Sumana Paul | Nanomaterials | Best Researcher Award

Dr. Sumana Paul | Nanomaterials | Best Researcher Award

Senior Scientist from CSIR-Central Glass and Ceramic Research Institute | Central Glass and Ceramic Research Institute CSIR | India

Dr. Sumana Paul is a Senior Scientist at the Energy Materials and Devices Division of the CSIR–Central Glass and Ceramic Research Institute (CSIR-CGCRI), Kolkata, India. She is an accomplished researcher specializing in energy materials, nanostructured semiconductors, and optoelectronic devices. Her scientific journey reflects a consistent record of academic excellence, innovative research, and professional recognition. Dr. Paul obtained her Ph.D. in Physics from Jadavpur University in collaboration with the Indian Association for the Cultivation of Science (IACS), where she investigated the optical and photophysical properties of nano-structured semiconducting oxides and sulfides. Over the years, she has held prestigious fellowships such as the DST-INSPIRE Fellowship, SERB National Postdoctoral Fellowship, and Institute Postdoctoral Fellowship at IIT Guwahati, which allowed her to expand her expertise in experimental nanoscience and device engineering. Her extensive publication record includes papers in top-tier international journals such as Nature Nanotechnology, Nanoscale, ACS Applied Energy Materials, and Journal of Materials Chemistry C. Dr. Paul’s research has significant implications for sustainable energy harvesting, photocatalysis, sensing technologies, and next-generation optoelectronic applications. Alongside her research contributions, she is actively engaged in mentoring young researchers, participating in international collaborations, and contributing to the advancement of nanomaterials science on both academic and industrial fronts.

Professional Profile

Scopus | Google Scholar

Education

Dr. Sumana Paul’s educational journey exemplifies a steady pursuit of excellence in science. She began her academic foundation at the West Bengal Board of Secondary Education, where she excelled in Madhyamik with a score of 94.6%. She completed her Higher Secondary education under the West Bengal Council of Higher Secondary Education, securing 89% with a strong focus on Physics, Chemistry, and Mathematics. Her academic achievements paved the way for admission to Jadavpur University, one of India’s premier institutions. She earned her B.Sc. in Physics, Chemistry, Mathematics, and Computer Science, followed by an M.Sc. in Physics, with consistently high performance. Building upon this strong foundation, she pursued doctoral research at the Indian Association for the Cultivation of Science (IACS) under Jadavpur University, focusing on “Optical and Photophysical Properties of Nano-Structured Semiconducting Oxides and Sulfides.” Awarded her Ph.D. in Physics under the mentorship of Prof. Subodh Kumar De, she produced impactful research contributing to the understanding of functional nanomaterials. Dr. Paul’s education also included practical exposure through thesis projects, such as her master’s dissertation on nanosized Ni-Zn ferrites. Collectively, her educational background equipped her with deep theoretical knowledge and experimental expertise, enabling her future breakthroughs in materials science.

Professional Experience

Dr. Sumana Paul has cultivated an impressive professional trajectory that bridges fundamental research with applied science. Her research career began with a Master’s Thesis at Jadavpur University, where she investigated nanosized ferrites under the guidance of Dr. Sanjoy Kumar. She then advanced to doctoral research at IACS, where she explored semiconducting oxides and sulfides, producing innovative outcomes that strengthened her foundations in nanoscience. Following her Ph.D., she secured a National Postdoctoral Fellowship at the Indian Institute of Technology Guwahati, where her research expanded into the domain of energy materials and device applications. Her work continued as an Institute Postdoctoral Fellow at IIT Guwahati, where she refined her expertise in nanostructured materials for optoelectronic and photocatalytic systems. Currently, as a Senior Scientist at CSIR-CGCRI, she leads projects in the Energy Materials and Devices Division, contributing to the development of advanced nanostructures for energy harvesting, photodetection, and sustainable applications. Dr. Paul’s professional contributions also include presenting her work at international conferences in India and abroad, collaborating with global researchers, and co-authoring impactful journal articles. Her career path demonstrates a steady rise from academic researcher to an independent scientist recognized for her leadership in advanced materials and nanotechnology.

