ZAIN ABBAS | Biological Sciences | Outstanding Scientist Award

Mr. ZAIN ABBAS | Biological Sciences | Outstanding Scientist Award

Researcher from Anhui Science and Technology University, China

Zain Abbas is a dedicated and emerging researcher in the field of agronomy, currently pursuing his M.Phil. in Agronomy and Seed Industry at Anhui Science and Technology University in China. With a strong academic background and hands-on experience in plant breeding, tissue culture, and crop physiology, Zain has positioned himself as a promising contributor to agricultural science. His research is primarily focused on the influence of magnesium oxide (MgO) nanoparticles on maize growth and resilience, aiming to leverage nanotechnology for sustainable agriculture and improved crop productivity. Alongside his primary research, he has also explored transcriptomics, identifying key plant growth regulator genes involved in stress responses. Zain has authored and co-authored several publications, both in English and Chinese, in areas including nanotechnology applications, seed physiology, and plant propagation. His work integrates practical lab-based experimentation with advanced analytical techniques such as PCR, DNA extraction, and in-vitro propagation. He has been recognized for both academic excellence and extracurricular contributions through numerous awards. Zain is passionate about addressing global food security challenges and aspires to further his research through international collaborations and doctoral studies. His blend of technical skills, global perspective, and innovative mindset makes him an ideal candidate for research-focused recognition.

Professional Profile

Education

Zain Abbas’s academic journey reflects a continuous commitment to excellence in agricultural sciences, particularly in the domains of plant breeding and agronomy. He is currently pursuing an M.Phil. in Agronomy and Seed Industry at Anhui Science and Technology University in Fengyang, China. This program has allowed him to focus on cutting-edge research involving magnesium oxide nanoparticles and their effects on maize crop development and stress management. Prior to this, he completed his Bachelor’s degree in Plant Breeding and Genetics from Muhammad Nawaz Sharif University of Agriculture in Multan, Pakistan, where he graduated with distinction as a Silver Medalist between 2016 and 2020. Zain’s foundation in science was laid during his intermediate studies in Pre-Medical at KIPS Boys College, Multan, from 2014 to 2016. His academic record not only reflects a strong grasp of theoretical concepts but also highlights his ability to conduct practical, laboratory-based research. This blend of local and international education has shaped his scientific approach, enabling him to tackle agronomic challenges with both traditional knowledge and modern scientific tools. His educational background has equipped him with the skills necessary for advanced research, and his transition from national to international academia underlines his global orientation in science.

Professional Experience

Zain Abbas has accumulated a diverse range of professional research experiences that collectively demonstrate his growth as a capable and versatile agronomist. Currently serving as a Researcher at Anhui Science and Technology University in China, Zain plays a crucial role in experimental design, data analysis, laboratory management, and protocol development. His current work primarily investigates the impact of magnesium nanoparticles on maize, contributing to innovations in sustainable agriculture and plant resilience. Previously, from 2018 to 2020, he served as a Research Assistant in Multan, Pakistan, where he gained substantial expertise in tissue culture techniques, media optimization, genetic transformation, and plant material handling. This role allowed him to enhance his technical skills and support broader laboratory research goals effectively. Earlier in his career, between 2017 and 2018, Zain completed an internship as a Crop Breeder in Vehari, Punjab, where he was responsible for managing five hectares of agricultural land, performing crop crossings, and analyzing productivity data for maize and wheat. This field-based experience helped bridge theoretical knowledge with hands-on application in real-world farming environments. These cumulative roles have refined his research acumen, broadened his technical toolkit, and prepared him for more advanced scientific contributions and leadership in agricultural research.

Research Interests

Zain Abbas’s research interests lie at the intersection of sustainable agriculture, nanotechnology, plant physiology, and seed science. His primary research explores the application of magnesium oxide (MgO) nanoparticles in enhancing the growth, yield, and stress resilience of maize (Zea mays L.). He is particularly interested in how nanotechnology can improve plant nutrient uptake and tolerance to abiotic stresses, ultimately contributing to global food security. Another significant area of his research includes transcriptomics, where he investigates the expression of growth regulator genes in maize under stress conditions. This molecular-level approach helps identify genetic pathways responsible for plant development and adaptability. Additionally, Zain is passionate about plant breeding and seed industry innovations, particularly the development of high-yielding, resilient, and health-safe crop varieties. His early work in genetic transformation and in-vitro propagation of crops like quinoa and mung bean highlights his interest in biotechnology and plant tissue culture. He envisions continuing his research journey through international collaboration, doctoral studies, and R&D roles focused on breeding, molecular genetics, and crop improvement. His long-term objective is to contribute to developing climate-resilient and nutrient-rich crops that address the evolving challenges of agriculture in the 21st century.

Research Skills

Zain Abbas possesses a comprehensive set of research skills that span both laboratory and field-based methodologies in agricultural science. He is highly proficient in plant tissue culture, with expertise in media preparation, culture maintenance, and micropropagation of various crops such as quinoa and mung bean. His work also includes genetic transformation, where he has gained experience in DNA extraction and polymerase chain reaction (PCR) techniques—essential for molecular biology studies. In his current role, he actively engages in experimental design, data collection, statistical analysis, and instrument handling, ensuring the generation of reliable and reproducible results. He is also skilled in protocol development, laboratory maintenance, and literature review, demonstrating strong capabilities in both scientific rigor and research organization. His involvement in transcriptomic analysis and nanoparticle application reflects advanced analytical thinking and an ability to work with emerging technologies in agronomy. Beyond technical skills, Zain is adept in scientific communication, having participated in academic conferences and presentations. His multilingual abilities and cross-cultural academic background further enhance his collaborative potential in international research environments. These research competencies form the backbone of his academic and professional success and position him well for continued research excellence.

Awards and Honors

Zain Abbas has earned several awards and honors that recognize both his academic achievements and extracurricular contributions. In 2024, he received a “Special Award” in the Second English Anchor Competition at the 15th Foreign Language Culture Festival of Anhui Science and Technology University, highlighting his effective communication skills. The same year, he also won second prize in the university’s fourth flower arrangement competition, reflecting his creative engagement in campus life. In 2023, he participated in the 11th International Student Cultural Activity in Anhui Province, enhancing cross-cultural academic exchange. His involvement in high-level academic events began early, including participation in the 2nd Sino-Pak International Conference and the 1st International Business Gala in 2018. During his undergraduate years, Zain was awarded a laptop under the Prime Minister’s Laptop Scheme in 2019 and received a solar lamp in 2016 as recognition for academic performance during intermediate education. He has also taken part in numerous innovation competitions such as Idea Fest, Peace Training, and DICE Agricultural and Food Science competitions, showcasing his creativity and problem-solving skills. These accolades reflect his active involvement in academia and beyond, confirming his all-rounded capabilities as a researcher and student leader.

