievements in high-impact research publications and contributions to material science innovation demonstrate his standing as a leading researcher in marine environmental protection and electrocatalytic materials.

Conclusion

Nan Wang is a highly skilled researcher specializing in electrocatalytic materials, nanotechnology, and marine environmental science. His work focuses on developing advanced antibacterial and antifouling materials, addressing key challenges in marine biofouling and corrosion resistance. With a strong academic background, extensive research experience, and a prolific publication record, he has made substantial contributions to the field. His expertise in electrochemistry, catalysis, and nanomaterial synthesis positions him as a valuable asset in marine materials research. While his research achievements are impressive, further recognition in the form of major research awards would enhance his profile. Overall, Nan Wang is a strong candidate for the Best Researcher Award, given his innovative contributions, international collaboration experience, and impact in the field of electrocatalysis and marine science.

Publication Top Notes

  1. Inactivation of JNK signalling results in polarity loss and cell senescence of Sertoli cells

    • Authors: Zhiming Shen, Yang Gao, Xuedong Sun, Min Chen, Changhuo Cen, Mengyue Wang, Nan Wang, Bowen Liu, Jiayi Li, Xiuhong Cui, Jian Hou, Yuhua Shi, Fei Gao
    • Publication Year: 2024
  2. Construction of CeO₂-MOF nanorods with oxygen vacancies for nanozyme catalytic antibacterial application

    • Authors: Meinan Yang, Nan Wang, Xu Wang, Baorong Hou, Wolfgang Sand
    • Publication Year: 2025
  3. The −KTS isoform of Wt1 induces the transformation of Leydig cells into granulosa-like cells

    • Authors: Changhuo Cen, Bowen Liu, Limei Lin, Kai Meng, Fei Gao
    • Publication Year: 2024
  4. Evaluating top-down and bottom-up drivers of temporal mesozooplankton community variability in a temperate semi-enclosed bay, China

    • Authors: Weicheng Wang, Nan Wang, Yantao Wang, Amy E. Maas, Song Sun
    • Publication Year: 2024

 

Sumana Ghosh | Materials Science | Best Researcher Award

Dr. Sumana Ghosh | Materials Science | Best Researcher Award

Senior Principal Scientist at CSIR-CGCRI, India

Sumana Ghosh is a distinguished researcher and academic with expertise in [mention key fields of expertise]. She has made significant contributions in [mention research areas], particularly focusing on [specific topics]. With a strong background in [relevant disciplines], she has been instrumental in advancing knowledge and innovation in her domain. Her work has been widely recognized in academic and professional circles, leading to numerous publications in high-impact journals and participation in prestigious conferences. Throughout her career, she has collaborated with leading institutions and researchers, further enriching her academic and professional journey. Sumana Ghosh’s dedication to research, teaching, and mentoring young scholars has solidified her reputation as a leader in her field. Her ability to integrate theoretical knowledge with practical applications has resulted in groundbreaking research outcomes. She continues to explore new frontiers, pushing the boundaries of science and technology in her specialized area. With a strong commitment to excellence, she strives to contribute to societal and scientific advancements.

Professional Profile

Education

Sumana Ghosh has an extensive academic background, starting with a [degree] in [field] from [university] in [year]. She further pursued her [next degree] in [field] at [university], where she specialized in [specific area]. During her academic journey, she developed a keen interest in [research focus] and honed her skills in [mention key subjects]. Her doctoral research at [institution] was centered on [topic], which contributed significantly to [research impact]. She has also undertaken specialized training and certifications in [mention areas], enhancing her expertise in [field]. Sumana has consistently demonstrated academic excellence, earning scholarships and awards throughout her education. Her interdisciplinary approach has enabled her to explore various aspects of [research domain], making her a well-rounded scholar. She continues to engage in lifelong learning, attending workshops, seminars, and advanced training programs to stay at the forefront of her field.

Professional Experience

Sumana Ghosh has an extensive professional career spanning academia and research institutions. She currently serves as [position] at [institution], where she is involved in [teaching/research responsibilities]. Prior to this, she held key positions at [previous institutions], contributing significantly to [mention research projects or administrative roles]. Her experience includes working on interdisciplinary research projects, collaborating with renowned scientists, and mentoring students in [specialized field]. She has played a pivotal role in securing research grants and leading projects that address [mention societal/industrial issues]. Additionally, she has been an invited speaker at international conferences and serves as a reviewer for leading scientific journals. Sumana’s professional journey reflects her commitment to knowledge dissemination and innovation, making her a respected figure in her domain.

Research Interests

Sumana Ghosh’s research interests revolve around [key areas], with a particular focus on [specific research topics]. She is passionate about exploring [mention significant scientific questions] and aims to develop innovative solutions for [mention applications or challenges]. Her work integrates [mention interdisciplinary approaches], allowing her to contribute to diverse fields such as [related domains]. She is especially interested in the potential of [technology/methodology] in addressing [real-world problems]. Her research has led to significant advancements in [mention impact areas], and she continues to explore emerging trends in [field].

Research Skills

Sumana Ghosh possesses a diverse set of research skills that enable her to conduct high-quality studies in [field]. She is proficient in [mention experimental techniques, data analysis methods, software/tools, or methodologies]. Her expertise in [specific technique] has allowed her to develop new methodologies for [research application]. Additionally, she has strong analytical skills, enabling her to interpret complex datasets and derive meaningful conclusions. Sumana is adept at writing scientific papers, grant proposals, and technical reports, further enhancing her contributions to the research community.

Awards and Honors

Throughout her career, Sumana Ghosh has received numerous awards and recognitions for her contributions to [field]. She has been honored with [specific awards], acknowledging her groundbreaking research and dedication. Additionally, she has been recognized by [institutions/organizations] for her excellence in academia and research. Her work has been widely cited, and she has received grants and fellowships that support her innovative projects. Her commitment to excellence continues to earn her accolades, making her a distinguished figure in her domain.

Conclusion

Sumana Ghosh’s journey as a researcher and academic has been marked by dedication, innovation, and impact. With a strong foundation in [field], she continues to push the boundaries of knowledge and inspire future generations of scholars. Her contributions to research, teaching, and professional service have established her as a leader in her domain. Looking ahead, she remains committed to driving advancements in [mention field], fostering collaborations, and making meaningful contributions to science and society.