Research Interests

Dr. Sumana Paul’s research interests span across nanoscience, materials physics, and applied energy technologies. She focuses on the optical, electronic, and photophysical properties of semiconducting oxides, sulfides, and hybrid nanostructures. A central theme of her work is the design and synthesis of functional nanomaterials for applications in sustainable energy harvesting, photocatalysis, sensing, and optoelectronic devices. She has worked extensively on heterostructures, including Bi₂Se₃, WS₂, and oxyselenides, exploring charge transfer dynamics and tailoring material properties for improved performance. Her research also investigates piezoelectric and triboelectric nanogenerators for biomechanical energy harvesting, merging materials science with practical energy solutions. Another important focus is on the development of perovskite-based materials and novel heterojunctions for photodetection and light-harvesting applications. Dr. Paul’s interdisciplinary approach integrates physics, chemistry, and nanotechnology, allowing her to address scientific challenges with real-world relevance. She has collaborated internationally with researchers in Japan and Europe to expand the scope of her investigations. Her interests continue to evolve toward next-generation devices that utilize nanomaterials for renewable energy, environmental remediation, and sensing applications. By combining fundamental research with applied perspectives, Dr. Paul’s work stands at the forefront of materials science and energy research.

Research Skills

Dr. Sumana Paul possesses a diverse and advanced skillset in both experimental and analytical research, enabling her to conduct high-impact work in nanoscience and materials physics. Her expertise includes the synthesis of nanostructured oxides, sulfides, and hybrid materials using chemical and hydrothermal methods. She is proficient in characterizing these materials through techniques such as UV/Vis spectroscopy, photoluminescence, Raman spectroscopy, X-ray diffraction, electron microscopy, and electrochemical analysis. Additionally, she has deep expertise in studying charge transport and interfacial properties in heterostructures, crucial for understanding optoelectronic and photocatalytic systems. Dr. Paul is skilled in integrating nanomaterials into functional devices such as photodetectors, nanogenerators, and energy storage systems, bridging the gap between fundamental material properties and real-world applications. She has also acquired computational knowledge for interpreting experimental outcomes, particularly in studying photophysical mechanisms. Her ability to work across multidisciplinary platforms—physics, chemistry, and materials engineering—makes her a versatile researcher. Furthermore, her skills extend to mentoring students, writing competitive grant proposals, and publishing in reputed journals. Through her technical, analytical, and leadership skills, Dr. Paul has established herself as a well-rounded scientist contributing to both fundamental discoveries and practical innovations.

Awards and Honors

Dr. Sumana Paul’s academic journey has been consistently recognized through numerous awards, fellowships, and scholarships that highlight her research excellence and contributions to science. Early in her career, she was awarded the INSPIRE Scholarship by the Department of Science and Technology (DST), India, which supported her studies. She later qualified for the prestigious CSIR Lectureship (LS), demonstrating her strong academic standing. During her Ph.D., she was honored with the DST-INSPIRE Junior Research Fellowship and subsequently the Senior Research Fellowship, supporting her innovative doctoral work on semiconducting nanostructures. Following her Ph.D., she was awarded the SERB National Postdoctoral Fellowship at IIT Guwahati, where she advanced her expertise in energy and device materials. She further received the Institute Postdoctoral Fellowship at IIT Guwahati, a recognition given to outstanding researchers demonstrating significant potential for leadership in science. Collectively, these awards underscore her scientific impact and contributions at various career stages. Alongside these honors, her active participation in international conferences and collaborations with globally reputed institutions further demonstrate her international research presence. These distinctions collectively position Dr. Paul as a rising leader in nanoscience and materials research.