Conclusion

In conclusion, Zain Abbas is a highly motivated and capable early-career researcher in the field of agronomy, with a strong foundation in plant breeding, nanotechnology applications, and molecular plant sciences. His research on magnesium oxide nanoparticles in maize is not only timely but also addresses critical issues related to crop productivity and climate resilience. With multiple research experiences, both in the lab and field, Zain has developed a well-rounded skill set that includes experimental design, molecular analysis, and scientific communication. His education from both Pakistan and China provides him with a global outlook, and his active participation in academic and cultural activities further showcases his versatility. While still at the M.Phil. level, his contributions already demonstrate strong research potential, making him a suitable candidate for future doctoral studies and collaborative projects in agricultural R&D. The breadth of his research interests—from transcriptomics to crop breeding—underscores his commitment to innovative and sustainable agriculture. His achievements, both academic and extracurricular, reflect a well-balanced individual poised to make meaningful contributions to global agricultural science. For these reasons, Zain Abbas is a strong nominee for the Best Researcher Award, particularly in categories recognizing research innovation, emerging scholars, and interdisciplinary agricultural research.

Publications Top Notes

  1. Antifungal Activity of Difenoconazole-Loaded Microcapsules against Curvularia lunata

📚 Journal: Journal of Fungi
📅 Year: 2024
🧪 Authors: Chang, Xiaoyu, Wang, Yuyan, Abbas, Zain, Yu, Haibing

Mahdi Yahyazadeh Balalami | Biological Sciences | Young Scientist Award

Assist. Prof. Dr. Mahdi Yahyazadeh Balalami | Biological Sciences | Young Scientist Award

Researcher from Research Institute of Forests and Rangelands, Iran

Mahdi Yahyazadeh Balalami is a dedicated researcher specializing in plant secondary metabolites, particularly medicinal alkaloids. With a robust academic foundation and over a decade of research experience, he has established himself in the fields of plant biology, phytochemistry, and analytical techniques. He is currently an Assistant Professor at the Medicinal Plant Research Division, Research Institute of Forests and Rangelands in Tehran, Iran, where he focuses full-time on research. Mahdi has contributed extensively to understanding the biosynthesis and purification of plant alkaloids, including significant work on Papaver somniferum and Catharanthus roseus. His scientific journey is marked by international collaborations with prestigious institutions such as the Technische Universität Braunschweig in Germany and Kyoto University in Japan. His hands-on experience in molecular biology, chromatography, and gene expression analysis demonstrates his versatility and commitment to scientific innovation. He has also served as a scientific consultant for industry, bridging the gap between academic research and practical applications. Mahdi’s scholarly achievements are reflected in his awards, publications, and the application of his work in pharmaceutical development. His career trajectory underscores a strong dedication to advancing plant-based therapeutic research and applying it in both academic and industrial contexts.

Professional Profile

Education

Mahdi Yahyazadeh Balalami holds an impressive academic background across various institutions and countries. He earned his Ph.D. in Plant Biology from Technische Universität Braunschweig in Germany between August 2013 and July 2017. His dissertation, supervised by Professor Dirk Selmar, focused on the impact of abiotic stress on alkaloid biosynthesis, a critical topic for both plant biology and pharmaceutical applications. His doctoral performance was graded as “Very Good.” Prior to that, Mahdi completed his Master of Science in Agricultural Engineering with a specialization in Horticulture Science from Tarbiat Modares University, Tehran, Iran, in January 2007. His MSc thesis addressed the effects of essential oils on extending the shelf life of orange fruits, demonstrating his early interest in plant-derived bioactive compounds. He earned a Bachelor’s degree in Agricultural Engineering – Plant Products from Islamic Azad University, Chalous, Iran, in 2000 with a GPA of 17.18/20. Mahdi also holds an Associate Degree in Orchard Products Technology from Tonekabon Agricultural Higher Education Institute. His academic progression reflects a consistent focus on plant sciences, particularly those with practical implications for health and agriculture. Each stage of his education laid a foundation for his future research on medicinal plants and their chemical constituents.

Professional Experience

Dr. Mahdi Yahyazadeh Balalami’s professional experience spans academic research, industry consultancy, and international collaborations. Since January 2020, he has served as an Assistant Professor at the Medicinal Plant Research Division of the Research Institute of Forests and Rangelands in Tehran, Iran, dedicating 100% of his time to research. Simultaneously, since May 2019, he has acted as a scientific consultant at Temad Pharmaceutical Company, focusing on improving alkaloid extraction methods from Papaver species and developing HPLC analysis protocols. Mahdi is also affiliated as a researcher with the Institute for Plant Biology at Technische Universität Braunschweig, Germany, where he collaborates on natural product transfer studies. His prior roles include multiple internships and assistantships in Germany and Japan, notably at Kyoto University and various departments within TU Braunschweig. These experiences involved gene cloning, heterologous expression in yeast, alkaloid purification, and transcriptome analysis. His hands-on experience with chromatography systems, bioinformatics tools, and laboratory instrumentation has made him a well-rounded researcher. Mahdi’s career reflects a balance between theoretical expertise and experimental application, enriched by cross-cultural academic exposure and industrial relevance. His long-standing commitment to medicinal plant research continues to yield valuable insights into phytochemical biosynthesis and plant-based therapeutics.

Research Interests

Mahdi Yahyazadeh Balalami’s research interests lie at the intersection of plant biology, phytochemistry, molecular genetics, and pharmacognosy. His primary focus is on the biosynthesis, extraction, and analysis of plant-derived alkaloids with therapeutic potential. His research explores the biochemical and genetic pathways of alkaloid production in medicinal plants such as Chelidonium majus, Catharanthus roseus, and Papaver somniferum. He is particularly interested in how abiotic stress influences secondary metabolite biosynthesis, a subject he explored deeply during his Ph.D. studies. Mahdi’s academic work is complemented by applied research on improving extraction techniques and developing advanced HPLC methods for the pharmaceutical industry. He has also contributed to projects involving horizontal natural product transfer, which investigates how bioactive compounds can move between organisms or across species boundaries—a novel area with implications for synthetic biology and drug discovery. Furthermore, his collaborations with institutions in Germany and Japan have broadened his expertise in gene cloning, yeast expression systems, and countercurrent chromatography. Mahdi’s research ultimately aims to enhance the efficiency, sustainability, and biological relevance of plant-based drug production through a better understanding of plant metabolism and bioengineering.

Research Skills

Dr. Mahdi Yahyazadeh Balalami possesses a comprehensive and highly specialized set of research skills in plant molecular biology and phytochemistry. He has extensive experience in cloning P450 genes and expressing them in yeast systems, demonstrating his strong molecular biology foundation. His work includes transcriptomic analysis using qRT-PCR to study gene expression in alkaloid biosynthesis pathways, particularly involving enzymes like stylopine synthase. Mahdi is proficient in a range of analytical techniques such as HPLC-DAD, LC-MS, LC-MS/MS, GC-MS, NMR, and X-ray crystallography, which he has used for the purification and structural elucidation of plant alkaloids. His hands-on experience with Counter Current Chromatography (CCC) and preparative chromatography allows him to isolate bioactive compounds with high precision. He is also skilled in handling plant growth under controlled environmental conditions, essential for studying secondary metabolite production. His familiarity with bioinformatics tools such as MEGA7, BioEdit, SAS, SPSS, Maestro, Chimera, and Autodock Vina enables him to analyze sequences and model molecular interactions. This integration of wet-lab and computational expertise allows Mahdi to conduct interdisciplinary research that bridges plant science, pharmacology, and biotechnology. His methodological rigor and technical versatility make him a valuable contributor to medicinal plant research.