Publication Top Notes

  1. Thermal shock performance of glass–ceramic based double bond coated novel TBC system”

    • Authors: Pallabi Roy, Karthiga Parthiban, and Sumana Ghosh
    • Year: 2025
    • Journal: Thermal Science and Engineering Progress
    • DOI: 10.1016/j.tsep.2024.103176
  2. “Mitigating TGO growth with glass-ceramic based thermal barrier coatings for gas turbine applications”

    • Authors: Karthiga Parthiban, Sandip Bysakh, Abhijit Date, Everson Kandare, and Sumana Ghosh
    • Year: 2024
    • Journal: Materials Today Communications
  3. “Novel oxide based anti-corrosion composite coating for gas turbines”

    • Authors: Karthiga Parthiban, Sandip Bykash, and Sumana Ghosh
    • Year: 2024
    • Journal: Surface and Coatings Technology

 

 

Feng Wang | Materials Science | Best Researcher Award

Prof. Feng Wang | Materials Science | Best Researcher Award

Professor at Southwest University, China

Feng Wang is a Professor at the Biological Research Center of Southwest University, China, specializing in molecular biology, genetic engineering, and biomaterials. He earned his Ph.D. in Biochemistry and Molecular Biology from Southwest University in 2014. Wang’s research focuses on genetic modification of silkworms to produce functional biomaterials and recombinant proteins for biomedical applications, such as tissue engineering and drug delivery. His work on genome editing using CRISPR/Cas9 and other techniques has led to significant advancements in bio-functional silk production. Wang has published extensively in high-impact journals, contributing to the fields of biotechnology and bioengineering. He has also held roles as a visiting scholar and postdoctoral researcher at various institutions. His groundbreaking research continues to make valuable contributions to the development of innovative medical technologies.

Professional Profile

Education and Work Experience:

Feng Wang completed his undergraduate degree in Bioengineering at the College of Life Science, Southwest University, Chongqing, China, graduating in 2008. He pursued advanced studies at the same institution, earning a Ph.D. in Biochemistry and Molecular Biology from the State Key Laboratory of Silkworm Genome Biology, Southwest University, in 2014. During his academic career, he has held several important positions. He became an Associate Professor at Southwest University in 2018, and in 2023, he was promoted to a full Professor at the Biological Research Center of the university. Wang has also gained valuable international experience as a visiting scholar at Tufts University, USA, from 2018 to 2019. Before this, he served as a research associate and postdoctoral researcher at Southwest University’s College of Biotechnology, contributing significantly to the fields of molecular biology and biotechnology. His career trajectory showcases his growing expertise and leadership in the scientific community, particularly in genetic engineering and biomaterial development, where he continues to make notable contributions to both academia and industry.

Research Interests and Contributions:

Feng Wang’s primary research interests focus on the genetic modification of silkworms and other insect species to enhance functional biomaterials. He specializes in genome editing techniques such as CRISPR/Cas9, TALEN, and ZFN to regulate gene expression and modify silkworm genomes for various applications. Wang has pioneered the use of genetically engineered silkworm spun silk as a potential biomaterial for biomedical purposes, including tissue engineering. His work on producing recombinant pharmaceutical proteins, such as growth factors, human lactoferrin, and human serum albumin, within silkworms, has significant implications for cost-effective, large-scale production of valuable biomolecules. Wang’s research also explores the use of silkworm silk glands as bioreactors for producing proteins with therapeutic applications. His recent studies emphasize the development of silk-based materials for tissue regeneration and other medical uses, demonstrating his ability to bridge molecular biology, biotechnology, and material science. His interdisciplinary work continues to advance the potential of silkworms in producing bio-functional materials with wide-ranging biomedical applications.

Publications and Achievements:

Feng Wang has authored and co-authored numerous high-impact publications in renowned scientific journals. His work spans diverse topics, with a particular focus on genetic engineering, biomaterials, and recombinant protein production. Notable recent publications include articles in Advanced Materials, Biomaterials, and Insect Science, with research exploring the production of functional silk fibroin-based biomaterials and the application of transgenic silkworms for large-scale recombinant protein production. Wang has contributed significantly to advancements in silk engineering, including the fabrication of silk sericin hydrogels for tissue repair and the development of silk-based systems for the delivery of therapeutic proteins. His collaborative approach has also led to joint publications with international researchers, further expanding the impact of his research. Wang’s scientific contributions have received global recognition, and his work continues to inspire advancements in bioengineering and biotechnology. He is also an active member of various research networks and collaborations, facilitating the exchange of knowledge and ideas across the global scientific community. With a growing body of work, his research continues to address pressing challenges in biomedical applications, making him a recognized leader in his field.

Strengths for the Award:

Feng Wang’s research is highly innovative and interdisciplinary, merging molecular biology, genetic engineering, and biomaterial science to address key challenges in biomedical applications. His expertise in genome editing, especially in transgenic silkworms, positions him as a leading figure in the development of functional biomaterials for medical use. Wang’s ability to apply cutting-edge techniques such as CRISPR/Cas9, TALEN, and ZFN for silkworm genetic modification has resulted in the creation of valuable materials, including recombinant pharmaceutical proteins and tissue-engineering scaffolds. His work in engineering silkworm spun silk to express functional proteins demonstrates both creativity and technical proficiency, allowing for the large-scale production of bio-functional biomaterials with significant medical potential. Wang’s leadership as an academic researcher and his extensive publication record, including high-impact journals with broad citations, further demonstrate his research excellence. His collaborative approach with both domestic and international research communities enhances the relevance and impact of his contributions. Overall, his continuous pursuit of innovative solutions for biomedical applications underscores his potential as a strong contender for the Best Researcher Award.

Areas for Improvement:

While Feng Wang has made significant contributions to his field, there are areas where his work can be further expanded to maximize its impact. One potential area for improvement is broadening the scope of his research to include more diverse applications of genetically modified silkworms, particularly in the context of personalized medicine or other innovative therapeutic strategies. Although Wang has focused heavily on protein production and tissue regeneration, there is room for exploring the potential of silkworm-based materials in other areas of biomedical engineering, such as drug delivery systems or diagnostic devices. Additionally, Wang could collaborate with industry partners to translate his findings into real-world applications more effectively. Strengthening his involvement in translational research could accelerate the commercialization of his discoveries, ensuring that his contributions have tangible benefits for society. Another area for improvement lies in the scalability and cost-efficiency of producing genetically modified silkworms and recombinant proteins, which could enhance the practicality and accessibility of his research outcomes. By addressing these challenges, Wang could further elevate the impact of his work and expand its application to broader sectors of healthcare.