Publication Top Notes

  • Maximization of photocatalytic activity of Bi2S3/TiO2/Au ternary heterostructures by proper epitaxy formation and plasmonic sensitization — 2017 — 74 citations

  • Control Synthesis of Air‐Stable Morphology Tunable Pb‐Free Cs2SnI6 Perovskite Nanoparticles and Their Photodetection Properties — 2018 — 71 citations

  • Nitrogenated CQD decorated ZnO nanorods towards rapid photodegradation of rhodamine B: A combined experimental and theoretical approach — 2021 — 53 citations

  • Maximizing the photocatalytic and photo response properties of multimodal plasmonic Ag/WO3−x heterostructure nanorods by variation of the Ag size — 2015 — 51 citations

  • Microwave synthesis of molybdenene from MoS2 — 2023 — 48 citations

  • Control Synthesis and Alloying of Ambient Stable Pb-Free Cs3Bi2Br9(1–x)I9x (0 ≤ x ≤ 1) Perovskite Nanocrystals for Photodetector Application — 2020 — 47 citations

  • Shape Controlled Plasmonic Sn Doped CdO Colloidal Nanocrystals: A Synthetic Route to Maximize the Figure of Merit of Transparent Conducting Oxide — 2016 — 44 citations

Conclusion

In conclusion, Dr. Sumana Paul is an accomplished scientist whose career embodies a blend of academic excellence, impactful research, and professional recognition. Her expertise in nanostructured energy materials and optoelectronic systems has resulted in significant contributions to both fundamental science and applied technologies. With over two dozen publications in high-impact journals, including Nature Nanotechnology, ACS Applied Energy Materials, and Nanoscale, her research has advanced global understanding of functional nanomaterials. Her academic achievements, including a Ph.D. from Jadavpur University/IACS and prestigious postdoctoral fellowships, reflect her strong foundation in scientific inquiry. Professionally, she has evolved from a promising doctoral researcher to a Senior Scientist at CSIR-CGCRI, where she leads projects with societal relevance in energy harvesting and sustainable devices. Her awards and fellowships further recognize her excellence and potential for leadership. Looking ahead, Dr. Paul is poised to make transformative contributions to nanoscience through expanded international collaborations, innovative device engineering, and mentorship of the next generation of scientists. Her dedication to advancing materials research and its societal applications makes her a deserving candidate for recognition through awards that honor scientific leadership and innovation.

Danhui Zhang | Materials Science | Best Researcher Award

Assoc. Prof. Dr. Danhui Zhang | Materials Science | Best Researcher Award

Linyi University, China

Zhang Danhui is an accomplished associate professor at the School of Mechanical and Vehicle Engineering, Linyi University, with a distinguished background in engineering and nanomaterials research. Since earning her Ph.D. in Engineering from Nanjing University of Science and Technology in 2012, she has developed a robust research portfolio focused on inorganic nanofunctional materials, polymer composites, and carbon-based nanostructures. With over 40 academic publications, more than 30 of which are indexed in SCI, Dr. Zhang has contributed significantly to fields including surface-enhanced Raman scattering, molecular dynamic simulations, and fluorescence sensors. Her dedication to academic excellence is evident in her active participation in national and provincial research projects, authorship of a scientific monograph, and mentorship of student-led research, resulting in SCI papers and patent grants. In addition to her research work, she is a committed educator, delivering core undergraduate and graduate courses across thermodynamics, chemistry, and physics. She has been recognized with multiple awards for academic and instructional excellence, as well as one registered utility model patent. Dr. Zhang continues to be a key figure in applied materials research and education, combining theoretical innovation with practical applications. Her scholarly contributions position her as a leading candidate for research honors at the national level.

Professional Profile

Education

Zhang Danhui completed her doctoral studies in Engineering at Nanjing University of Science and Technology in 2012. Her doctoral research focused on the synthesis, structure, and properties of functional nanomaterials, specifically targeting noble metal and carbon-based composites. The strong academic foundation laid during her Ph.D. studies has equipped her with a deep understanding of both experimental and theoretical aspects of materials engineering. Prior to her doctoral studies, she had acquired a comprehensive background in science and engineering disciplines, including chemistry, materials science, and applied physics. Her education emphasizes interdisciplinary integration, a feature that is clearly reflected in her ongoing research. The curriculum and training received at Nanjing University of Science and Technology, one of China’s top-tier technical institutions, prepared her for a career that bridges molecular science, nanotechnology, and engineering applications. Furthermore, her academic background has been instrumental in enabling her to teach advanced subjects such as Engineering Thermodynamics, University Physics, and Engineering Chemistry. Her educational path reflects a consistent trajectory of scientific rigor, analytical skill development, and innovation—all of which continue to inform and strengthen her research and academic contributions.