Awards and Honors

Mahdi Yahyazadeh Balalami has received several notable awards and recognitions throughout his academic and research career. During his Ph.D. studies, he was awarded a 48-month scholarship by the Iranian Ministry of Science, Research and Technology, supporting his education at Technische Universität Braunschweig in Germany from 2013 to 2017. This competitive scholarship reflects both his academic excellence and the national confidence in his research potential. Earlier, in 2004, Mahdi ranked 12th among more than 1500 candidates in Iran’s nationwide M.Sc. entrance examination, securing a place at the prestigious Tarbiat Modares University. In 2009, he was honored by the Iranian Nano Committee for his contribution to nano-related research, underlining his early engagement in innovative scientific domains. These honors highlight not only his academic diligence but also his consistent trajectory of achievement across different levels of education and research. Recognition from both national bodies and research institutions reinforces the impact and quality of his scientific contributions. These awards reflect a strong commitment to advancing plant-based biotechnology, further cementing his position as a researcher capable of delivering both foundational knowledge and practical applications in the field of medicinal plant science.

Conclusion

In conclusion, Dr. Mahdi Yahyazadeh Balalami exemplifies the qualities of an outstanding researcher in the field of medicinal plant science. His career is marked by a clear focus on plant-derived bioactive compounds, with notable specialization in alkaloid biosynthesis, extraction, and analysis. His work bridges fundamental plant biology and practical pharmaceutical applications, and he has demonstrated strong leadership in both academic and industrial research settings. Mahdi’s extensive international experience, especially in Germany and Japan, showcases his collaborative spirit and adaptability across research cultures. He is equipped with a rare combination of skills in molecular biology, phytochemistry, and analytical instrumentation, supported by his use of advanced software tools. His educational achievements, research excellence, and multiple recognitions further affirm his dedication and competence. While his research output could benefit from broader publication visibility and expanded interdisciplinary collaborations, his foundation is exceptionally strong. Mahdi is a well-qualified candidate for the Best Researcher Award, and his continued work holds promise for significant advancements in natural product research and pharmaceutical development. His career reflects a persistent drive to contribute meaningful scientific knowledge and innovation in the realm of medicinal plants and plant-based therapeutics.

Publications Top Notes

  1. High variations of the thebaine concentrations in Iranian poppy (Papaver bracteatum Lindl.) from various regions in Iran
    Authors: Mahdi Yahyazadeh, Mahshid Rahimifard, Najmeh Hadi, Zahra Shirazi, Samaneh Asadi-sanam, Razieh Azimi, Yousef Ajani, Maryam Makizadeh, Aiuob Moradi, Mahmood Bidarlord, et al.
    Year: 2024

  2. A Major Loss of Phenyl Ethyl Alcohol by the Distillation Procedure of Rosa damascene Mill
    Authors: Kamkar Jaimand, Mohammad Bagher Rezaee, Razieh Azimi, Someyeh Fekry, Mahdi Yahyazadeh, Shahrokh Karimi, Firoozeh Hatami
    Year: 2023

  3. Chemical composition of essential oil in Anthemis lorestanica from Isfahan province in Iran
    Authors: K. Jaimand, S. Davazdahemami, B. Bahreininejad, L. Safaii, F. Sefidkon, M. B. Rezaei, R. Azimi, M. Yahyazadeh, S. Karimi, F. Hatamy, et al.
    Year: 2023

  4. Effect of Geographical Location on Yield and Chemical Composition of Teucrium orientale L. Essential Oils Collected from Eleven Different Localities in Iran
    Authors: Mahshid Rahimifard, Fatemeh Sefidkon, Razieh Azimi, Somayeh Fekri Qomi, Maryam Makkizadeh Tafti, Mahmoud Naderi, Mahdi Yahyazadeh, Parvin Salehi Shanjani
    Year: 2023

  5. Genome-wide identification and expression profile analysis of metal tolerance protein gene family in Eucalyptus grandis under metal stresses
    Authors: Zahra Shirazi, Fatemeh Khakdan, Fariba Rafiei, Mahdi Yahyazadeh Balalami, Mojtaba Ranjbar
    Year: 2023

  6. Impact of Aridity on Specialized Metabolism: Concentration of Natural Products in Plants
    Authors: Mahdi Yahyazadeh, Sara Abouzeid, Laura Lewerenz, Tahani Hijazin, Dirk Selmar
    Year: 2023

  7. Impact of Aridity on Specialized Metabolism: Concentration of Natural Products in Plants
    Book Chapter in: Medicinal Plants: Their Response to Abiotic Stress
    Authors: M. Yahyazadeh, S. Abouzeid, L. Lewerenz, T. Hijazin, D. Selmar
    Year: 2023

  8. Bio-evaluation of Untapped Alkaloids from Vinca minor Enriched by Methyl-jasmonate-induced Stress: an Integrated Approach
    Authors: F. F. El-Senduny, A. A. Elgazar, H. A. Alwasify, A. Abed, M. Foda, S. Abouzeid, L. Lewerenz, D. Selmar, F. Badria
    Year: 2022

  9. Biochemistry and Molecular Basis of Intracellular Flavonoid Transport in Plants
    Authors: B. Pucker, D. Selmar
    Year: 2022

  10. Favorable Impacts of Drought Stress on the Quality of Medicinal Plants: Improvement of Composition and Content of Their Natural Products
    Authors: S. Abouzeid, L. Lewerenz, M. Yahyazadeh, A. Radwan, T. Hijazin, M. Kleinwächter, D. Selmar
    Year: 2022

  11. Horizontal Natural Product Transfer: A Phenomenon Which Is Responsible for the Widespread Alkaloidal Contaminations of Herbal Products
    Authors: T. Hijazin, L. Lewerenz, M. Yahyazadeh, D. Selmar
    Year: 2022

Zhang Hui | Biological Sciences | Best Researcher Award

Assoc. Prof. Dr. Zhang Hui | Biological Sciences | Best Researcher Award

Associate Professor from Xinjiang University, China

Hui Zhang is an accomplished academic and researcher in the domain of intelligent agricultural systems and non-destructive testing technologies. His work focuses on advancing smart agriculture through the development of intelligent machinery and sensor-based technologies that ensure agricultural product quality and safety. With a solid academic foundation in Agricultural Engineering, Dr. Zhang has emerged as a key contributor to projects of national and regional significance, particularly in the development of technologies for quality inspection and intelligent equipment. His multidisciplinary approach, which integrates agricultural mechanization, electrical engineering, and data-driven intelligent systems, is evident in his research and teaching practices. He has published in reputed SCI/EI-indexed journals and is a recipient of multiple research grants, serving both as a principal investigator and a key team member. His role at Xinjiang University includes academic instruction, research supervision, and administrative leadership. Through his innovation-driven mindset and involvement in international collaborations, Dr. Zhang has significantly contributed to smart agriculture, sensor technology, and intelligent robotics. With experience in teaching, research, project management, and academic leadership, he continues to be a leading voice in transforming agricultural practices through technology. His work is instrumental in enhancing agricultural productivity, sustainability, and food safety, aligning with national modernization goals.