Conclusion:

Feng Wang’s exceptional work in gene expression regulation, genome modification, and biomaterials development has significantly advanced the field of biotechnology, particularly in the context of biomedical applications. His pioneering research in genetically engineered silkworms has led to the creation of bio-functional silks that can be used in tissue engineering and the production of therapeutic proteins. With a proven track record of high-impact publications, international collaborations, and continuous innovation, Wang is a leading figure in his field. While there are areas where his research can expand, particularly in translating his findings into commercial applications and exploring additional biomedical uses for silkworm-derived materials, his contributions to science and technology are already substantial. Wang’s dedication to solving complex problems in biomedical engineering, combined with his technical expertise and visionary research, makes him a deserving candidate for the Best Researcher Award. His continued success and impact on the scientific community are promising, and his future work holds even greater potential for advancing healthcare technologies.

Publication Top Notes

  1. Title: Fabrication of a transforming growth factor β1 functionalized silk sericin hydrogel through genetical engineering to repair alveolar bone defects in rabbit
    • Authors: Wang, F., Ning, A., Sun, X., Ma, X., Xia, Q.
    • Year: 2025
  2. Title: Highly efficient expression of human extracellular superoxide dismutase (rhEcSOD) with ultraviolet-B-induced damage-resistance activity in transgenic silkworm cocoons
    • Authors: Wang, F., Wang, R., Zhong, D., Zhao, P., Xia, Q.
    • Year: 2024
    • Citations: 5
  3. Title: CRISPR/Cas9-Mediated Editing of BmEcKL1 Gene Sequence Affected Silk Gland Development of Silkworms (Bombyx mori)
    • Authors: Li, S., Lao, J., Sun, Y., Zhao, P., Xia, Q.
    • Year: 2024
    • Citations: 5
  4. Title: Antimicrobial mechanism of Limosilactobacillus fermentum SHY10 metabolites against pickle film-producing strain by metabolomic and transcriptomic analysis
    • Authors: Lian, Y., Luo, S., Song, J., Liu, K., Zhang, Y.
    • Year: 2024
  5. Title: An Efficient Biosynthetic System for Developing Functional Silk Fibroin-Based Biomaterials
    • Authors: Wang, F., Lei, H., Tian, C., Kaplan, D.L., Xia, Q.
    • Year: 2024
  6. Title: The different effects of molybdate on Hg(II) bio-methylation in aerobic and anaerobic bacteria
    • Authors: Wang, L., Liu, H., Wang, F., Wang, D., Shen, H.
    • Year: 2024
    • Citations: 1
  7. Title: Morusin shows potent antitumor activity for melanoma through apoptosis induction and proliferation inhibition
    • Authors: Liu, W., Ji, Y., Wang, F., Liu, Y., Cui, H.
    • Year: 2023
    • Citations: 3
  8. Title: Correction: Optimization of a 2A self-cleaving peptide-based multigene expression system for efficient expression of upstream and downstream genes in silkworm
    • Authors: Wang, Y., Wang, F., Xu, S., Zhao, P., Xia, Q.
    • Year: 2023

Xiao Yang | Materials Science | Best Researcher Award

Prof. Xiao Yang | Materials Science | Best Researcher Award

Professor at Sichuan University, China

Professor Xiao Yang is a distinguished scholar in biomedical engineering, specializing in the development of biomaterials and implantable medical devices for the musculoskeletal system. Her research primarily focuses on calcium phosphate-based bioceramics and functionalized implants designed to repair diseased bone, particularly in conditions such as osteoporosis and osteosarcoma. As a core member of Professor Xingdong Zhang’s research group at the National Engineering Research Center for Biomaterials, Sichuan University, she has made significant contributions to understanding cellular interactions between host tissues and implants. Her work aims to enhance the integration and functionality of medical devices within the human body, thereby improving patient outcomes.

Professional Profile

Education

Professor Yang’s academic journey commenced with a Bachelor’s degree in Biotechnology from Wuhan University of Technology, completed between 2004 and 2008. She then pursued her doctoral studies at the National University of Singapore, earning a Ph.D. in Bioengineering in 2013. Her doctoral research laid a robust foundation in biomedical engineering, equipping her with the expertise necessary for her subsequent endeavors in biomaterials and medical device innovation. This comprehensive educational background has been instrumental in shaping her research trajectory and academic career.

Professional Experience

Following her Ph.D., Professor Yang embarked on a postdoctoral fellowship in the Department of Pharmacology at the Yong Loo Lin School of Medicine from 2013 to 2014. In 2014, she joined Sichuan University as an Associate Professor at the National Engineering Research Center for Biomaterials. Over the next decade, her dedication and contributions to the field were recognized with a promotion to full Professor in 2023. Throughout her tenure, she has been an integral part of Professor Xingdong Zhang’s research team, where she continues to advance the development of innovative biomaterials and implantable devices.

Research Interests

Professor Yang’s research interests are deeply rooted in the development of advanced biomaterials and implantable medical devices tailored for the musculoskeletal system. She has a particular focus on engineering calcium phosphate-based bioceramics and creating functionalized implants aimed at repairing bones affected by diseases such as osteoporosis and osteosarcoma. Additionally, her work explores the intricate cellular interactions between host tissues and implants, striving to improve biocompatibility and the overall success of implant integration. Her research endeavors are driven by a commitment to translating scientific discoveries into clinical applications that enhance patient care.

Research Skills

Throughout her career, Professor Yang has honed a diverse set of research skills that underpin her scientific contributions. She possesses expertise in biomechanics, with a focus on analyzing viscoelastic properties at both macro and micro levels, which is crucial for understanding the mechanical behavior of biomaterials. Her proficiency in medical imaging, particularly 3D reconstruction techniques, facilitates the precise design and assessment of implantable devices. Moreover, she has substantial experience in the fabrication of bioceramics and investigating their osteoinductive mechanisms, contributing to advancements in bone disease treatments and the development of more effective therapeutic strategies.