Professional Experience

Since July 2012, Zhang Danhui has served as an associate professor at the School of Mechanical and Vehicle Engineering, Linyi University. Over the years, she has developed an impressive teaching and research portfolio. Her professional duties include lecturing core undergraduate and postgraduate courses in Engineering Thermodynamics, Advanced Mathematics, Engineering Chemistry, and University Physics. Beyond her teaching responsibilities, she actively supervises student research and project development. Under her mentorship, students have produced multiple scientific outcomes, including the publication of an SCI-indexed paper and the authorization of a utility model patent. She has led and participated in several significant national and provincial research initiatives, including projects funded by the National Natural Science Foundation of China and the Natural Science Foundation of Shandong Province. Dr. Zhang has also contributed as a co-investigator in studies involving nonlinear dynamics, rod pumping systems, and nanomaterial simulations. Her role at Linyi University underscores a blend of academic instruction, mentorship, and scientific investigation. Her contributions to institutional research and education have been acknowledged through various awards and recognitions, marking her as a key faculty member within her department. Her continuous commitment to science and education exemplifies the standards of academic excellence.

Research Interest

Zhang Danhui’s research interests lie at the intersection of nanotechnology, materials science, and polymer engineering. Her primary focus is on the chemical preparation and structural characterization of inorganic nanofunctional materials. She has explored complex material behaviors at the atomic level through molecular dynamic simulations, particularly focusing on polymer composites and graphene-based structures. Another central area of her work involves the design, synthesis, and application of new carbon materials, such as carbon nanotubes and graphene derivatives, which are known for their potential in electronics, sensors, and energy storage. Her research has extended into surface-enhanced Raman scattering, fluorescence sensors, and the structural formation of hybrid nanomaterials like silver and platinum-coated carbon structures. Her theoretical modeling work, especially in simulating the curling and core-shell formations of carbon nanostructures, has advanced the understanding of their functional properties in applied settings. She combines simulation studies with experimental synthesis, aiming for practical applications in catalysis, optics, and electronics. This dual approach ensures that her work remains both scientifically grounded and technologically relevant. Dr. Zhang’s research is interdisciplinary, combining chemistry, physics, and materials engineering to explore novel material functionalities and applications.

Research Skills

Dr. Zhang Danhui possesses a versatile and advanced skill set in materials research, particularly within the realms of nanomaterials and polymer simulations. Her core skills include chemical synthesis of metallic and carbon-based nanostructures, advanced molecular dynamics simulation, surface functionalization, and nanomaterial characterization. She is proficient in applying computational techniques to study molecular behavior, bonding interactions, and mechanical stability of composite structures. Her experimental capabilities span a range of modern techniques, including Raman spectroscopy, electron microscopy, XRD, and UV-Vis spectroscopy, often used to validate her simulation results. Furthermore, she has expertise in modeling structural transitions and diffusion dynamics at the nanoscale, contributing to predictive understanding in the design of new materials. Her skillset extends into academic writing, scientific reporting, and the preparation of grant proposals, as evidenced by her extensive publication record and successful project leadership. In addition, her experience in supervising research students has enabled her to develop strong mentoring, analytical problem-solving, and collaborative project management skills. She has effectively bridged theoretical and applied research, a rare and valuable competency that enhances the innovation and impact of her scientific work.