Professional Profile

Education

Hui Zhang holds a diverse academic background that underpins his contributions to agricultural engineering and intelligent systems. He completed his undergraduate studies in Agricultural Mechanization and Automation at Hainan University between September 2011 and June 2015. This foundational education provided him with essential technical knowledge of machinery and systems used in agricultural operations. He then pursued his doctoral studies in Agricultural Engineering at Shihezi University from September 2015 to June 2020, during which he developed deep expertise in intelligent agricultural machinery and non-destructive testing technologies. His PhD work laid the groundwork for his future research into smart agricultural technologies, intelligent equipment, and image-based quality control systems. In 2019, he enhanced his academic experience as a visiting scholar at Lincoln University in New Zealand, within the Faculty of Food Molecular Biotechnology. This international exposure broadened his perspective and allowed him to engage with cutting-edge research methodologies. Since 2020, Dr. Zhang has continued his academic journey through a postdoctoral research appointment in the Postdoctoral Research Station of Electrical Engineering at the School of Electrical Engineering, Xinjiang University. His academic training across different institutions and international research environments has equipped him with a comprehensive understanding of modern agricultural and engineering challenges.

Professional Experience

Hui Zhang’s professional journey reflects a rapid progression in academia and research within the field of intelligent agriculture. Since July 2020, he has been affiliated with Xinjiang University, beginning as a postdoctoral researcher in the School of Electrical Engineering. Between July 2020 and October 2021, he served as an instructor at the School of Intelligent Manufacturing and Modern Industry, contributing to both education and applied research. In November 2021, he was promoted to Associate Professor and currently serves at the School of Intelligent Manufacturing and Modern Industries. Alongside his teaching and research responsibilities, Dr. Zhang holds multiple leadership roles: he is the Secretary of the Research Center for Agricultural Robotics and Intelligent Equipment under the Autonomous Region Development and Reform Commission, and the Secretary of the First Party Branch of the Faculty of Mechanical Engineering. His job responsibilities include project management, research coordination, and curriculum development. He has successfully led and contributed to numerous national, provincial, and university-level research projects, including National Natural Science Foundation grants and regional innovation initiatives. His multifaceted role combines academic leadership, scientific research, and administrative contributions, making him a significant figure in advancing smart agriculture technologies in China.

Research Interests

Hui Zhang’s research interests center on intelligent agricultural systems with a focus on automation, sensing, and non-destructive quality detection. His work lies at the intersection of agricultural engineering, electrical systems, and artificial intelligence, targeting the modernization of agricultural processes. A significant part of his research deals with the non-destructive testing of agricultural product quality using advanced imaging techniques such as X-ray and near-infrared spectrum analysis. He is particularly interested in the development of intelligent equipment for agricultural applications, including automated sorting systems and robotics for unstructured agricultural environments. Dr. Zhang is also engaged in smart agriculture initiatives that utilize intelligent sensing and real-time data analysis to enhance productivity, safety, and sustainability. His focus on servo tracking, target recognition, and multi-source information fusion addresses the complexities of dynamic agricultural environments. These research pursuits are directly linked to national strategic priorities for food safety, resource efficiency, and smart farming practices. Through his interdisciplinary approach, he bridges the gap between theoretical research and practical implementation, contributing significantly to innovations in agricultural mechanization, intelligent detection systems, and next-generation robotic solutions for crop monitoring and post-harvest processing.

Research Skills

Hui Zhang possesses a comprehensive set of research skills that reflect his multidisciplinary expertise in agricultural engineering, intelligent systems, and applied sensor technology. He is proficient in designing and implementing non-destructive testing systems using X-ray imaging and spectral analysis, particularly for quality assessment of agricultural products like walnuts and apples. His competence in deep learning and image processing enables him to extract and analyze complex patterns for defect detection and quality classification. Dr. Zhang is also skilled in sensor integration, signal processing, and the development of intelligent equipment using servo control and target tracking in unstructured environments. He has hands-on experience in experimental design, multivariate data analysis, and project-based teaching methodologies, as reflected in his academic courses. Furthermore, his work involves compiling scientific reports, managing collaborative research teams, and writing technical documentation for project funding and patent applications. He has applied for and secured multiple research grants as principal investigator and contributed to several high-impact studies. His practical knowledge is complemented by his ability to translate research outcomes into published academic papers and applied patents. These skills collectively enable him to develop end-to-end solutions from concept and experimentation to real-world agricultural applications.

Awards and Honors

Hui Zhang has received recognition through multiple research grants and project leadership appointments, reflecting his growing reputation in the academic and scientific communities. As a principal investigator, he has led key projects funded by the National Natural Science Foundation of China, including the Youth Program for online real-time non-destructive testing methods based on X-ray imaging. He also secured funding through the Excellent Postdoctoral Funding Project of the Autonomous Region, a competitive award that supports high-potential researchers. In addition to national-level awards, Dr. Zhang has been entrusted with several provincial and ministerial-level projects, such as the Key Research and Development Special Project under the Autonomous Region Science and Technology Program. He has also led university-level educational innovation projects aimed at integrating intelligent systems into teaching practices. His research contributions have been formally acknowledged through multiple funded initiatives focusing on innovation in smart agriculture, engineering education, and dual-qualified talent development. Dr. Zhang has successfully obtained and applied for national patents, adding to his research credentials. These distinctions highlight both the academic merit and practical relevance of his work, demonstrating his capability to lead high-impact research that aligns with national priorities in agricultural modernization.

Conclusion

Hui Zhang has established himself as a dedicated and forward-thinking researcher in the rapidly evolving field of intelligent agriculture. His academic trajectory, from undergraduate education through postdoctoral research, reflects consistent advancement and a deepening of expertise in smart agricultural systems and sensor-based detection technologies. His research addresses critical challenges in food safety and agricultural productivity through the use of intelligent detection and automation tools. As an associate professor and research leader at Xinjiang University, he balances academic responsibilities with significant research output and administrative leadership. His portfolio includes numerous high-profile funded projects, patents, and published works in SCI/EI-indexed journals. Dr. Zhang’s contributions extend beyond technical achievements; he is actively involved in educational reform and mentoring, ensuring a broader impact on future generations of engineers and researchers. While opportunities exist to further expand his global presence and commercialize research outcomes, his current accomplishments firmly position him as a valuable asset to China’s agricultural innovation landscape. His work embodies the integration of science, technology, and education, making him a strong and deserving candidate for the Best Researcher Award. He stands out as a model of applied research excellence with a clear vision for transforming agriculture through intelligent systems.