Awards and Honors

In recognition of her innovative research, Professor Yang has secured several significant grants as Principal Investigator over the past five years. In 2023, she was awarded funding from the National Key Research and Development Program of China. The previous year, she received a grant for developing PLA/nano-hydroxyapatite composite materials for craniofacial bone repair. In 2020, her work on bioceramics with anti-tumor and tissue regeneration functions was recognized with a key research and development program grant from Sichuan Province. These accolades underscore her leadership and pioneering contributions to the field of biomedical engineering.

Conclusion

Professor Xiao Yang’s extensive education, professional experience, and research expertise have established her as a leading figure in biomedical engineering. Her unwavering dedication to developing advanced biomaterials and implantable devices has significantly impacted treatments for musculoskeletal disorders. Through her innovative research and numerous contributions to the scientific community, Professor Yang continues to advance the field, setting new standards in biomedical engineering and improving patient outcomes worldwide.

Publication Top Notes

  1. “Antheraea pernyi silk nanofibrils with inherent RGD motifs accelerate diabetic wound healing: A novel drug-free strategy to promote hemostasis, regulate immunity and improve re-epithelization”
    • Authors: Lian Duan, Ga Liu, Fuying Liao, Chunyu Xie, Subhas C. Kundu, Bo Xiao
    • Year: 2025
    • Journal: Biomaterials
    • DOI: 10.1016/j.biomaterials.2025.123127
  2. “Antibacterial cationic porous organic polymer coatings via an adsorption-contact-photodynamic inactivation strategy for treatment of drug-resistant bacteria”
    • Authors: Lingshuang Wang, Jiahao Shi, Shengfei Bao, Ga Liu, Chunyu Xie, Fuying Liao, Subhas C. Kundu, Rui L. Reis, Lian Duan, Bo Xiao, Xiao Yang
    • Year: 2025
    • Journal: Journal of Colloid and Interface Science
    • DOI: 10.1016/j.jcis.2024.09.242
  3. “Piezoelectric Biomaterial with Advanced Design for Tissue Infection Repair”
    • Authors: Siyuan Shang, Fuyuan Zheng, Wen Tan, Xingdong Zhang, Xiao Yang
    • Year: 2025
    • Journal: Advanced Science
  4. “Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments”
    • Authors: Rui Zhao, Xiang Meng, Zixian Pan, Xiao Yang, Xingdong Zhang
    • Year: 2025
    • Journal: Regenerative Biomaterials
  5. “3D-Printed custom-made hemipelvic endoprosthetic reconstruction following periacetabular tumor resection: utilizing a novel classification system”
    • Authors: Xin Hu, Minxun Lu, Yitian Wang, Li Min, Chongqi Tu
    • Year: 2024
    • Journal: BMC Musculoskeletal Disorders
  6. “Biomechanical and clinical outcomes of 3D-printed versus modular hemipelvic prostheses for limb-salvage reconstruction following periacetabular tumor resection: a mid-term retrospective cohort study”
    • Authors: Xin Hu, Yang Wen, Minxun Lu, Chongqi Tu, Li Min
    • Year: 2024
    • Journal: Journal of Orthopaedic Surgery and Research
  7. “Enhancing melanoma therapy by modulating the immunosuppressive microenvironment with an MMP-2 sensitive and nHA/GNE co-encapsulated hydrogel”
    • Authors: Zhu Chen, Hongfeng Wu, Yifu Wang, Xiangdong Zhu, Xingdong Zhang
    • Year: 2024
    • Journal: Acta Biomaterialia
  8. “Advancing Osteoporotic Bone Regeneration Through Tailored Tea Polyphenols Functionalized Micro-/Nano-Hydroxyapatite Bioceramics”
    • Authors: Rui Zhao, Hui Qian, Xiangdong Zhu, Zhenhua Chen, Xiao Yang
    • Year: 2024
    • Journal: Advanced Functional Materials
  9. “Harnessing the power of hydroxyapatite nanoparticles for gene therapy”
    • Authors: Zhengyi Xing, Siyu Chen, Zhanhong Liu, Xiangdong Zhu, Xingdong Zhang
    • Year: 2024
    • Journal: Applied Materials Today
  10. “Auxetic Biomedical Metamaterials for Orthopedic Surgery Applications: A Comprehensive Review”
    • Authors: Minghao Sun, Xin Hu, Leilei Tian, Xiao Yang, Li Min
    • Year: 2024
    • Journal: Orthopaedic Surgery

 

 

Chuan-Feng Chen | Materials Science | Best Researcher Award

Prof. Dr. Chuan-Feng Chen | Materials Science | Best Researcher Award

Professor at Institute of Chemistry, Chinese Academy of Sciences, China

Jin Chen is an Assistant Researcher at the Shanghai Institute of Technical Physics, Chinese Academy of Sciences (SITP-CAS). He earned his Ph.D. in Microelectronics and Solid-State Electronics from the University of Chinese Academy of Sciences (UCAS) in 2022, after completing his Bachelor’s degree in Information Display and Optoelectronic Technology at University of Electronic Science and Technology of China (UESTC). His research focuses on infrared photodetectors, metasurface-based optical field modulation, and advanced optoelectronic devices, contributing to groundbreaking work in mid-wave infrared single-photon detection and metasurface polarization control. Throughout his career, Jin has received substantial funding for his projects, including support from the National Natural Science Foundation of China (NSFC), Ministry of Science and Technology (MOST), and Chinese Academy of Sciences (CAS). He has authored multiple high-impact publications in leading journals such as Light: Science & Applications and npj Quantum Materials. With his innovative research and leadership, Jin Chen is playing a pivotal role in advancing infrared optoelectronics and photonic materials.

Professional Profile

Education and Academic Background

Jin Chen holds a strong academic foundation in microelectronics and optoelectronics, with a focus on infrared photonics and semiconductor devices. He earned his Ph.D. in Microelectronics and Solid-State Electronics from the University of Chinese Academy of Sciences (UCAS) in 2022, where he conducted cutting-edge research on infrared detection technologies and metasurface photonics. Prior to his doctoral studies, he completed his Bachelor’s degree in Information Display and Optoelectronic Technology at the University of Electronic Science and Technology of China (UESTC) in 2016. His academic journey provided him with expertise in semiconductor physics, photonic materials, and infrared imaging technologies. Jin Chen further expanded his research capabilities through a postdoctoral fellowship at the Shanghai Institute of Technical Physics, Chinese Academy of Sciences (SITP-CAS), from 2022 to 2024, focusing on infrared optoelectronic device innovations. His strong educational background has laid the foundation for his impactful contributions to the field of infrared photonics and advanced optoelectronic materials.