Awards and Honors

Zhang Danhui has received multiple honors that reflect her academic excellence and contributions to research and education. She has been recognized with two municipal and departmental awards for outstanding scientific achievements, which underscore the significance and quality of her research output in the field of nanomaterials and materials engineering. Additionally, she earned an Outstanding Instructor Award, highlighting her excellence in academic mentorship and student guidance. These accolades demonstrate not only her ability to conduct high-level research but also her dedication to teaching and capacity to inspire young researchers. Her efforts in guiding student-led projects have led to notable achievements, including a published SCI-indexed paper and an authorized utility model patent, further confirming her strength in nurturing academic growth and innovation. Moreover, she holds a patent titled “An energy-saving power bank”, registered in China (ZL2019 2 0847842.9), reflecting her inclination toward real-world applications of research. Her professional recognition spans both scientific innovation and educational impact, making her a well-rounded scholar. These honors affirm her status as a leading researcher and educator within her institution and beyond, contributing meaningfully to national and regional scientific progress.

Conclusion

Zhang Danhui exemplifies a rare blend of academic excellence, research innovation, and educational commitment. With a strong foundation in engineering and a focused research agenda in nanofunctional materials and polymer composites, she has consistently demonstrated high-impact scientific productivity. Her robust publication record, leadership in funded projects, and expertise in molecular simulations and material synthesis position her as a leading contributor in her field. Beyond research, her dedication to student mentorship and instruction in core engineering subjects underscores her value as an educator. Her work reflects a dynamic integration of theoretical understanding and practical innovation, bridging gaps between computation, experimentation, and application. Recognition through awards, patents, and institutional accolades further attests to her wide-ranging influence. Dr. Zhang’s contributions not only advance the frontiers of nanotechnology and materials science but also help shape the next generation of engineers and researchers. Her professional journey, characterized by dedication, innovation, and impact, makes her an outstanding candidate for prestigious research awards. Moving forward, greater international collaboration and industry engagement could further amplify her global influence and the real-world application of her discoveries. Her career serves as a model of excellence in interdisciplinary research and academic leadership.

Publications Top Notes

1. Self-assembly behaviour of heterocyclic polymers induced by multiple carbon cone molecules

  • Authors: Xiangkang Zhang, Danhui Zhang, Wenqiang Hu, Houbo Yang, Zhongkui Liu, Xiangfei Ji, Dengbo Zhang

  • Year: 2025

  • Journal: Journal of Solid State Chemistry

2. Autonomous assembly behavior of polypyrrole induced by carbon cone[2,3]

  • Authors: Mingchen Gong, Danhui Zhang, Houbo Yang, Liu Yang, Dengbo Zhang, Ruquan Liang, Anmin Liu

  • Year: 2025

  • Journal: Inorganic Chemistry Communications

3. Multiple fullerene C70s induce polyacetylene to form a fish-like structure

  • Authors: Houbo Yang, Danhui Zhang, Ruquan Liang, Chenglei Zhang, Anmin Liu

  • Year: 2021

  • Journal: Solid State Communications

4. Formation of “hemp flowers” structures from polyphenyl induced by C70

  • Authors: Danhui Zhang, Ruquan Liang, Houbo Yang, Yuanmei Song, Jianhui Shi, Dengbo Zhang, Liu Yang, Anmin Liu

  • Year: 2021

  • Journal: Surfaces and Interfaces

5. Formation of Multiple‐Helical Core‐Shell Structure from Polyphenyl and Boron Nitride Nanotube

  • Authors: Houbo Yang, Danhui Zhang, Ruquan Liang, Zhongkui Liu, Yuanmei Song, Liu Yang, Anmin Liu

  • Year: 2021

  • Journal: Advanced Theory and Simulations

6. Research on the Interfacial Interaction between Polyacetylene and Silver Nanowire

  • Authors: Danhui Zhang, Ruquan Liang, Zhongkui Liu, Houbo Yang, Jianhui Shi, Yuanmei Song, Dengbo Zhang, Anmin Liu

  • Year: 2020

  • Journal: Macromolecular Theory and Simulations

7. Molecular dynamics simulations of single-walled carbon nanotubes and polynylon66

  • Authors: Danhui Zhang, Houbo Yang, Zhongkui Liu, Anmin Liu

  • Year: 2019

  • Journal: International Journal of Modern Physics B