Zhihai Ke | Biological Sciences | Best Researcher Award

Assist. Prof. Dr. Zhihai Ke | Biological Sciences | Best Researcher Award

Associate Professor from Xinjiang University, China

Dr. Zhihai Ke is an Assistant Professor and Presidential Young Fellow at the School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen). He earned his Ph.D. in Chemistry from The Chinese University of Hong Kong in 2012. Following his doctoral studies, Dr. Ke conducted postdoctoral research at the National University of Singapore from 2012 to 2015. Before joining CUHK-Shenzhen in 2020, he served as a Research Assistant Professor in the Department of Chemistry at CUHK. Dr. Ke has secured three General Research Funds from the Hong Kong Research Grants Council as a Principal Investigator. His research interests encompass synthetic organic chemistry, organocatalysis, click chemistry, and organic framework catalysis. He has authored over 30 SCI-indexed papers in esteemed journals such as the Journal of the American Chemical Society, Angewandte Chemie International Edition, ACS Catalysis, Green Chemistry, and ChemSusChem. Notably, some of his catalytic methodologies have been highlighted and applied by international peers.

Professional Profile

Education

Dr. Zhihai Ke’s academic journey began with a Bachelor of Science degree from Sun Yat-sen University. He then pursued and obtained his Ph.D. in Chemistry from The Chinese University of Hong Kong in 2012. His doctoral research laid the foundation for his future contributions to the field of synthetic organic chemistry. The rigorous training and research experience during his Ph.D. equipped him with the skills necessary to excel in both academic and research settings. This educational background has been instrumental in shaping his research interests and professional trajectory.

Professional Experience

After completing his Ph.D., Dr. Ke undertook postdoctoral research at the National University of Singapore from 2012 to 2015, where he further honed his expertise in organic chemistry. He then returned to The Chinese University of Hong Kong as a Research Assistant Professor in the Department of Chemistry. In 2020, Dr. Ke joined the School of Science and Engineering at CUHK-Shenzhen as an Assistant Professor and Presidential Young Fellow. In this role, he also serves as the Director of the Undergraduate Chemistry Programme. Throughout his career, Dr. Ke has demonstrated a commitment to both teaching and research excellence, contributing significantly to the academic community.

Research Interests

Dr. Ke’s research interests are centered around synthetic organic chemistry, with a particular focus on organocatalysis, click chemistry, and organic framework catalysis. His work aims to develop novel catalytic methodologies that are both efficient and environmentally benign. By exploring new reaction mechanisms and catalyst designs, Dr. Ke seeks to advance the field of organic synthesis and contribute to the development of sustainable chemical processes. His research has practical applications in the synthesis of complex molecules, which are essential in pharmaceuticals, materials science, and other industries.

Research Skills

Dr. Ke possesses a robust set of research skills in synthetic organic chemistry. He is proficient in designing and executing complex organic syntheses, developing novel catalytic systems, and employing advanced analytical techniques to characterize chemical compounds. His expertise extends to organocatalysis and click chemistry, where he has developed innovative methodologies for constructing complex molecular architectures. Dr. Ke’s ability to integrate theoretical knowledge with practical laboratory skills has been pivotal in his successful research endeavors and publications in high-impact journals.

Awards and Honors

Dr. Zhihai Ke has been recognized for his contributions to the field of chemistry through various awards and honors. He has secured three General Research Funds from the Hong Kong Research Grants Council, underscoring the significance and impact of his research projects. His work has been highlighted in prominent scientific publications, reflecting the esteem in which his peers hold his contributions. These accolades attest to Dr. Ke’s dedication to advancing chemical science and his standing in the academic community.

Conclusion

Dr. Zhihai Ke’s career exemplifies a commitment to excellence in research, education, and scientific advancement. With a solid educational foundation and a wealth of professional experience, he has made significant contributions to synthetic organic chemistry. His research interests and skills have led to the development of innovative catalytic methodologies, earning him recognition and funding within the scientific community. As an educator and researcher at CUHK-Shenzhen, Dr. Ke continues to inspire and mentor the next generation of chemists, fostering a culture of inquiry and innovation. His ongoing work promises to further the frontiers of chemistry and its applications in various industries.

Publications Top Notes

  • Catalytic Asymmetric Bromoetherification and Desymmetrization of Olefinic 1,3-Diols with C₂-Symmetric Sulfides
    Z Ke, CK Tan, F Chen, YY Yeung
    Journal of the American Chemical Society, 2014, 136 (15), 5627–5630
    Citations: 185

  • Design, synthesis and crystallographic analysis of nitrile-based broad-spectrum peptidomimetic inhibitors for coronavirus 3C-like proteases
    CP Chuck, C Chen, Z Ke, DCC Wan, HF Chow, KB Wong
    European Journal of Medicinal Chemistry, 2013, 59, 1–6
    Citations: 114

  • Applications of selenonium cations as Lewis acids in organocatalytic reactions
    X He, X Wang, YL Tse, Z Ke, YY Yeung
    Angewandte Chemie International Edition, 2018, 57 (39), 12869–12873
    Citations: 103

  • A Platinum(II) Terpyridine Metallogel with an L-Valine-Modified Alkynyl Ligand: Interplay of Pt⋅⋅⋅Pt, π–π and Hydrogen-Bonding Interactions
    C Po, Z Ke, AYY Tam, HF Chow, VWW Yam
    Chemistry – A European Journal, 2013, 19 (46), 15735–15744
    Citations: 103

  • Conformational and supramolecular properties of main chain and cyclic click oligotriazoles and polytriazoles
    HF Chow, KN Lau, Z Ke, Y Liang, CM Lo
    Chemical Communications, 2010, 46 (20), 3437–3453
    Citations: 88

  • Desymmetrizing enantio- and diastereoselective selenoetherification through supramolecular catalysis
    JY See, H Yang, Y Zhao, MW Wong, Z Ke, YY Yeung
    ACS Catalysis, 2018, 8 (2), 850–858
    Citations: 85

  • Lewis base catalyzed stereo- and regioselective bromocyclization
    MH Gieuw, Z Ke, YY Yeung
    The Chemical Record, 2017, 17 (3), 287–311
    Citations: 85

  • Electrochemical self-assembly of ZnO nanoporous structures
    GR Li, CR Dawa, Q Bu, XH Lu, ZH Ke, HE Hong, FL Zheng, CZ Yao, …
    The Journal of Physical Chemistry C, 2007, 111 (5), 1919–1923
    Citations: 81

  • Electrochemical synthesis of orientation-ordered ZnO nanorod bundles
    GR Li, CR Dawa, Q Bu, F Zhen, XH Lu, ZH Ke, HE Hong, CZ Yao, P Liu, …
    Electrochemistry Communications, 2007, 9 (5), 863–868
    Citations: 61