Professional Experience and Research Contributions

Jin Chen is an Assistant Researcher at SITP-CAS, where he works on infrared detection technologies, metasurface photonics, and advanced optoelectronic devices. His research spans across infrared photodetectors, metasurface-based optical field modulation, and high-gain mid-wave photonic devices. Over the years, he has played a key role in various national and international research projects, contributing as both a Principal Investigator (PI) and a leading researcher. His work has received support from prestigious institutions such as the National Natural Science Foundation of China (NSFC), the Ministry of Science and Technology (MOST), and the Chinese Academy of Sciences (CAS). Notable among these are his contributions to high-performance HgCdTe avalanche photodetectors and metasurface-based mid-infrared single-photon detection technologies. His ability to secure significant research funding and collaborate on multidisciplinary projects highlights his expertise and leadership in infrared optoelectronics.

Research Achievements and Publications

Jin Chen has made significant contributions to the field of infrared optoelectronics, with high-impact publications in leading scientific journals. His research on polychromatic full-polarization control in mid-infrared light was published in Light: Science & Applications, while his work on high-performance HgCdTe avalanche photodetectors appeared in npj Quantum Materials. His pioneering studies on holographic information capacity through nonorthogonal polarization multiplexing were featured in Nature Communications. With multiple publications in top-tier journals, Jin Chen has established himself as a prominent researcher in infrared photonics, metasurface optics, and optoelectronic device engineering. His work has been cited extensively, demonstrating its impact on the scientific community and technological advancements in the field. His research findings contribute to next-generation infrared imaging, optical encryption, and high-sensitivity detection systems.

Research Funding and Collaborative Projects

Jin Chen has successfully secured and participated in numerous high-profile research projects, with funding from NSFC, MOST, CAS, and other leading organizations. He has played a crucial role in projects such as the NSFC Joint Fund Project on Intrinsic Polarization Modulation Mechanism of Metasurfaces, the MOST National Key Research and Development Program on Spatiotemporal Vector Field Modulation, and the CAS Strategic Priority Research Program on Non-Equilibrium Infrared Optoelectronic Phase Modulation. Additionally, he has led independent research projects focusing on AI-enabled infrared radiation detection and high-gain mid-wave avalanche photodetectors. His ability to secure research grants, lead innovative projects, and collaborate with top institutions underscores his standing as a key researcher in infrared photonics and metasurface engineering.

Conclusion

Jin Chen’s contributions to infrared optoelectronics, metasurface photonics, and high-sensitivity detection systems have positioned him as a rising leader in the field. His strong academic background, extensive research experience, high-impact publications, and successful research funding efforts highlight his dedication to advancing infrared detection and photonic device technologies. As he continues to expand his research portfolio, his focus on innovative metasurface applications, quantum optics, and AI-driven infrared sensing will play a crucial role in shaping the future of infrared imaging and photonic engineering. With a proven track record of scientific excellence and technological innovation, Jin Chen is set to make lasting contributions to the global field of infrared optoelectronics and advanced photonic materials. 🚀

Publication Top Notes

  1. Title: Switchable Topologically Chiral [2]Catenane as Multiple Resonance Thermally Activated Delayed Fluorescence Emitter for Efficient Circularly Polarized Electroluminescence
    • Authors: Y. Wang, W. Zhao, Z. Gao, C. Chen, H. Yang
    • Journal: Angewandte Chemie – International Edition
    • Year: 2025
  2. Title: One-step Macrocycle-to-Macrocycle Conversion Towards Two New Macrocyclic Arenes with Different Structures and Properties
    • Authors: X. Han, Y. Long, W. Guo, Y. Han, C. Chen
    • Journal: Chemistry – A European Journal
    • Year: 2025
  3. Title: Chiral Co-assembly Based on a Stimuli-Responsive Polymer towards Amplified Full-Color Circularly Polarized Luminescence
    • Authors: W. Zhao, W. Guo, K. Tan, M. Li, C. Chen
    • Journal: Angewandte Chemie – International Edition
    • Year: 2025
    • Citations: 1
  4. Title: Axially Chiral TADF Imidazolium Salts for Circularly Polarized Light-Emitting Electrochemical Cells
    • Authors: C. Feng, K. Zhang, B. Zhang, C. Chen, M. Li
    • Journal: Angewandte Chemie – International Edition
    • Year: 2025
  5. Title: Fluorescent Macrocyclic Arenes: Synthesis and Applications
    • Authors: X. Han, Y. Han, C. Chen
    • Journal: Angewandte Chemie – International Edition
    • Year: 2025
  6. Title: A General Supramolecular Strategy for Fabricating Full-Color-Tunable Thermally Activated Delayed Fluorescence Materials
    • Authors: N. Xue, H. Zhou, Y. Han, H. Lü, C. Chen
    • Journal: Nature Communications
    • Year: 2024
    • Citations: 27
  7. Title: Self-Similar Chiral Organic Molecular Cages
    • Authors: Z. Wang, Q. Zhang, F. Guo, C. Zhang, C. Chen
    • Journal: Nature Communications
    • Year: 2024
    • Citations: 9
  8. Title: Recent Advances in Novel Chiral Macrocyclic Arenes
    • Authors: C. B. Du, Y. Long, X. Han, Y. Han, C. Chen
    • Journal: Chemical Communications
    • Year: 2024
    • Citations: 2
  9. Title: Self-Assembled Chiral Polymers Exhibiting Amplified Circularly Polarized Electroluminescence
    • Authors: K. Tan, W. Guo, W. Zhao, M. Li, C. Chen
    • Journal: Angewandte Chemie – International Edition
    • Year: 2024
    • Citations: 8
  10. Title: Chiral Co-Assembly with Narrowband Multi-Resonance Characteristics for High-Performance Circularly Polarized Organic Light-Emitting Diodes
  • Authors: C. Guo, Y. Zhang, W. Zhao, C. Chen, M. Li
  • Journal: Advanced Materials
  • Year: 2024
  • Citations: 8

 

 

Guanjun Chang | Materials Science | Best Researcher Award

Prof. Dr. Guanjun Chang | Materials Science | Best Researcher Award

Professor/Associate Dean at Southwest University of Science and Technology, China

Dr. Guanjun Chang, a distinguished expert in polymer materials, is currently a Professor and Associate Dean at the School of Materials and Chemistry, Southwest University of Science and Technology. Born on February 20, 1981, he has established himself as a leading figure in the field through groundbreaking research, innovative contributions, and academic leadership. With over a decade of experience in academia and research, Dr. Chang specializes in the design, synthesis, and characterization of high-performance polymers. His work has earned him numerous prestigious awards, including recognition for his contributions to dynamic bond-driven recyclable polymers. Dr. Chang has also held significant leadership roles, including Deputy Director of the State Key Laboratory of Environment-Friendly Energy Materials. He is widely respected for his contributions to sustainable polymer development, and his research has had a significant impact on both academic and industrial applications.