  • Lewis base-promoted ring-opening 1,3-dioxygenation of unactivated cyclopropanes using a hypervalent iodine reagent
    MH Gieuw, Z Ke, YY Yeung
    Angewandte Chemie, 2018, 130 (14), 3844–3848
    Citations: 52

XUEYING MAO | Biological Sciences | Best Researcher Award

Prof . XUEYING MAO | Biological Sciences | Best Researcher Award

Professor from China Agricultural University, China

Professor Xueying Mao is a distinguished academic and researcher at the College of Food Science and Nutritional Engineering, China Agricultural University. With over two decades of academic experience, she has built a strong profile in the field of dairy science, particularly in the study of milk fat globule membranes, food digestion, and nutritional bioactivity. Her scientific contributions have gained recognition through publications in top-tier journals like Trends in Food Science & Technology and Food Chemistry, where she has consistently served as the sole corresponding author. Professor Mao has shown a focused commitment to research that addresses the compositional and interfacial properties of milk, enhancing the understanding of dairy functionality and nutritional outcomes. She is currently a participating investigator in a major National Natural Science Foundation of China (NSFC) Key Project on ultra-high temperature sterilized milk proteins. Her long-standing academic involvement, rigorous scientific inquiry, and impactful publications have solidified her reputation as a leader in food science research. She has also made significant contributions to academic mentorship and the development of food technology education in China. Professor Mao’s work reflects both scientific depth and practical relevance, making her an exemplary candidate for prestigious recognitions such as the Best Researcher Award.

Professional Profile

Education

Professor Xueying Mao has pursued a progressive academic path with a strong foundation in both animal and food sciences. She earned her Bachelor’s degree in Animal Nutrition from Hebei Agricultural University in 1993, where she began her early academic engagement in nutritional studies. Continuing her academic journey, she obtained a Master’s degree in Animal Nutrition from Huazhong Agricultural University in 1996, developing deeper expertise in the biological and nutritional sciences of livestock and food production. She culminated her formal academic training with a Ph.D. in Food Science and Engineering from China Agricultural University in 2003. Her doctoral studies marked a transition into the food science discipline, integrating her background in animal nutrition with modern food processing and biochemical research. To further enhance her research capabilities, she completed a postdoctoral fellowship at Peking University from 2003 to 2005, where she likely broadened her interdisciplinary exposure and laboratory experience. This blend of education across different institutions and specialties has provided Professor Mao with a comprehensive understanding of food and nutritional sciences, from fundamental animal-based studies to advanced food engineering. Her educational background has laid a robust scientific and technical foundation for her extensive research career in dairy and nutritional engineering.

Professional Experience

Professor Xueying Mao has accumulated extensive professional experience in academia and research, marked by a steady progression through teaching and research roles. Her professional journey began in 1996 at the College of Animal Science and Technology, Hebei Agricultural University, where she served as a Lecturer. During this period, she focused on teaching and foundational research in animal nutrition. In 2005, she joined the College of Food Science and Nutritional Engineering at China Agricultural University as an Associate Professor. Her appointment marked a significant transition into food science, allowing her to apply her background in animal nutrition to emerging topics in food digestion and dairy processing. In 2013, she was promoted to Full Professor, a role she continues to hold today. Her professional growth reflects a trajectory of increasing leadership, mentorship, and research responsibilities. Notably, Professor Mao has been actively involved in several national-level research projects and has led or co-authored numerous influential publications. Her long-term association with China Agricultural University, a leading institution in agricultural and food sciences, has allowed her to contribute substantially to academic development, curriculum design, and collaborative research. Her career exemplifies sustained academic excellence and dedication to advancing food science in China.

Research Interest

Professor Xueying Mao’s research interests lie at the intersection of dairy science, food chemistry, and nutritional bioengineering. She is particularly focused on the composition, structural behavior, and functional properties of milk fat globule membranes (MFGM). Her work investigates the differences between natural and processed milk, with special attention to how interfacial properties affect digestion, bioactivity, and overall health benefits. A core component of her research explores comparative lipid digestion and immunomodulatory effects between goat and cow milk, providing valuable insights for both nutritional science and the dairy industry. In recent years, she has delved into the mechanisms of protein complex formation during ultra-high temperature (UHT) treatment and how these changes influence the development of aged gels, which are relevant in food storage and processing. Her current involvement in a National Natural Science Foundation of China (NSFC) Key Project exemplifies her leadership in addressing fundamental questions in food biochemistry. Professor Mao’s research bridges basic scientific understanding with practical applications in dairy processing, human health, and food formulation. Her studies contribute to the development of more functional and digestible dairy products, and she remains committed to expanding knowledge on food interfaces, emulsions, and bioactive food components.

Research Skills

Professor Xueying Mao possesses a robust set of research skills that support her work in food science and dairy technology. She is highly proficient in proteomic analysis, biochemical characterization, and structural evaluation of food emulsions, particularly milk fat globule membranes (MFGM). Her ability to study interfacial behavior at the molecular level enables her to unravel complex digestion and bioactivity mechanisms of dairy products. Professor Mao is skilled in designing and conducting comparative digestion studies, in vitro simulations, and analyzing the impact of food processing techniques such as ultra-high temperature (UHT) treatment on protein-lipid complexes. Her scientific approach is systematic and interdisciplinary, integrating analytical chemistry, nutritional biology, and food engineering. She is adept at using modern laboratory instruments for mass spectrometry, chromatography, and advanced microscopy, enabling high-precision evaluations of food structure and functionality. In addition, she has extensive experience in scientific writing, journal publication, and grant proposal development. Her leadership in collaborative research projects also highlights her capabilities in project coordination, data interpretation, and academic mentoring. Overall, Professor Mao’s technical expertise and methodological rigor place her among the leading researchers in the field of food and nutritional sciences.

Awards and Honors

While specific named awards are not listed in the provided information, Professor Xueying Mao’s career achievements reflect substantial academic recognition through prestigious project involvement and high-impact publications. She is currently a principal participant in a Key Project funded by the National Natural Science Foundation of China (NSFC), which signifies a competitive and prestigious acknowledgment of her research capabilities at the national level. Her repeated role as the sole corresponding author in internationally renowned journals like Trends in Food Science & Technology and Food Chemistry demonstrates a high degree of academic leadership and international recognition. These roles are typically reserved for researchers who contribute significantly to experimental design, data interpretation, and manuscript preparation. Her promotion to Full Professor at China Agricultural University and her long-standing tenure at this elite institution also point to continued institutional trust and acknowledgment of her research excellence. Although no formal awards are explicitly mentioned, her scholarly impact, project leadership, and publication record collectively affirm her status as a highly respected researcher in her domain. Additional documented honors or recognitions, if available, would further reinforce her qualifications for high-level academic awards and honors.

Conclusion

Professor Xueying Mao stands out as a seasoned researcher whose contributions to dairy science and nutritional engineering are both scientifically significant and socially relevant. Her focused research on the behavior of milk fat globule membranes and lipid digestion addresses key challenges in food functionality, health impact, and industrial processing. With a strong academic background, leadership in national research initiatives, and a series of impactful publications as sole corresponding author, Professor Mao exemplifies the qualities of a high-caliber researcher. Her methodical approach to studying food structure and digestion bridges basic science and applied technology, supporting innovations in food design and public nutrition. Though there is room to enhance her profile through broader project leadership or increased industry collaboration, her consistent academic excellence and subject matter depth firmly establish her as a leading figure in her field. She is well-qualified for consideration for the Best Researcher Award, and her career trajectory continues to reflect a strong commitment to scientific advancement and academic service. With continued support and recognition, Professor Mao is poised to make even greater contributions to the advancement of food science and engineering in China and internationally.

Publications Top Notes

  1. Title: The effect of degree of esterification of pectin on the grainy properties of post-heated fermented milk
    Authors: Gao, Fei; Mao, Xueying; Wang, Pengjie; Song, Sijia; Li, Dongdong
    Journal: Food Hydrocolloids
    Year: 2025

  2. Title: Changes in the interfacial properties of camel milk fat globules induced by homogenization and thermal processing: Implications for digestive characteristics
    Authors: Jiang, Hui; Xu, Yunxuan; Chen, Gangliang; Mao, Xueying
    Journal: Food Chemistry
    Year: 2025

  3. Title: Camel milk endogenous peptides ameliorated hyperglycemia in high-fat diet-fed C57BL/6 J mice in association with modulation of gut microbiota and the IRS/Akt and JNK/p38 pathways
    Authors: Zheng, Qianwen; Chen, Gangliang; Mao, Xueying
    Journal: Food Research International
    Year: 2025

  4. Title: Preheating intensity affects the properties of age gelation formed in direct ultra-high-temperature skim milk
    Authors: Liu, Xiaohan; Gong, Han; Hu, Yifan; Ren, Fazheng; Mao, Xueying
    Journal: International Dairy Journal
    Year: 2025

  5. Title: The compositions of milk fat globule membrane determine the interfacial behavior, digestive properties, and bioactivities: Natural versus processed forms (Review)
    Authors: Ma, Zhiyuan; Gong, Han; Liu, Biao; Mao, Xueying
    Year: 2025
    Citations: 2

  6. Title: Corrigendum to “Differences in proteomic profiles and immunomodulatory activity of goat and cow milk fat globule membrane” Food Chemistry 455 (2024) 139885
    Authors: Jiang, Hui; Gong, Han; Li, Qin; Gao, Jingxin; Mao, Xueying
    Journal: Food Chemistry (Corrigendum)
    Year: 2025

Muhammad Aurangzeib | Biological Sciences | Young Scientist Award

Mr. Muhammad Aurangzeib | Biological Sciences | Young Scientist Award

Northeast Agricultural University, China

Muhammad Aurangzeib is a dedicated soil and environmental scientist with a strong focus on sustainable agriculture, climate resilience, and environmental impact. Currently pursuing a Ph.D. in Agroecology and Climate Change at Northeast Agricultural University in Harbin, China, he has developed a robust background in quantitative analysis, climate adaptation strategies, and agroecosystem management. His research primarily investigates the role of biochar in enhancing soil fertility and crop yield, particularly in acidic soils. With a commendable academic record and a series of publications in reputable journals, Aurangzeib demonstrates a commitment to interdisciplinary research aimed at addressing global food security and climate challenges. His work not only contributes to scientific knowledge but also offers practical solutions for sustainable land management.

Professional Profile

Education

Muhammad Aurangzeib’s academic journey reflects a consistent focus on soil science and environmental studies. He earned his B.Sc. (Hons.) in Agriculture with a major in Soil Science and Environment from Bahauddin Zakariya University, Multan, Pakistan, in 2015. He continued at the same institution to complete his M.Sc. (Hons.) in Soil Science in 2017, where his thesis explored potassium fractionation in different textured soils. Currently, he is pursuing a Ph.D. in Agroecology and Climate Change at Northeast Agricultural University, Harbin, China, expected to be completed in 2025. His doctoral research examines the effects of biochar on physicochemical properties, greenhouse gas emissions, and grain yield in acidic soils, under the supervision of Prof. Dr. Shaoliang Zhang. This educational background has equipped him with a deep understanding of soil chemistry, fertility, and sustainable agricultural practices.

Professional Experience

Aurangzeib’s professional experience encompasses research, teaching, and practical applications in soil science. He has served as a Research Assistant at Bahauddin Zakariya University, where he analyzed micronutrients in citrus plants and soils and conducted experiments on fertilizer and biochar applications. His role involved using atomic absorption spectrophotometry and other analytical techniques. Additionally, he worked as a Researcher on a project funded by the Higher Education Commission of Pakistan, focusing on potassium fractionation in soils. Beyond research, Aurangzeib has contributed to academia as a Lecturer and Head of the Biology Department at Superior Group of Colleges in Multan, teaching undergraduate courses and developing curricula. His internships at Exin Chemical Corporation and the Soil Salinity Research Institute provided hands-on experience in soil analysis and fertilizer validation, further solidifying his practical skills in the field.

Research Interests

Aurangzeib’s research interests are centered on sustainable soil management and climate change mitigation. He is particularly interested in the application of biochar and nano-biochar as strategies to improve soil fertility and crop yields. His work aims to develop integrated prediction models using deep machine learning algorithms that consider soil texture, rainfall intensity, land use patterns, and biochar properties to forecast biochar’s effectiveness in enhancing agricultural productivity. His research also explores the impact of biochar on greenhouse gas emissions and soil physicochemical properties, contributing to the broader goals of environmental sustainability and food security.

Research Skills

Aurangzeib possesses a diverse set of research skills that support his scientific endeavors. He is proficient in programming with R-Studio, specializing in prediction modeling. His expertise extends to various analytical and statistical software, including ArcGIS Pro, Origin Pro, SPSS, XLSTAT, GraphPad Prism, and Microsoft Office Suite. He is adept at using atomic absorption spectrophotometry for nutrient analysis and has experience in soil and plant sample preparation and analysis. His technical skills are complemented by his ability to design and conduct experiments, analyze complex datasets, and interpret results within the context of environmental and agricultural sciences.

Awards and Honors

Throughout his academic and professional career, Aurangzeib has received recognition for his contributions to soil science and environmental research. Notably, he was awarded the Best Debater in the Sino-foreign debate competition in 2023, where his team secured the first position. He has actively participated in international workshops and seminars, such as the “International Workshop on Mollisols Erosion and Degradation” in Harbin, China, and the “China-Russia Grain Production and Food Science” seminar. His engagement in these events reflects his commitment to continuous learning and collaboration within the global scientific community.

Conclusion

Muhammad Aurangzeib exemplifies the qualities of a dedicated researcher committed to advancing sustainable agricultural practices and addressing environmental challenges. His academic achievements, practical experience, and research contributions position him as a valuable asset in the field of soil science. His focus on biochar applications for soil improvement and climate change mitigation aligns with global efforts to enhance food security and environmental sustainability. Aurangzeib’s interdisciplinary approach and commitment to scientific excellence make him a strong candidate for recognition, such as the Best Researcher Award, and underscore his potential to make significant contributions to the field.