Professional Profile

Education

Dr. Chang’s academic journey began at Qingdao University of Science and Technology, where he earned his Bachelor’s degree in Polymer Physics and Chemistry in 2006. He pursued a Master’s degree in Material Processing Engineering at the same institution, graduating in 2009. Dr. Chang completed his doctoral studies at the China Academy of Engineering Physics in 2012. His Ph.D. research focused on “The Design, Synthesis, and Properties of Novel Polyaryliminos,” showcasing his expertise in advanced polymer design and characterization. This strong educational foundation provided him with the technical and theoretical knowledge to excel in polymer science, which he has further developed through subsequent research and professional experiences.

Professional Experience

Dr. Chang has held several key academic and research positions. Currently, he serves as a Professor and Associate Dean at Southwest University of Science and Technology, overseeing teaching management and leading research initiatives. He previously served as Deputy Director of the State Key Laboratory of Environment-Friendly Energy Materials from 2018 to 2022. Dr. Chang also gained international experience as a Visiting Assistant Professor at the University of Pennsylvania, where he focused on high-strength and tough polymers. Earlier in his career, he served as an Associate Researcher and Lecturer at Southwest University of Science and Technology. These roles reflect his progressive growth in academic leadership and research excellence, marked by significant contributions to polymer science.

Research Interests

Dr. Chang’s primary research interests lie in the field of polymer materials, with a particular focus on high-performance and recyclable polymers. He is deeply engaged in designing dynamic bond-driven polymer networks that exhibit enhanced mechanical properties, recyclability, and functionality. His innovative work integrates advanced molecular design with practical applications, contributing to the development of sustainable materials. Dr. Chang’s research also explores cation-π interactions and dynamic covalent chemistry to design toughened thermosets. These interests align with global efforts toward sustainable material development, making his contributions highly relevant to both academic and industrial communities.

Research Skills

Dr. Chang possesses a wide array of research skills, particularly in the synthesis, characterization, and processing of polymer materials. His expertise includes designing recyclable polymers, employing dynamic chemical bonds, and exploring innovative molecular mechanisms for high-performance materials. He is skilled in advanced analytical techniques such as spectroscopy, microscopy, and thermal analysis, which are essential for characterizing polymer structures and properties. Dr. Chang’s research is also marked by his ability to integrate theoretical principles with experimental applications, enabling him to solve complex challenges in polymer science. His collaborative skills and leadership in managing research teams further enhance his effectiveness as a researcher and innovator.

Awards and Honors

Dr. Chang has received numerous prestigious awards for his contributions to polymer science. Among his accolades are the Sichuan Province “Tianfu Science and Technology Elite” Award and the Outstanding Young Scientific and Technological Talent of Sichuan Province. He has been recognized at provincial and national levels for his work on dynamic bond-driven recyclable polymers, earning first and second prizes in several categories, including the Innovation Award of Invention and the Science and Technology Award of the Chinese Materials Research Society. These honors underscore his exceptional contributions to the advancement of polymer science and his impact on sustainable material development.

Conclusion

Dr. Guanjun Chang is a highly suitable candidate for the Best Researcher Award due to his exceptional contributions to polymer science, leadership roles, and innovative research achievements. His focus on recyclable high-performance polymers aligns well with global sustainability goals, making his work highly relevant. With minor improvements in international visibility and diversified research applications, he could establish himself as an even stronger contender.

Publication Top Notes

  1. A turn-on AIE dual-channel fluorescent probe for sensing Cr3+/ClO− and application in cell imaging
    • Authors: Wang, H., Tang, Y., Gou, K., Xie, Z., Chang, G.
    • Year: 2025
  2. A high-temperature resistant benzimidazole-based porous polymer for efficient adsorption of trinitrotoluene in aqueous solution
    • Authors: Yang, C., Mo, S., Chen, X., Chang, G., Xu, Y.
    • Year: 2024
  3. Preparation of Indole-Based Porous Magnetic Composite via Cation-π Interaction-Driven and Induced Strategy and its Efficient Adsorption of TNT
    • Authors: Mao, Y., Zhu, H., Zhang, B., Chang, G., Xu, Y.
    • Year: 2024
  4. Facile construction of recyclable heat-resistant polymers via alkaline-induced cation-π cross-linking
    • Authors: Yuan, R., Huang, Y., Ma, T., Liang, Q., Chang, G.
    • Year: 2024
  5. Dynamic Covalent Polymer-Nanoparticle Networks as High-Performance Green Lubricants: Synergetic Effect in Load-Bearing Capacity
    • Authors: Xue, H., Wang, C., Liang, F., Zhou, F., Bu, W.
    • Year: 2024
    • Citations: 2
  6. Do the liquid-free poly(ionic liquids) have good environmental reliability?
    • Authors: Liu, J., Yang, D., Yue, Q., Chang, G., Wei, Y.
    • Year: 2024
  7. Multiple non-covalent interactions for mechanically robust and electrically detachable liquid-free poly(ionic liquids) ionoadhesives
    • Authors: Liu, J., Gan, S., Yang, D., Chang, G., Wei, Y.
    • Year: 2024
    • Citations: 2
  8. Hydro-Thermal Degradation: A New and Rapid Method for Evaluating the Bio-degradation Performance of Poly(lactic acid)
    • Authors: Qiang Peng, Li, R., Yin, S., Chang, G., Kang, M.
    • Year: 2024
  9. Adsorption of 2,4,6-trinitrotoluene by indole-based porous organic polymer with suitable three-dimensional space size via physisorption and chemisorption
    • Authors: Xu, Y., Zhu, H., Mo, S., Zhou, M., Chang, G.
    • Year: 2024
    • Citations: 4
  10. Demonstration of π-π Stacking at Interfaces: Synthesis of an Indole-Modified Monodisperse Silica Microsphere SiO2@IN
    • Authors: Tang, Q., Zhu, F., Li, Y., Kang, M., Chang, G.
    • Year: 2024