Publications Top Notes

  1. Biochar application strategies mediating the soil temperature, moisture and salinity during the crop seedling stage in Mollisols
    Authors: Sihua Yan, Shaoliang Zhang, Pengke Yan, Muhammad Aurangzeib, Guohui Tao
    Journal: Science of the Total Environment
    Year: 2025
  2.  Key factors influencing the spatial distribution of soil organic carbon and its fractions in Mollisols
    Authors: Xiaoguang Niu, Shaoliang Zhang, Chengbo Zhang, Mingke Song, Muhammad Aurangzeib
    Year: Not specified (likely 2025)
    Citations: 1

Maizura Murad | Biological Sciences | Best Researcher Award

Dr. Maizura Murad | Biological Sciences | Best Researcher Award

Lecturer and researcher from University Sains Malaysia, Malaysia

Dr. Maizura Murad is a distinguished academic specializing in food sensory analysis, food processing, and the antioxidant properties of food. Since June 25, 2013, she has been serving at the School of Industrial Technology, Universiti Sains Malaysia (USM). In her role, Dr. Maizura provides invaluable assistance and supervision to both undergraduate and postgraduate students, particularly in the realm of food sensory analyses. Her dedication to research is evident through her numerous publications in international peer-reviewed journals, focusing on sensory evaluations of food. Beyond her academic pursuits, Dr. Maizura is committed to advancing the field of food science, contributing significantly to the understanding of how food processing impacts sensory qualities and antioxidant properties.

Professional Profile

Education

Dr. Maizura Murad’s academic journey reflects her deep commitment to the field of food science and technology. She earned her Bachelor of Science degree in Food Quality Management from Universiti Teknologi MARA (UiTM) in Malaysia. Pursuing further specialization, she obtained her Master’s degree in Food Technology from Universiti Sains Malaysia (USM). Culminating her formal education, Dr. Maizura achieved a Ph.D. in Food Science from Universiti Kebangsaan Malaysia (UKM). This robust educational foundation has equipped her with comprehensive knowledge and expertise, enabling her to make significant contributions to the field of food sensory analysis and processing.

Professional Experience

Dr. Maizura Murad has been an integral part of Universiti Sains Malaysia (USM) since June 25, 2013, where she serves at the School of Industrial Technology. In her capacity, she supervises and mentors both undergraduate and postgraduate students, particularly in the area of food sensory analyses. Her role encompasses not only teaching but also guiding research projects that delve into the sensory evaluation of food products. Dr. Maizura’s professional experience is marked by her dedication to fostering a comprehensive understanding of food processing and its impact on sensory qualities, thereby preparing her students to excel in the food science industry.

Research Interests

Dr. Maizura Murad’s research interests are centered around food sensory analysis, food processing, and the antioxidant properties of food. She is particularly intrigued by how different processing methods influence the sensory attributes and nutritional quality of food products. Her work aims to bridge the gap between food processing techniques and consumer perception, ensuring that processed foods meet both quality standards and consumer expectations. By focusing on antioxidant properties, Dr. Maizura contributes to the development of healthier food options, emphasizing the importance of nutrition alongside sensory appeal.

Research Skills

Dr. Maizura Murad possesses a robust set of research skills honed through years of academic and professional experience. Her expertise lies in conducting comprehensive food sensory evaluations, utilizing both qualitative and quantitative methodologies to assess consumer preferences and perceptions. She is adept at designing and implementing experiments that explore the effects of various food processing techniques on sensory attributes and antioxidant properties. Dr. Maizura’s proficiency in statistical analysis enables her to interpret complex data effectively, drawing meaningful conclusions that contribute to the advancement of food science.

Awards and Honors

Specific details regarding awards and honors received by Dr. Maizura Murad are not readily available in the provided sources. However, her extensive publication record in international peer-reviewed journals and her longstanding role at Universiti Sains Malaysia (USM) reflect her esteemed position in the academic community. Her contributions to food sensory analysis and processing have undoubtedly garnered recognition and respect among her peers and students alike.

Conclusion

Dr. Maizura Murad’s dedication to the field of food science is evident through her extensive research, teaching, and mentorship roles at Universiti Sains Malaysia (USM). Her expertise in food sensory analysis, processing, and antioxidant properties has significantly contributed to the understanding of how processing techniques affect food quality and consumer perception. By bridging the gap between scientific research and practical applications, Dr. Maizura plays a pivotal role in advancing food technology and ensuring the development of nutritious and appealing food products.

Publications Top Notes

  • Title: Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract
    Authors: M. Maizura, A. Aminah, W.M. Wan Aida
    Year: 2011
    Citations: 438

  • Title: Antibacterial activity and mechanical properties of partially hydrolyzed sago starch–alginate edible film containing lemongrass oil
    Authors: M. Maizura, A. Fazilah, M.H. Norziah, A.A. Karim
    Year: 2007
    Citations: 382

  • Title: Physical and mechanical properties of sago starch–alginate films incorporated with calcium chloride
    Authors: A. Fazilah, M. Maizura, A. Abd Karim, K. Bhupinder, B. Rajeev
    Year: 2011
    Citations: 71

  • Title: Film Incorporated with Lemongrass (Cymbopogon citratus) Oil
    Authors: M. Maizura, A. Fazilah, M.H. Norziah, A.A. Karim
    Year: 2008
    Citations: 47

  • Title: Physicochemical properties and sensory acceptability of pineapples of different varieties and stages of maturity
    Authors: R. Siti Rashima, M. Maizura, W.M. Wan Nur Hafzan, H. Hazzeman
    Year: 2019
    Citations: 33

  • Title: The use of salt-coating to improve textural, mechanical, cooking and sensory properties of air-dried yellow alkaline noodles
    Authors: S.Y. Yeoh, M. Lubowa, T.C. Tan, M. Murad, A.M. Easa
    Year: 2020
    Citations: 32

  • Title: Influence of sodium chloride treatment and polysaccharides as debittering agent on the physicochemical properties, antioxidant capacity and sensory characteristics of bitter melon
    Authors: R. Siti Rashima, M. Maizura, W.M. Kang, A. Fazilah, L.X. Tan
    Year: 2017
    Citations: 30

  • Title: The development of legume-based yogurt by using water kefir as starter culture
    Authors: X.X. Lim, W.Y. Koh, U. Uthumporn, M. Maizura, W.I. Wan Rosli
    Year: 2019
    Citations: 26

  • Title: Physico-chemical and antioxidant properties of eggplant flour as a functional ingredient
    Authors: U. Uthumporn, A. Fazilah, A.Y. Tajul, M. Maizura, A.S. Ruri
    Year: 2016
    Citations: 26

  • Title: A review of natural cheese and imitation cheese
    Authors: A. Mohd Shukri, A.K. Alias, M. Murad, K.S. Yen, L.H. Cheng
    Year: 2022
    Citations: 22