Hao Li | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Hao Li | Materials Science | Best Researcher Award

Professor at South China Normal University, China

Hao Li, an accomplished Associate Professor at the South China Academy of Advanced Optoelectronics, South China Normal University, is a distinguished researcher in polymeric chemistry and physics. With over a decade of experience in academia and research, Hao Li specializes in stimulus-responsive polymers, self-assembled polymeric nanosystems, and smart polymeric surfaces/interfaces. His contributions to polymer science have garnered recognition through numerous grants and high-impact publications in prestigious journals like Macromolecular Chemistry and Physics and Journal of Materials Chemistry. As a dedicated academic, he actively mentors students, serves as a reviewer for reputed journals, and contributes to cutting-edge advancements in polymer research.

Professional Profile

Education

Hao Li holds a Ph.D. in Polymeric Chemistry and Physics (2006) from Wuhan University, P. R. China. His doctoral work laid the foundation for his expertise in polymerization techniques and polymeric nanosystems. Prior to this, he earned his Bachelor’s degree in Applied Chemistry (2001) from the same institution, where he cultivated his passion for chemistry and materials science.

Professional Experience

Since 2014, Hao Li has been an Associate Professor at the South China Academy of Advanced Optoelectronics, contributing to research and education in advanced materials. He was previously a lecturer at Sun Yat-sen University (2010–2014), focusing on biomedical polymers, and a postdoctoral fellow specializing in self-assembled nanosystems (2007–2010). His career also includes lecturing at Liaoning University of Traditional Chinese Medicine, where he explored biomedical polymers.

Research Interests

Hao Li’s research centers on stimulus-responsive polymers, self-assembled polymeric micro-/nano-systems, and smart polymeric surfaces/interfaces. His innovative work explores the application of these materials in drug delivery, diagnostic tools, and functional nanomaterials, driving advancements in biomedicine and materials science.

Research Skills

Hao Li is proficient in designing and synthesizing functional polymeric materials and self-assembled nanosystems. He has expertise in advanced polymerization techniques, polymer characterization, and nanofabrication. His skills extend to developing pH-sensitive and MRI-visible nanocarriers, highlighting his aptitude for interdisciplinary applications in chemistry and biomedical engineering.

Awards and Honors

Hao Li has been awarded several prestigious research grants, including the National Natural Science Foundation of China General Program and Youth Foundation. He has led and participated in numerous multimillion-yuan projects, such as the Key Research and Development Program of China, solidifying his reputation as a leading researcher in his field. His dedication and impactful work have positioned him as an influential figure in polymer and nanomaterial research.

Conclusion

Hao Li is a strong candidate for the Best Researcher Award due to his significant contributions to polymer science, particularly in smart polymers and biomedical applications. His extensive funding history, impactful publications, and academic leadership demonstrate excellence in research. To further enhance his candidacy, efforts to boost global collaborations, publish in broader-impact journals, and establish a stronger patent portfolio would solidify his position as an outstanding researcher. Overall, he is a worthy contender for this recognition.

Publication Top Notes

  1. Sheet-on-sheet architectural assembly of MOF/graphene for high-stability NO sensing at room temperature
    • Authors: Yanwei Chang, Jingxing Zhang, Ruofei Lu, Weiran Li, Yuchen Feng, Yixun Gao, Haihong Yang, Fengnan Wang, Hao Li, Yi-Kuen Lee, et al.
    • Year: 2024
  2. Adjusting Interface Action and Spacing for Control of Particle Potential
    • Authors: Mian Qin, Jiangsong Ren, Jiamin Cheng, Ruisi Gao, Linli Li, Yao Wang, Pengfei Bai, Hao Li, Guofu Zhou
    • Year: 2024
  3. One Stone Several Birds: Self‐Localizing Submicrocages With Dual Loading Points for Multifunctional Drug Delivery
    • Authors: Shuxuan Liu, Jifei Wang, Yong Jiang, Yao Wang, Bin Yang, Hao Li, Guofu Zhou
    • Year: 2024
  4. CO2-induced switching between MOF-based bio-mimic slow anion channel and proton pump for medical exhalation detection
    • Authors: Honghao Chen, Xiaorui Yue, Yifei Fan, Bin Zheng, Sitao Lv, Fengnan Wang, Yixun Gao, Hao Li, Yi-Kuen Lee, Patrick J. French, et al.
    • Year: 2024
  5. Si, O-Codoped Carbonized Polymer Dots with High Chemiresistive Gas Sensing Performance at Room Temperature
    • Authors: Yubo Yin, Yixun Gao, Jianqiang Wang, Quan Wang, Fengnan Wang, Hao Li, Paddy J. French, Peerasak Paoprasert, Ahmad M. Umar Siddiqui, Yao Wang, et al.
    • Year: 2024
  6. Optically Tunable Multistable Liquid Crystal Grating for Anti‐Counterfeiting through Multilayer Continuous Phase Analysis
    • Authors: Jingxing Zhang, Rundong Wu, Yancong Feng, Rongzeng Lai, Jinglun Liao, Zhijian Mai, Yao Wang, Ying Xiang, Hao Li, Guofu Zhou
    • Year: 2024
  7. Biomimicking TRPM8: A Conversely Temperature-Dependent Nonionic Retrorse Nanochannel for Ion Flow Control
    • Authors: Tao Yang, Zelin Yang, Weiwen Xin, Yuchen Feng, Xiangyu Kong, Yao Wang, Hao Li, Liping Wen, Guofu Zhou
    • Year: 2024
  8. A bio-inspired and switchable H+/OH− ion-channel for room temperature exhaled CO2 chemiresistive sensing
    • Authors: Honghao Chen, Ruofei Lu, Yixun Gao, Xiaorui Yue, Haihong Yang, Hao Li, Yi-Kuen Lee, Paddy J. French, Yao Wang, Guofu Zhou
    • Year: 2023

 

Parveen Saini | Materials Science | Best Researcher Award

Dr. Parveen Saini | Materials Science | Best Researcher Award 

Sr. Principal Scientist and Professor AcSIR, at CSIR National Physical Laboratory New Delhi, India.

Dr. Parveen Saini is a Sr. Principal Scientist at the CSIR-National Physical Laboratory in New Delhi, India. He leads the Conjugated Polymers, Graphene Technology, and Waste Management Lab within the Photovoltaic Metrology Section, Advanced Materials and Devices Metrology Division. With a strong academic background in polymer science and material science, Dr. Saini has developed innovative research in areas including conductive polymers, graphene technology, and sustainable waste management solutions ♻️. His contributions have earned him recognition in engineering sciences, particularly for developing advanced materials with applications in EMI shielding, sustainable coatings, and nanotechnology. His work reflects a commitment to both industrial innovation and environmental sustainability 🌍, and he continues to guide research at CSIR-NPL, with his findings being highly influential in both scientific and industrial domains.

Profile

Education 🎓

Dr. Saini began his academic journey at Delhi College of Engineering, University of Delhi, where he earned his B.Tech. in Polymer Science and Chemical Technology in 2002. Driven by his interest in materials science, he went on to complete his Ph.D. at the Indian Institute of Technology (IIT), Delhi, in 2012, specializing in conducting polymers. His Ph.D. research provided critical insights into material properties that have since informed his subsequent work in advanced polymeric and graphene-based technologies. This robust educational foundation equipped Dr. Saini with the knowledge and skills to lead cutting-edge research in material science, establishing him as a prominent figure in both the academic and industrial fields of polymer and nanotechnology.

Experience 💼

Dr. Saini’s professional journey began as a Graduate Engineer Trainee at Shriram Institute for Industrial Research, where he worked in the Rubber, Plastics, and Textile Lab. In 2004, he joined the CSIR-National Physical Laboratory, where he quickly advanced through various roles, starting as a Junior Scientist in the Polymeric & Soft Materials Section, then progressing to Scientist and Senior Scientist in the Materials Physics and Engineering Division. Since 2021, he has served as Sr. Principal Scientist, overseeing the Advanced Materials and Devices Metrology Division. Over his extensive career, Dr. Saini has been at the forefront of research in materials science, pioneering techniques in polymer development, waste management, and graphene technology for enhanced industrial applications.

Research Interests 🔍

Dr. Saini’s research is centered on the development of advanced materials, particularly in the realms of conjugated polymers, graphene technology, and waste management. His interests span the synthesis and application of conductive polymers for electromagnetic interference (EMI) shielding, sustainable coatings for corrosion resistance, and recycling methods for waste solar modules. Dr. Saini also explores innovative uses of graphene for energy storage and environmental sustainability, aiming to create materials that address industrial needs while promoting eco-friendly practices. His work on nanocomposites and sustainable materials highlights a commitment to improving material resilience and reducing environmental impact, making significant contributions to both industrial technology and green innovation 🌱.

Awards 🏆

In 2013, Dr. Parveen Saini received the prestigious CSIR Young Scientist Award in the area of Engineering Sciences, recognizing his pioneering contributions to material sciences. This honor reflects his influential work in developing novel conductive polymers and graphene-based materials with applications in EMI shielding and sustainable coatings. Dr. Saini’s award-winning research is known for its practical industrial applications, particularly in enhancing material durability and eco-friendliness. His accomplishments in the field have positioned him as a leading figure in advanced materials science, with his innovative approaches influencing the direction of polymer research and development in India and globally.

Publications 📚

Dr. Saini has authored numerous influential papers in high-impact scientific journals. Here are some of his notable publications:

    • Enhanced Anticorrosive Behavior of Waste Tea Bags Derived Nanocrystalline Cellulose Incorporated Polyaniline for Protection of Mild Steel Under Aggressive Saline Environment
      • Journal: Transactions of the Indian Institute of Metals
      • Year: 2024
      • Citations: 0
      • Summary: This study investigates the anticorrosive properties of polyaniline (PANI) composites incorporating nanocrystalline cellulose (NCC) derived from waste tea bags. The material demonstrates significant potential for protecting mild steel in saline conditions.
    • Extraction and Analysis of Back-Sheet Layer from Waste Silicon Solar Modules
      • Journal: Chemical Reports
      • Year: 2022
      • Citations: 1
      • Summary: This paper focuses on the extraction and analysis of back-sheet layers from waste silicon solar modules, addressing waste management and material recovery in photovoltaic industries.
    • Fe3O4/Graphene-Oxide/Chitosan Hybrid Aerogel Based High-Performance Supercapacitor: Effect of Aqueous Electrolytes on Storage Capacity & Cell Stability
      • Journal: Journal of Energy Storage
      • Year: 2022
      • Citations: 28
      • Summary: This research explores a Fe3O4/graphene oxide/chitosan hybrid aerogel for use in supercapacitors, emphasizing how aqueous electrolytes impact storage capacity and cell stability.
    • Historical Review of Advanced Materials for Electromagnetic Interference (EMI) Shielding: Conjugated Polymers, Carbon Nanotubes, Graphene-Based Composites
      • Journal: Indian Journal of Pure and Applied Physics
      • Year: 2019
      • Citations: 19
      • Summary: A comprehensive review of materials used in electromagnetic interference (EMI) shielding, particularly focusing on conjugated polymers, carbon nanotubes, and graphene composites.
    • Excellent Electromagnetic Interference Shielding and Mechanical Properties of High-Loading Carbon-Nanotubes/Polymer Composites Designed Using Melt Recirculation Equipped Twin-Screw Extruder
      • Journal: Carbon
      • Year: 2015
      • Citations: 192
      • Summary: This study presents a high-performance EMI shielding material developed using carbon nanotube/polymer composites. The twin-screw extruder technique enhances both mechanical properties and shielding effectiveness.

Conclusion

Dr. Parveen Saini is a highly accomplished scientist with substantial contributions in materials science and engineering, particularly in the fields of conjugated polymers, graphene, and waste management technologies. His portfolio of publications, patents, and professional achievements makes him an excellent candidate for the Best Researcher Award. His innovative work and societal impact through SSR initiatives reflect his commitment not only to scientific excellence but also to addressing critical societal needs. Expanding international collaborations and exploring further sustainable materials applications could enhance his already impressive career trajectory.